powerpc/pseries: Cleanup comments in EEH aux components

There're several EEH aux components and the patch does some cleanup
for them so that they look more clean.

        * Duplicated comments have been removed from the header file.
        * Comments have been reorganized so that it looks more clean.
        * The leading comments of functions are adjusted for a little
          bit so that the result of "make pdfdocs" would be more
          unified.
        * Function calls "xxx ()" has been replaced by "xxx()".

Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This commit is contained in:
Gavin Shan 2012-02-27 20:04:02 +00:00 committed by Benjamin Herrenschmidt
parent 1823fbf119
commit 29f8bf1b7f
5 changed files with 107 additions and 97 deletions

View file

@ -1,6 +1,4 @@
/*
* eeh_event.h
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
@ -22,31 +20,19 @@
#define ASM_POWERPC_EEH_EVENT_H
#ifdef __KERNEL__
/** EEH event -- structure holding pci controller data that describes
* a change in the isolation status of a PCI slot. A pointer
* to this struct is passed as the data pointer in a notify callback.
/*
* structure holding pci controller data that describes a
* change in the isolation status of a PCI slot. A pointer
* to this struct is passed as the data pointer in a notify
* callback.
*/
struct eeh_event {
struct list_head list;
struct list_head list; /* to form event queue */
struct device_node *dn; /* struct device node */
struct pci_dev *dev; /* affected device */
};
/**
* eeh_send_failure_event - generate a PCI error event
* @dev pci device
*
* This routine builds a PCI error event which will be delivered
* to all listeners on the eeh_notifier_chain.
*
* This routine can be called within an interrupt context;
* the actual event will be delivered in a normal context
* (from a workqueue).
*/
int eeh_send_failure_event (struct device_node *dn,
struct pci_dev *dev);
/* Main recovery function */
int eeh_send_failure_event(struct device_node *dn, struct pci_dev *dev);
struct pci_dn *handle_eeh_events(struct eeh_event *);
#endif /* __KERNEL__ */

View file

@ -1,5 +1,4 @@
/*
* eeh_cache.c
* PCI address cache; allows the lookup of PCI devices based on I/O address
*
* Copyright IBM Corporation 2004
@ -47,8 +46,7 @@
* than any hash algo I could think of for this problem, even
* with the penalty of slow pointer chases for d-cache misses).
*/
struct pci_io_addr_range
{
struct pci_io_addr_range {
struct rb_node rb_node;
unsigned long addr_lo;
unsigned long addr_hi;
@ -56,8 +54,7 @@ struct pci_io_addr_range
unsigned int flags;
};
static struct pci_io_addr_cache
{
static struct pci_io_addr_cache {
struct rb_root rb_root;
spinlock_t piar_lock;
} pci_io_addr_cache_root;

