More power management updates for 5.15-rc1

- Add new cpufreq driver for the MediaTek MT6779 platform called
    mediatek-hw along with corresponding DT bindings (Hector.Yuan).
 
  - Add DCVS interrupt support to the qcom-cpufreq-hw driver (Thara
    Gopinath).
 
  - Make the qcom-cpufreq-hw driver set the dvfs_possible_from_any_cpu
    policy flag (Taniya Das).
 
  - Blocklist more Qualcomm platforms in cpufreq-dt-platdev (Bjorn
    Andersson).
 
  - Make the vexpress cpufreq driver set the CPUFREQ_IS_COOLING_DEV
    flag (Viresh Kumar).
 
  - Add new cpufreq driver callback to allow drivers to register
    with the Energy Model in a consistent way and make several
    drivers use it (Viresh Kumar).
 
  - Change the remaining users of the .ready() cpufreq driver callback
    to move the code from it elsewhere and drop it from the cpufreq
    core (Viresh Kumar).
 
  - Revert recent intel_pstate change adding HWP guaranteed performance
    change notification support to it that led to problems, because
    the notification in question is triggered prematurely on some
    systems (Rafael Wysocki).
 
  - Convert the OPP DT bindings to DT schema and clean them up while
    at it (Rob Herring).
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmE41VgSHHJqd0Byand5
 c29ja2kubmV0AAoJEILEb/54YlRxCN4P+gMjMrrZmuU6gZsbbvpDlaBhCd2Xq3TD
 xR/DMDi7znkh3TUX3uwL+xnr+k0krIH0jBIeUQUE7NeNIoT6wgbjJ4Ty5rFq76qB
 AODmmZ4vO7lmnupSyqUQbHfYohDmyICSKiStf8UOEj1o+jSWNmrgUYUv0tDtDUH+
 Cn0vByah8gJAnoZX8Y8BM1jmRc3YoNHWpvtTQIhIBPkVZ//+NOKvDZvwUUPZFb+M
 1PzMSfX7WsIDiUrUHpdvtZsoBniaMk0WS1EqVBRvEprqUXad1eHF19yuhtLxeUPH
 8xh/7o8kYzjqVJvs7blTT8DztxRDScWHeGKSVdwoEJupbCwc5R3qfGaD6PWyhI1x
 9R5Swsp64nLptTCwH7ZmgdJbC9IqN3cz1Nadd5v2Q2wr21KvZnj7zI2ijkPKGnZo
 kqYQHghqnDkGPFVjdls/RKUXGCQIXZFQb+FeuyCvpVlz9Ol8+DnTYtgFjjc6VcU1
 kApIqsE8V8GQEyzmm/OIAf6xtsA+mEUUh3Qds16KNCwBCRglC8I6v5IWnBc8PEJz
 a+wtwjx+tyKSSlAMEvcDNtrWVN+3JNrwCFG+Q+QjMrwLiAgACrtJZ6e6PmLj9sZv
 FPbZM8rzbzN7Zqd7XVNY37KHjqNs7zzDScAnATTUCKThp8ijDgtmG3ZhExmOPayc
 74aQLham4TBO
 =WSpr
 -----END PGP SIGNATURE-----

Merge tag 'pm-5.15-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull more power management updates from Rafael Wysocki:
 "These are mostly ARM cpufreq driver updates, including one new
  MediaTek driver that has just passed all of the reviews, with the
  addition of a revert of a recent intel_pstate commit, some core
  cpufreq changes and a DT-related update of the operating performance
  points (OPP) support code.

  Specifics:

   - Add new cpufreq driver for the MediaTek MT6779 platform called
     mediatek-hw along with corresponding DT bindings (Hector.Yuan).

   - Add DCVS interrupt support to the qcom-cpufreq-hw driver (Thara
     Gopinath).

   - Make the qcom-cpufreq-hw driver set the dvfs_possible_from_any_cpu
     policy flag (Taniya Das).

   - Blocklist more Qualcomm platforms in cpufreq-dt-platdev (Bjorn
     Andersson).

