crypto: caam/qi2 - add skcipher algorithms

Add support to submit the following skcipher algorithms
via the DPSECI backend:
cbc({aes,des,des3_ede})
ctr(aes), rfc3686(ctr(aes))
xts(aes)

Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Horia Geantă 2018-09-12 11:59:34 +03:00 committed by Herbert Xu
parent 8d818c1055
commit 226853ac3e
3 changed files with 582 additions and 1 deletions

View file

@ -157,6 +157,7 @@ config CRYPTO_DEV_FSL_DPAA2_CAAM
tristate "QorIQ DPAA2 CAAM (DPSECI) driver"
depends on FSL_MC_DPIO
select CRYPTO_DEV_FSL_CAAM_COMMON
select CRYPTO_BLKCIPHER
select CRYPTO_AUTHENC
select CRYPTO_AEAD
help

View file

@ -56,6 +56,12 @@ struct caam_aead_alg {
bool registered;
};
struct caam_skcipher_alg {
struct skcipher_alg skcipher;
struct caam_alg_entry caam;
bool registered;
};
/**
* caam_ctx - per-session context
* @flc: Flow Contexts array
@ -794,6 +800,248 @@ static int rfc4543_setkey(struct crypto_aead *aead,
return rfc4543_set_sh_desc(aead);
}
static int skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
unsigned int keylen)
{
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct caam_skcipher_alg *alg =
container_of(crypto_skcipher_alg(skcipher),
struct caam_skcipher_alg, skcipher);
struct device *dev = ctx->dev;
struct caam_flc *flc;
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
u32 *desc;
u32 ctx1_iv_off = 0;
const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = alg->caam.rfc3686;
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ctx1_iv_off = 16;
/*
* RFC3686 specific:
* | CONTEXT1[255:128] = {NONCE, IV, COUNTER}
* | *key = {KEY, NONCE}
*/
if (is_rfc3686) {
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
keylen -= CTR_RFC3686_NONCE_SIZE;
}
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* skcipher_encrypt shared descriptor */
flc = &ctx->flc[ENCRYPT];
desc = flc->sh_desc;
cnstr_shdsc_skcipher_encap(desc, &ctx->cdata, ivsize, is_rfc3686,
ctx1_iv_off);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
/* skcipher_decrypt shared descriptor */
flc = &ctx->flc[DECRYPT];
desc = flc->sh_desc;
cnstr_shdsc_skcipher_decap(desc, &ctx->cdata, ivsize, is_rfc3686,
ctx1_iv_off);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
return 0;
}
static int xts_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
unsigned int keylen)
{
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct device *dev = ctx->dev;
struct caam_flc *flc;
u32 *desc;
if (keylen != 2 * AES_MIN_KEY_SIZE && keylen != 2 * AES_MAX_KEY_SIZE) {
dev_err(dev, "key size mismatch\n");
crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* xts_skcipher_encrypt shared descriptor */
flc = &ctx->flc[ENCRYPT];
desc = flc->sh_desc;
cnstr_shdsc_xts_skcipher_encap(desc, &ctx->cdata);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
/* xts_skcipher_decrypt shared descriptor */
flc = &ctx->flc[DECRYPT];
desc = flc->sh_desc;
cnstr_shdsc_xts_skcipher_decap(desc, &ctx->cdata);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
return 0;
}
static struct skcipher_edesc *skcipher_edesc_alloc(struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_request *req_ctx = skcipher_request_ctx(req);
struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct device *dev = ctx->dev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
struct skcipher_edesc *edesc;
dma_addr_t iv_dma;
u8 *iv;
int ivsize = crypto_skcipher_ivsize(skcipher);
int dst_sg_idx, qm_sg_ents, qm_sg_bytes;
struct dpaa2_sg_entry *sg_table;
src_nents = sg_nents_for_len(req->src, req->cryptlen);
if (unlikely(src_nents < 0)) {
dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
req->cryptlen);
return ERR_PTR(src_nents);
}
if (unlikely(req->dst != req->src)) {
dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
if (unlikely(dst_nents < 0)) {
dev_err(dev, "Insufficient bytes (%d) in dst S/G\n",
req->cryptlen);
return ERR_PTR(dst_nents);
}
mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(dev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(dev, "unable to map destination\n");
dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(dev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
}
qm_sg_ents = 1 + mapped_src_nents;
dst_sg_idx = qm_sg_ents;
qm_sg_ents += mapped_dst_nents > 1 ? mapped_dst_nents : 0;
qm_sg_bytes = qm_sg_ents * sizeof(struct dpaa2_sg_entry);
if (unlikely(offsetof(struct skcipher_edesc, sgt) + qm_sg_bytes +
ivsize > CAAM_QI_MEMCACHE_SIZE)) {
dev_err(dev, "No space for %d S/G entries and/or %dB IV\n",
qm_sg_ents, ivsize);
caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0);
return ERR_PTR(-ENOMEM);
}
/* allocate space for base edesc, link tables and IV */
edesc = qi_cache_zalloc(GFP_DMA | flags);
if (unlikely(!edesc)) {
dev_err(dev, "could not allocate extended descriptor\n");
caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0);
return ERR_PTR(-ENOMEM);
}
/* Make sure IV is located in a DMAable area */
sg_table = &edesc->sgt[0];
iv = (u8 *)(sg_table + qm_sg_ents);
memcpy(iv, req->iv, ivsize);
iv_dma = dma_map_single(dev, iv, ivsize, DMA_TO_DEVICE);
if (dma_mapping_error(dev, iv_dma)) {
dev_err(dev, "unable to map IV\n");
caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->qm_sg_bytes = qm_sg_bytes;
dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0);
sg_to_qm_sg_last(req->src, mapped_src_nents, sg_table + 1, 0);
if (mapped_dst_nents > 1)
sg_to_qm_sg_last(req->dst, mapped_dst_nents, sg_table +
dst_sg_idx, 0);
edesc->qm_sg_dma = dma_map_single(dev, sg_table, edesc->qm_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, edesc->qm_sg_dma)) {
dev_err(dev, "unable to map S/G table\n");
caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
dpaa2_fl_set_final(in_fle, true);
dpaa2_fl_set_len(in_fle, req->cryptlen + ivsize);
dpaa2_fl_set_len(out_fle, req->cryptlen);
dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
if (req->src == req->dst) {
dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma +
sizeof(*sg_table));
} else if (mapped_dst_nents > 1) {
dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma + dst_sg_idx *
sizeof(*sg_table));
} else {
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, sg_dma_address(req->dst));
}
return edesc;
}
static void aead_unmap(struct device *dev, struct aead_edesc *edesc,
struct aead_request *req)
{
@ -805,6 +1053,16 @@ static void aead_unmap(struct device *dev, struct aead_edesc *edesc,
dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
}
static void skcipher_unmap(struct device *dev, struct skcipher_edesc *edesc,
struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
int ivsize = crypto_skcipher_ivsize(skcipher);
caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, edesc->qm_sg_dma, edesc->qm_sg_bytes);
}
static void aead_encrypt_done(void *cbk_ctx, u32 status)
{
struct crypto_async_request *areq = cbk_ctx;
@ -930,6 +1188,138 @@ static int ipsec_gcm_decrypt(struct aead_request *req)
return aead_decrypt(req);
}
static void skcipher_encrypt_done(void *cbk_ctx, u32 status)
{
struct crypto_async_request *areq = cbk_ctx;
struct skcipher_request *req = skcipher_request_cast(areq);
struct caam_request *req_ctx = to_caam_req(areq);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct skcipher_edesc *edesc = req_ctx->edesc;
int ecode = 0;
int ivsize = crypto_skcipher_ivsize(skcipher);
dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
if (unlikely(status)) {