View file

@ -33,7 +33,13 @@
#include <asm/prom.h>
#include <asm/rtas.h>
/**
* eeh_pcid_name - Retrieve name of PCI device driver
* @pdev: PCI device
*
* This routine is used to retrieve the name of PCI device driver
* if that's valid.
*/
static inline const char *pcid_name(struct pci_dev *pdev)
{
if (pdev && pdev->dev.driver)
@ -64,7 +70,14 @@ static void print_device_node_tree(struct pci_dn *pdn, int dent)
#endif
/**
* eeh_disable_irq - disable interrupt for the recovering device
* eeh_disable_irq - Disable interrupt for the recovering device
* @dev: PCI device
*
* This routine must be called when reporting temporary or permanent
* error to the particular PCI device to disable interrupt of that
* device. If the device has enabled MSI or MSI-X interrupt, we needn't
* do real work because EEH should freeze DMA transfers for those PCI
* devices encountering EEH errors, which includes MSI or MSI-X.
*/
static void eeh_disable_irq(struct pci_dev *dev)
{
@ -85,7 +98,11 @@ static void eeh_disable_irq(struct pci_dev *dev)
}
/**
* eeh_enable_irq - enable interrupt for the recovering device
* eeh_enable_irq - Enable interrupt for the recovering device
* @dev: PCI device
*
* This routine must be called to enable interrupt while failed
* device could be resumed.
*/
static void eeh_enable_irq(struct pci_dev *dev)
{
@ -97,15 +114,15 @@ static void eeh_enable_irq(struct pci_dev *dev)
}
}
/* ------------------------------------------------------- */
/**
* eeh_report_error - report pci error to each device driver
* eeh_report_error - Report pci error to each device driver
* @dev: PCI device
* @userdata: return value
*
* Report an EEH error to each device driver, collect up and
* merge the device driver responses. Cumulative response
* passed back in "userdata".
*/
static int eeh_report_error(struct pci_dev *dev, void *userdata)
{
enum pci_ers_result rc, *res = userdata;
@ -132,13 +149,14 @@ static int eeh_report_error(struct pci_dev *dev, void *userdata)
}
/**
* eeh_report_mmio_enabled - tell drivers that MMIO has been enabled
* eeh_report_mmio_enabled - Tell drivers that MMIO has been enabled
* @dev: PCI device
* @userdata: return value
*
* Tells each device driver that IO ports, MMIO and config space I/O
* are now enabled. Collects up and merges the device driver responses.
* Cumulative response passed back in "userdata".
*/
static int eeh_report_mmio_enabled(struct pci_dev *dev, void *userdata)
{
enum pci_ers_result rc, *res = userdata;
@ -159,9 +177,15 @@ static int eeh_report_mmio_enabled(struct pci_dev *dev, void *userdata)
}
/**
* eeh_report_reset - tell device that slot has been reset
* eeh_report_reset - Tell device that slot has been reset
* @dev: PCI device
* @userdata: return value
*
* This routine must be called while EEH tries to reset particular
* PCI device so that the associated PCI device driver could take
* some actions, usually to save data the driver needs so that the
* driver can work again while the device is recovered.
*/
static int eeh_report_reset(struct pci_dev *dev, void *userdata)
{
enum pci_ers_result rc, *res = userdata;
@ -188,9 +212,14 @@ static int eeh_report_reset(struct pci_dev *dev, void *userdata)
}
/**
* eeh_report_resume - tell device to resume normal operations
* eeh_report_resume - Tell device to resume normal operations
* @dev: PCI device
* @userdata: return value
*
* This routine must be called to notify the device driver that it
* could resume so that the device driver can do some initialization
* to make the recovered device work again.
*/
static int eeh_report_resume(struct pci_dev *dev, void *userdata)
{
struct pci_driver *driver = dev->driver;
@ -212,12 +241,13 @@ static int eeh_report_resume(struct pci_dev *dev, void *userdata)
}
/**
* eeh_report_failure - tell device driver that device is dead.
* eeh_report_failure - Tell device driver that device is dead.
* @dev: PCI device
* @userdata: return value
*
* This informs the device driver that the device is permanently
* dead, and that no further recovery attempts will be made on it.
*/
static int eeh_report_failure(struct pci_dev *dev, void *userdata)
{
struct pci_driver *driver = dev->driver;
@ -238,36 +268,15 @@ static int eeh_report_failure(struct pci_dev *dev, void *userdata)
return 0;
}
/* ------------------------------------------------------- */
/**
* handle_eeh_events -- reset a PCI device after hard lockup.
* eeh_reset_device - Perform actual reset of a pci slot
* @pe_dn: PE associated device node
* @bus: PCI bus corresponding to the isolcated slot
*
* pSeries systems will isolate a PCI slot if the PCI-Host
* bridge detects address or data parity errors, DMA's
* occurring to wild addresses (which usually happen due to
* bugs in device drivers or in PCI adapter firmware).
* Slot isolations also occur if #SERR, #PERR or other misc
* PCI-related errors are detected.
*
* Recovery process consists of unplugging the device driver
* (which generated hotplug events to userspace), then issuing
* a PCI #RST to the device, then reconfiguring the PCI config
* space for all bridges & devices under this slot, and then
* finally restarting the device drivers (which cause a second
* set of hotplug events to go out to userspace).
* This routine must be called to do reset on the indicated PE.
* During the reset, udev might be invoked because those affected
* PCI devices will be removed and then added.
*/
/**
* eeh_reset_device() -- perform actual reset of a pci slot
* @bus: pointer to the pci bus structure corresponding
* to the isolated slot. A non-null value will
* cause all devices under the bus to be removed
* and then re-added.
* @pe_dn: pointer to a "Partionable Endpoint" device node.
* This is the top-level structure on which pci
* bus resets can be performed.
*/
static int eeh_reset_device(struct pci_dn *pe_dn, struct pci_bus *bus)
{
struct device_node *dn;
@ -281,7 +290,8 @@ static int eeh_reset_device (struct pci_dn *pe_dn, struct pci_bus *bus)
/* Reset the pci controller. (Asserts RST#; resets config space).
* Reconfigure bridges and devices. Don't try to bring the system
* up if the reset failed for some reason. */
* up if the reset failed for some reason.
*/
rc = eeh_reset_pe(pe_dn);
if (rc)
return rc;
@ -321,6 +331,23 @@ static int eeh_reset_device (struct pci_dn *pe_dn, struct pci_bus *bus)
*/
#define MAX_WAIT_FOR_RECOVERY 150
/**
* eeh_handle_event - Reset a PCI device after hard lockup.
* @event: EEH event
*
* While PHB detects address or data parity errors on particular PCI
* slot, the associated PE will be frozen. Besides, DMA's occurring
* to wild addresses (which usually happen due to bugs in device
* drivers or in PCI adapter firmware) can cause EEH error. #SERR,
* #PERR or other misc PCI-related errors also can trigger EEH errors.
*
* Recovery process consists of unplugging the device driver (which
* generated hotplug events to userspace), then issuing a PCI #RST to
* the device, then reconfiguring the PCI config space for all bridges
* & devices under this slot, and then finally restarting the device
* drivers (which cause a second set of hotplug events to go out to
* userspace).
*/
struct pci_dn *handle_eeh_events(struct eeh_event *event)
{
struct device_node *frozen_dn;
@ -350,7 +377,8 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
* which was always an EADS pci bridge. In the new style,
* there might not be any EADS bridges, and even when there are,
* the firmware marks them as "EEH incapable". So another
* two-step is needed to find the pci bus.. */
* two-step is needed to find the pci bus..
*/
if (!frozen_bus)
frozen_bus = pcibios_find_pci_bus(frozen_dn->parent);
@ -395,7 +423,8 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
pci_walk_bus(frozen_bus, eeh_report_error, &result);
/* Get the current PCI slot state. This can take a long time,
* sometimes over 3 seconds for certain systems. */
* sometimes over 3 seconds for certain systems.
*/
rc = eeh_ops->wait_state(frozen_pdn->node, MAX_WAIT_FOR_RECOVERY*1000);
if (rc < 0 || rc == EEH_STATE_NOT_SUPPORT) {
printk(KERN_WARNING "EEH: Permanent failure\n");
@ -508,4 +537,3 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
return NULL;
}
/* ---------- end of file ---------- */