   - Make the vexpress cpufreq driver set the CPUFREQ_IS_COOLING_DEV
     flag (Viresh Kumar).

   - Add new cpufreq driver callback to allow drivers to register with
     the Energy Model in a consistent way and make several drivers use
     it (Viresh Kumar).

   - Change the remaining users of the .ready() cpufreq driver callback
     to move the code from it elsewhere and drop it from the cpufreq
     core (Viresh Kumar).

   - Revert recent intel_pstate change adding HWP guaranteed performance
     change notification support to it that led to problems, because the
     notification in question is triggered prematurely on some systems
     (Rafael Wysocki).

   - Convert the OPP DT bindings to DT schema and clean them up while at
     it (Rob Herring)"

* tag 'pm-5.15-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (23 commits)
  Revert "cpufreq: intel_pstate: Process HWP Guaranteed change notification"
  cpufreq: mediatek-hw: Add support for CPUFREQ HW
  cpufreq: Add of_perf_domain_get_sharing_cpumask
  dt-bindings: cpufreq: add bindings for MediaTek cpufreq HW
  cpufreq: Remove ready() callback
  cpufreq: sh: Remove sh_cpufreq_cpu_ready()
  cpufreq: acpi: Remove acpi_cpufreq_cpu_ready()
  cpufreq: qcom-hw: Set dvfs_possible_from_any_cpu cpufreq driver flag
  cpufreq: blocklist more Qualcomm platforms in cpufreq-dt-platdev
  cpufreq: qcom-cpufreq-hw: Add dcvs interrupt support
  cpufreq: scmi: Use .register_em() to register with energy model
  cpufreq: vexpress: Use .register_em() to register with energy model
  cpufreq: scpi: Use .register_em() to register with energy model
  dt-bindings: opp: Convert to DT schema
  dt-bindings: Clean-up OPP binding node names in examples
  ARM: dts: omap: Drop references to opp.txt
  cpufreq: qcom-cpufreq-hw: Use .register_em() to register with energy model
  cpufreq: omap: Use .register_em() to register with energy model
  cpufreq: mediatek: Use .register_em() to register with energy model
  cpufreq: imx6q: Use .register_em() to register with energy model
  ...
This commit is contained in:
Linus Torvalds 2021-09-08 16:38:25 -07:00
commit 30f3490978
39 changed files with 1441 additions and 767 deletions

View file

@ -75,9 +75,6 @@ And optionally
.resume - A pointer to a per-policy resume function which is called
with interrupts disabled and _before_ the governor is started again.
.ready - A pointer to a per-policy ready function which is called after
the policy is fully initialized.
.attr - A pointer to a NULL-terminated list of "struct freq_attr" which
allow to export values to sysfs.

View file

@ -11,7 +11,7 @@ Required properties:
- None
Optional properties:
- operating-points: Refer to Documentation/devicetree/bindings/opp/opp.txt for
- operating-points: Refer to Documentation/devicetree/bindings/opp/opp-v1.yaml for
details. OPPs *must* be supplied either via DT, i.e. this property, or
populated at runtime.
- clock-latency: Specify the possible maximum transition latency for clock,

View file

@ -0,0 +1,70 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/cpufreq/cpufreq-mediatek-hw.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MediaTek's CPUFREQ Bindings
maintainers:
- Hector Yuan <hector.yuan@mediatek.com>
description:
CPUFREQ HW is a hardware engine used by MediaTek SoCs to
manage frequency in hardware. It is capable of controlling
frequency for multiple clusters.
properties:
compatible:
const: mediatek,cpufreq-hw
reg:
minItems: 1
maxItems: 2
description:
Addresses and sizes for the memory of the HW bases in
each frequency domain. Each entry corresponds to
a register bank for each frequency domain present.
"#performance-domain-cells":
description:
Number of cells in a performance domain specifier.
Set const to 1 here for nodes providing multiple
performance domains.
const: 1
required:
- compatible
- reg
- "#performance-domain-cells"
additionalProperties: false
examples:
- |
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu0: cpu@0 {
device_type = "cpu";
compatible = "arm,cortex-a55";
enable-method = "psci";
performance-domains = <&performance 0>;
reg = <0x000>;
};
};
/* ... */
soc {
#address-cells = <2>;
#size-cells = <2>;
performance: performance-controller@11bc00 {
compatible = "mediatek,cpufreq-hw";
reg = <0 0x0011bc10 0 0x120>, <0 0x0011bd30 0 0x120>;
#performance-domain-cells = <1>;
};
};