caam_qi2_strstatus(ctx->dev, status);
ecode = -EIO;
}
print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
edesc->src_nents > 1 ? 100 : ivsize, 1);
caam_dump_sg(KERN_DEBUG, "dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
skcipher_unmap(ctx->dev, edesc, req);
/*
* The crypto API expects us to set the IV (req->iv) to the last
* ciphertext block. This is used e.g. by the CTS mode.
*/
scatterwalk_map_and_copy(req->iv, req->dst, req->cryptlen - ivsize,
ivsize, 0);
qi_cache_free(edesc);
skcipher_request_complete(req, ecode);
}
static void skcipher_decrypt_done(void *cbk_ctx, u32 status)
{
struct crypto_async_request *areq = cbk_ctx;
struct skcipher_request *req = skcipher_request_cast(areq);
struct caam_request *req_ctx = to_caam_req(areq);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct skcipher_edesc *edesc = req_ctx->edesc;
int ecode = 0;
int ivsize = crypto_skcipher_ivsize(skcipher);
dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
if (unlikely(status)) {
caam_qi2_strstatus(ctx->dev, status);
ecode = -EIO;
}
print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
edesc->src_nents > 1 ? 100 : ivsize, 1);
caam_dump_sg(KERN_DEBUG, "dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
skcipher_unmap(ctx->dev, edesc, req);
qi_cache_free(edesc);
skcipher_request_complete(req, ecode);
}
static int skcipher_encrypt(struct skcipher_request *req)
{
struct skcipher_edesc *edesc;
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct caam_request *caam_req = skcipher_request_ctx(req);
int ret;
/* allocate extended descriptor */
edesc = skcipher_edesc_alloc(req);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
caam_req->flc = &ctx->flc[ENCRYPT];
caam_req->flc_dma = ctx->flc_dma[ENCRYPT];
caam_req->cbk = skcipher_encrypt_done;
caam_req->ctx = &req->base;
caam_req->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
if (ret != -EINPROGRESS &&
!(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
skcipher_unmap(ctx->dev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int skcipher_decrypt(struct skcipher_request *req)
{
struct skcipher_edesc *edesc;
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct caam_request *caam_req = skcipher_request_ctx(req);
int ivsize = crypto_skcipher_ivsize(skcipher);
int ret;
/* allocate extended descriptor */
edesc = skcipher_edesc_alloc(req);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/*
* The crypto API expects us to set the IV (req->iv) to the last
* ciphertext block.
*/
scatterwalk_map_and_copy(req->iv, req->src, req->cryptlen - ivsize,
ivsize, 0);
caam_req->flc = &ctx->flc[DECRYPT];
caam_req->flc_dma = ctx->flc_dma[DECRYPT];
caam_req->cbk = skcipher_decrypt_done;
caam_req->ctx = &req->base;
caam_req->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
if (ret != -EINPROGRESS &&
!(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
skcipher_unmap(ctx->dev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int caam_cra_init(struct caam_ctx *ctx, struct caam_alg_entry *caam,
bool uses_dkp)
{
@ -958,6 +1348,16 @@ static int caam_cra_init(struct caam_ctx *ctx, struct caam_alg_entry *caam,
return 0;
}
static int caam_cra_init_skcipher(struct crypto_skcipher *tfm)
{
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct caam_skcipher_alg *caam_alg =
container_of(alg, typeof(*caam_alg), skcipher);
crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_request));
return caam_cra_init(crypto_skcipher_ctx(tfm), &caam_alg->caam, false);
}
static int caam_cra_init_aead(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
@ -976,11 +1376,124 @@ static void caam_exit_common(struct caam_ctx *ctx)
DMA_ATTR_SKIP_CPU_SYNC);
}