View file

@ -1,6 +1,4 @@
/*
* eeh_event.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
@ -46,7 +44,7 @@ DECLARE_WORK(eeh_event_wq, eeh_thread_launcher);
DEFINE_MUTEX(eeh_event_mutex);
/**
* eeh_event_handler - dispatch EEH events.
* eeh_event_handler - Dispatch EEH events.
* @dummy - unused
*
* The detection of a frozen slot can occur inside an interrupt,
@ -102,8 +100,11 @@ static int eeh_event_handler(void * dummy)
}
/**
* eeh_thread_launcher
* eeh_thread_launcher - Start kernel thread to handle EEH events
* @dummy - unused
*
* This routine is called to start the kernel thread for processing
* EEH event.
*/
static void eeh_thread_launcher(struct work_struct *dummy)
{
@ -112,8 +113,8 @@ static void eeh_thread_launcher(struct work_struct *dummy)
}
/**
* eeh_send_failure_event - generate a PCI error event
* @dev pci device
* eeh_send_failure_event - Generate a PCI error event
* @dev: pci device
*
* This routine can be called within an interrupt context;
* the actual event will be delivered in a normal context
@ -154,5 +155,3 @@ int eeh_send_failure_event (struct device_node *dn,
return 0;
}
/********************** END OF FILE ******************************/

View file

@ -28,7 +28,7 @@
#include <asm/pci-bridge.h>
/**
* EEH_SHOW_ATTR -- create sysfs entry for eeh statistic
* EEH_SHOW_ATTR -- Create sysfs entry for eeh statistic
* @_name: name of file in sysfs directory
* @_memb: name of member in struct pci_dn to access
* @_format: printf format for display