View file

@ -10,7 +10,7 @@ Required properties:
transition and not stable yet.
Please refer to Documentation/devicetree/bindings/clock/clock-bindings.txt for
generic clock consumer properties.
- operating-points-v2: Please refer to Documentation/devicetree/bindings/opp/opp.txt
- operating-points-v2: Please refer to Documentation/devicetree/bindings/opp/opp-v2.yaml
for detail.
- proc-supply: Regulator for Vproc of CPU cluster.

View file

@ -6,8 +6,6 @@ from the SoC, then supplies the OPP framework with 'prop' and 'supported
hardware' information respectively. The framework is then able to read
the DT and operate in the usual way.
For more information about the expected DT format [See: ../opp/opp.txt].
Frequency Scaling only
----------------------
@ -15,7 +13,7 @@ No vendor specific driver required for this.
Located in CPU's node:
- operating-points : [See: ../power/opp.txt]
- operating-points : [See: ../power/opp-v1.yaml]
Example [safe]
--------------
@ -37,7 +35,7 @@ This requires the ST CPUFreq driver to supply 'process' and 'version' info.
Located in CPU's node:
- operating-points-v2 : [See ../power/opp.txt]
- operating-points-v2 : [See ../power/opp-v2.yaml]
Example [unsafe]
----------------

View file

@ -4,7 +4,7 @@ Binding for NVIDIA Tegra20 CPUFreq
Required properties:
- clocks: Must contain an entry for the CPU clock.
See ../clocks/clock-bindings.txt for details.
- operating-points-v2: See ../bindings/opp/opp.txt for details.
- operating-points-v2: See ../bindings/opp/opp-v2.yaml for details.
- #cooling-cells: Should be 2. See ../thermal/thermal-cooling-devices.yaml for details.
For each opp entry in 'operating-points-v2' table:

View file

@ -8,7 +8,7 @@ Required properties:
- clocks: Phandles for clock specified in "clock-names" property
- clock-names : The name of clock used by the DFI, must be
"pclk_ddr_mon";
- operating-points-v2: Refer to Documentation/devicetree/bindings/opp/opp.txt
- operating-points-v2: Refer to Documentation/devicetree/bindings/opp/opp-v2.yaml
for details.
- center-supply: DMC supply node.
- status: Marks the node enabled/disabled.

View file

@ -137,7 +137,7 @@ examples:
resets = <&reset 0>, <&reset 1>;
};
gpu_opp_table: opp_table0 {
gpu_opp_table: opp-table {
compatible = "operating-points-v2";
opp-533000000 {

View file

@ -160,7 +160,7 @@ examples:
#cooling-cells = <2>;
};
gpu_opp_table: opp_table0 {
gpu_opp_table: opp-table {
compatible = "operating-points-v2";
opp-533000000 {

View file

@ -81,10 +81,10 @@ examples:
noc_opp_table: opp-table {
compatible = "operating-points-v2";
opp-133M {
opp-133333333 {
opp-hz = /bits/ 64 <133333333>;
};
opp-800M {
opp-800000000 {
opp-hz = /bits/ 64 <800000000>;
};
};

View file

@ -18,6 +18,9 @@ description: |
sun50i-cpufreq-nvmem driver reads the efuse value from the SoC to
provide the OPP framework with required information.
allOf:
- $ref: opp-v2-base.yaml#
properties:
compatible:
const: allwinner,sun50i-h6-operating-points
@ -43,6 +46,7 @@ patternProperties:
properties:
opp-hz: true
clock-latency-ns: true
patternProperties:
"opp-microvolt-.*": true