static void caam_cra_exit(struct crypto_skcipher *tfm)
{
caam_exit_common(crypto_skcipher_ctx(tfm));
}
static void caam_cra_exit_aead(struct crypto_aead *tfm)
{
caam_exit_common(crypto_aead_ctx(tfm));
}
static struct caam_skcipher_alg driver_algs[] = {
{
.skcipher = {
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-3des-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "cbc(des)",
.cra_driver_name = "cbc-des-caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
},
{
.skcipher = {
.base = {
.cra_name = "rfc3686(ctr(aes))",
.cra_driver_name = "rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
.chunksize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.rfc3686 = true,
},
},
{
.skcipher = {
.base = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = xts_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS,
}
};
static struct caam_aead_alg driver_aeads[] = {
{
.aead = {
@ -2143,6 +2656,19 @@ static struct caam_aead_alg driver_aeads[] = {
},
};
static void caam_skcipher_alg_init(struct caam_skcipher_alg *t_alg)
{
struct skcipher_alg *alg = &t_alg->skcipher;
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CAAM_CRA_PRIORITY;
alg->base.cra_ctxsize = sizeof(struct caam_ctx);
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->init = caam_cra_init_skcipher;
alg->exit = caam_cra_exit;
}
static void caam_aead_alg_init(struct caam_aead_alg *t_alg)
{
struct aead_alg *alg = &t_alg->aead;
@ -2701,6 +3227,35 @@ static int dpaa2_caam_probe(struct fsl_mc_device *dpseci_dev)
}
/* register crypto algorithms the device supports */
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
struct caam_skcipher_alg *t_alg = driver_algs + i;
u32 alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK;
/* Skip DES algorithms if not supported by device */
if (!priv->sec_attr.des_acc_num &&
(alg_sel == OP_ALG_ALGSEL_3DES ||
alg_sel == OP_ALG_ALGSEL_DES))
continue;
/* Skip AES algorithms if not supported by device */
if (!priv->sec_attr.aes_acc_num &&
alg_sel == OP_ALG_ALGSEL_AES)
continue;
t_alg->caam.dev = dev;
caam_skcipher_alg_init(t_alg);
err = crypto_register_skcipher(&t_alg->skcipher);
if (err) {
dev_warn(dev, "%s alg registration failed: %d\n",
t_alg->skcipher.base.cra_driver_name, err);
continue;
}
t_alg->registered = true;
registered = true;
}
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
u32 c1_alg_sel = t_alg->caam.class1_alg_type &
@ -2774,6 +3329,13 @@ static int __cold dpaa2_caam_remove(struct fsl_mc_device *ls_dev)
crypto_unregister_aead(&t_alg->aead);
}
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
struct caam_skcipher_alg *t_alg = driver_algs + i;
if (t_alg->registered)
crypto_unregister_skcipher(&t_alg->skcipher);
}
dpaa2_dpseci_disable(priv);
dpaa2_dpseci_dpio_free(priv);
dpaa2_dpseci_free(priv);

View file

@ -140,6 +140,24 @@ struct aead_edesc {
struct dpaa2_sg_entry sgt[0];
};
/*
* skcipher_edesc - s/w-extended skcipher descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @qm_sg_bytes: length of dma mapped qm_sg space
* @qm_sg_dma: I/O virtual address of h/w link table
* @sgt: the h/w link table, followed by IV
*/
struct skcipher_edesc {
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
int qm_sg_bytes;
dma_addr_t qm_sg_dma;
struct dpaa2_sg_entry sgt[0];
};
/**
* caam_flc - Flow Context (FLC)
* @flc: Flow Context options
@ -167,7 +185,7 @@ enum optype {
* @flc_dma: I/O virtual address of Flow Context
* @cbk: Callback function to invoke when job is completed
* @ctx: arbit context attached with request by the application
* @edesc: extended descriptor; points to aead_edesc
* @edesc: extended descriptor; points to one of {skcipher,aead}_edesc
*/
struct caam_request {
struct dpaa2_fl_entry fd_flt[2];