View file

@ -0,0 +1,51 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/opp/opp-v1.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Generic OPP (Operating Performance Points) v1 Bindings
maintainers:
- Viresh Kumar <viresh.kumar@linaro.org>
description: |+
Devices work at voltage-current-frequency combinations and some implementations
have the liberty of choosing these. These combinations are called Operating
Performance Points aka OPPs. This document defines bindings for these OPPs
applicable across wide range of devices. For illustration purpose, this document
uses CPU as a device.
This binding only supports voltage-frequency pairs.
select: true
properties:
operating-points:
$ref: /schemas/types.yaml#/definitions/uint32-matrix
items:
items:
- description: Frequency in kHz
- description: Voltage for OPP in uV
additionalProperties: true
examples:
- |
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a9";
device_type = "cpu";
reg = <0>;
next-level-cache = <&L2>;
operating-points =
/* kHz uV */
<792000 1100000>,
<396000 950000>,
<198000 850000>;
};
};
...

View file

@ -0,0 +1,214 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/opp/opp-v2-base.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Generic OPP (Operating Performance Points) Common Binding
maintainers:
- Viresh Kumar <viresh.kumar@linaro.org>
description: |
Devices work at voltage-current-frequency combinations and some implementations
have the liberty of choosing these. These combinations are called Operating
Performance Points aka OPPs. This document defines bindings for these OPPs
applicable across wide range of devices. For illustration purpose, this document
uses CPU as a device.
This describes the OPPs belonging to a device.
select: false
properties:
$nodename:
pattern: '^opp-table(-[a-z0-9]+)?$'
opp-shared:
description:
Indicates that device nodes using this OPP Table Node's phandle switch
their DVFS state together, i.e. they share clock/voltage/current lines.
Missing property means devices have independent clock/voltage/current
lines, but they share OPP tables.
type: boolean
patternProperties:
'^opp-?[0-9]+$':
type: object
description:
One or more OPP nodes describing voltage-current-frequency combinations.
Their name isn't significant but their phandle can be used to reference an
OPP. These are mandatory except for the case where the OPP table is
present only to indicate dependency between devices using the opp-shared
property.
properties:
opp-hz:
description:
Frequency in Hz, expressed as a 64-bit big-endian integer. This is a
required property for all device nodes, unless another "required"
property to uniquely identify the OPP nodes exists. Devices like power
domains must have another (implementation dependent) property.
opp-microvolt:
description: |
Voltage for the OPP
A single regulator's voltage is specified with an array of size one or three.
Single entry is for target voltage and three entries are for <target min max>
voltages.
Entries for multiple regulators shall be provided in the same field separated
by angular brackets <>. The OPP binding doesn't provide any provisions to
relate the values to their power supplies or the order in which the supplies
need to be configured and that is left for the implementation specific
binding.
Entries for all regulators shall be of the same size, i.e. either all use a
single value or triplets.
minItems: 1
maxItems: 8 # Should be enough regulators
items:
minItems: 1
maxItems: 3
opp-microamp:
description: |
The maximum current drawn by the device in microamperes considering
system specific parameters (such as transients, process, aging,
maximum operating temperature range etc.) as necessary. This may be
used to set the most efficient regulator operating mode.
Should only be set if opp-microvolt or opp-microvolt-<name> is set for
the OPP.
Entries for multiple regulators shall be provided in the same field
separated by angular brackets <>. If current values aren't required
for a regulator, then it shall be filled with 0. If current values
aren't required for any of the regulators, then this field is not
required. The OPP binding doesn't provide any provisions to relate the
values to their power supplies or the order in which the supplies need
to be configured and that is left for the implementation specific
binding.
minItems: 1
maxItems: 8 # Should be enough regulators
opp-level:
description:
A value representing the performance level of the device.
$ref: /schemas/types.yaml#/definitions/uint32
opp-peak-kBps:
description:
Peak bandwidth in kilobytes per second, expressed as an array of
32-bit big-endian integers. Each element of the array represents the
peak bandwidth value of each interconnect path. The number of elements
should match the number of interconnect paths.
minItems: 1
maxItems: 32 # Should be enough
opp-avg-kBps:
description:
Average bandwidth in kilobytes per second, expressed as an array
of 32-bit big-endian integers. Each element of the array represents the
average bandwidth value of each interconnect path. The number of elements
should match the number of interconnect paths. This property is only
meaningful in OPP tables where opp-peak-kBps is present.
minItems: 1
maxItems: 32 # Should be enough
clock-latency-ns:
description:
Specifies the maximum possible transition latency (in nanoseconds) for
switching to this OPP from any other OPP.
turbo-mode:
description:
Marks the OPP to be used only for turbo modes. Turbo mode is available
on some platforms, where the device can run over its operating
frequency for a short duration of time limited by the device's power,
current and thermal limits.
type: boolean
opp-suspend:
description:
Marks the OPP to be used during device suspend. If multiple OPPs in
the table have this, the OPP with highest opp-hz will be used.
type: boolean
opp-supported-hw:
description: |
This property allows a platform to enable only a subset of the OPPs
from the larger set present in the OPP table, based on the current
version of the hardware (already known to the operating system).
Each block present in the array of blocks in this property, represents
a sub-group of hardware versions supported by the OPP. i.e. <sub-group
A>, <sub-group B>, etc. The OPP will be enabled if _any_ of these
sub-groups match the hardware's version.
Each sub-group is a platform defined array representing the hierarchy
of hardware versions supported by the platform. For a platform with
three hierarchical levels of version (X.Y.Z), this field shall look
like
opp-supported-hw = <X1 Y1 Z1>, <X2 Y2 Z2>, <X3 Y3 Z3>.
Each level (eg. X1) in version hierarchy is represented by a 32 bit
value, one bit per version and so there can be maximum 32 versions per
level. Logical AND (&) operation is performed for each level with the
hardware's level version and a non-zero output for _all_ the levels in
a sub-group means the OPP is supported by hardware. A value of
0xFFFFFFFF for each level in the sub-group will enable the OPP for all
versions for the hardware.
$ref: /schemas/types.yaml#/definitions/uint32-matrix
maxItems: 32
items:
minItems: 1
maxItems: 4
required-opps:
description:
This contains phandle to an OPP node in another device's OPP table. It
may contain an array of phandles, where each phandle points to an OPP
of a different device. It should not contain multiple phandles to the
OPP nodes in the same OPP table. This specifies the minimum required
OPP of the device(s), whose OPP's phandle is present in this property,
for the functioning of the current device at the current OPP (where
this property is present).
$ref: /schemas/types.yaml#/definitions/phandle-array
patternProperties:
'^opp-microvolt-':
description:
Named opp-microvolt property. This is exactly similar to the above
opp-microvolt property, but allows multiple voltage ranges to be
provided for the same OPP. At runtime, the platform can pick a <name>
and matching opp-microvolt-<name> property will be enabled for all
OPPs. If the platform doesn't pick a specific <name> or the <name>
doesn't match with any opp-microvolt-<name> properties, then
opp-microvolt property shall be used, if present.
$ref: /schemas/types.yaml#/definitions/uint32-matrix
minItems: 1
maxItems: 8 # Should be enough regulators
items:
minItems: 1
maxItems: 3
'^opp-microamp-':
description:
Named opp-microamp property. Similar to opp-microvolt-<name> property,
but for microamp instead.
$ref: /schemas/types.yaml#/definitions/uint32-array
minItems: 1
maxItems: 8 # Should be enough regulators
dependencies:
opp-avg-kBps: [ opp-peak-kBps ]
required:
- compatible
additionalProperties: true
...

View file

@ -0,0 +1,475 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/opp/opp-v2.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Generic OPP (Operating Performance Points) Bindings
maintainers:
- Viresh Kumar <viresh.kumar@linaro.org>
allOf:
- $ref: opp-v2-base.yaml#
properties:
compatible:
const: operating-points-v2
unevaluatedProperties: false
examples:
- |
/*
* Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states
* together.
*/
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a9";
device_type = "cpu";
reg = <0>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cpu0_opp_table0>;
};
cpu@1 {
compatible = "arm,cortex-a9";
device_type = "cpu";
reg = <1>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cpu0_opp_table0>;
};
};
cpu0_opp_table0: opp-table {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <975000 970000 985000>;
opp-microamp = <70000>;
clock-latency-ns = <300000>;
opp-suspend;
};
opp-1100000000 {
opp-hz = /bits/ 64 <1100000000>;
opp-microvolt = <1000000 980000 1010000>;
opp-microamp = <80000>;
clock-latency-ns = <310000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt = <1025000>;
clock-latency-ns = <290000>;
turbo-mode;
};
};
- |
/*
* Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states
* independently.
*/
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "qcom,krait";
device_type = "cpu";
reg = <0>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cpu_opp_table>;
};
cpu@1 {
compatible = "qcom,krait";
device_type = "cpu";
reg = <1>;
next-level-cache = <&L2>;
clocks = <&clk_controller 1>;
clock-names = "cpu";
cpu-supply = <&cpu_supply1>;
operating-points-v2 = <&cpu_opp_table>;
};
cpu@2 {
compatible = "qcom,krait";
device_type = "cpu";
reg = <2>;
next-level-cache = <&L2>;
clocks = <&clk_controller 2>;
clock-names = "cpu";
cpu-supply = <&cpu_supply2>;
operating-points-v2 = <&cpu_opp_table>;
};
cpu@3 {
compatible = "qcom,krait";
device_type = "cpu";
reg = <3>;
next-level-cache = <&L2>;
clocks = <&clk_controller 3>;
clock-names = "cpu";
cpu-supply = <&cpu_supply3>;
operating-points-v2 = <&cpu_opp_table>;
};
};
cpu_opp_table: opp-table {
compatible = "operating-points-v2";
/*
* Missing opp-shared property means CPUs switch DVFS states
* independently.
*/
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <975000 970000 985000>;
opp-microamp = <70000>;
clock-latency-ns = <300000>;
opp-suspend;
};
opp-1100000000 {
opp-hz = /bits/ 64 <1100000000>;
opp-microvolt = <1000000 980000 1010000>;
opp-microamp = <80000>;
clock-latency-ns = <310000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt = <1025000>;
opp-microamp = <90000>;
lock-latency-ns = <290000>;
turbo-mode;
};
};
- |
/*
* Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch
* DVFS state together.
*/
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <0>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cluster0_opp>;
};
cpu@1 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <1>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cluster0_opp>;
};
cpu@100 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <100>;
next-level-cache = <&L2>;
clocks = <&clk_controller 1>;
clock-names = "cpu";
cpu-supply = <&cpu_supply1>;
operating-points-v2 = <&cluster1_opp>;
};
cpu@101 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <101>;
next-level-cache = <&L2>;
clocks = <&clk_controller 1>;
clock-names = "cpu";
cpu-supply = <&cpu_supply1>;
operating-points-v2 = <&cluster1_opp>;
};
};
cluster0_opp: opp-table-0 {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <975000 970000 985000>;
opp-microamp = <70000>;
clock-latency-ns = <300000>;
opp-suspend;
};
opp-1100000000 {
opp-hz = /bits/ 64 <1100000000>;
opp-microvolt = <1000000 980000 1010000>;
opp-microamp = <80000>;
clock-latency-ns = <310000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt = <1025000>;
opp-microamp = <90000>;
clock-latency-ns = <290000>;
turbo-mode;
};
};
cluster1_opp: opp-table-1 {
compatible = "operating-points-v2";
opp-shared;
opp-1300000000 {
opp-hz = /bits/ 64 <1300000000>;
opp-microvolt = <1050000 1045000 1055000>;
opp-microamp = <95000>;
clock-latency-ns = <400000>;
opp-suspend;
};
opp-1400000000 {
opp-hz = /bits/ 64 <1400000000>;
opp-microvolt = <1075000>;
opp-microamp = <100000>;
clock-latency-ns = <400000>;
};
opp-1500000000 {
opp-hz = /bits/ 64 <1500000000>;
opp-microvolt = <1100000 1010000 1110000>;
opp-microamp = <95000>;
clock-latency-ns = <400000>;
turbo-mode;
};
};
- |
/* Example 4: Handling multiple regulators */
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "foo,cpu-type";
device_type = "cpu";
reg = <0>;
vcc0-supply = <&cpu_supply0>;
vcc1-supply = <&cpu_supply1>;
vcc2-supply = <&cpu_supply2>;
operating-points-v2 = <&cpu0_opp_table4>;
};
};
cpu0_opp_table4: opp-table-0 {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <970000>, /* Supply 0 */
<960000>, /* Supply 1 */
<960000>; /* Supply 2 */
opp-microamp = <70000>, /* Supply 0 */
<70000>, /* Supply 1 */
<70000>; /* Supply 2 */
clock-latency-ns = <300000>;
};
/* OR */
opp-1000000001 {
opp-hz = /bits/ 64 <1000000001>;
opp-microvolt = <975000 970000 985000>, /* Supply 0 */
<965000 960000 975000>, /* Supply 1 */
<965000 960000 975000>; /* Supply 2 */
opp-microamp = <70000>, /* Supply 0 */
<70000>, /* Supply 1 */
<70000>; /* Supply 2 */
clock-latency-ns = <300000>;
};
/* OR */
opp-1000000002 {
opp-hz = /bits/ 64 <1000000002>;
opp-microvolt = <975000 970000 985000>, /* Supply 0 */
<965000 960000 975000>, /* Supply 1 */
<965000 960000 975000>; /* Supply 2 */
opp-microamp = <70000>, /* Supply 0 */
<0>, /* Supply 1 doesn't need this */
<70000>; /* Supply 2 */
clock-latency-ns = <300000>;
};
};
- |
/*
* Example 5: opp-supported-hw
* (example: three level hierarchy of versions: cuts, substrate and process)
*/
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <0>;
cpu-supply = <&cpu_supply>;
operating-points-v2 = <&cpu0_opp_table_slow>;
};
};
cpu0_opp_table_slow: opp-table {
compatible = "operating-points-v2";
opp-shared;
opp-600000000 {
/*
* Supports all substrate and process versions for 0xF
* cuts, i.e. only first four cuts.
*/
opp-supported-hw = <0xF 0xFFFFFFFF 0xFFFFFFFF>;
opp-hz = /bits/ 64 <600000000>;
};
opp-800000000 {
/*
* Supports:
* - cuts: only one, 6th cut (represented by 6th bit).
* - substrate: supports 16 different substrate versions
* - process: supports 9 different process versions
*/
opp-supported-hw = <0x20 0xff0000ff 0x0000f4f0>;
opp-hz = /bits/ 64 <800000000>;
};
opp-900000000 {
/*
* Supports:
* - All cuts and substrate where process version is 0x2.
* - All cuts and process where substrate version is 0x2.
*/
opp-supported-hw = <0xFFFFFFFF 0xFFFFFFFF 0x02>,
<0xFFFFFFFF 0x01 0xFFFFFFFF>;
opp-hz = /bits/ 64 <900000000>;
};
};
- |
/*
* Example 6: opp-microvolt-<name>, opp-microamp-<name>:
* (example: device with two possible microvolt ranges: slow and fast)
*/
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <0>;
operating-points-v2 = <&cpu0_opp_table6>;
};
};
cpu0_opp_table6: opp-table-0 {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt-slow = <915000 900000 925000>;
opp-microvolt-fast = <975000 970000 985000>;
opp-microamp-slow = <70000>;
opp-microamp-fast = <71000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt-slow = <915000 900000 925000>, /* Supply vcc0 */
<925000 910000 935000>; /* Supply vcc1 */
opp-microvolt-fast = <975000 970000 985000>, /* Supply vcc0 */
<965000 960000 975000>; /* Supply vcc1 */
opp-microamp = <70000>; /* Will be used for both slow/fast */
};
};
- |
/*
* Example 7: Single cluster Quad-core ARM cortex A53, OPP points from firmware,
* distinct clock controls but two sets of clock/voltage/current lines.
*/
cpus {
#address-cells = <2>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a53";
device_type = "cpu";
reg = <0x0 0x100>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 0>;
operating-points-v2 = <&cpu_opp0_table>;
};
cpu@1 {
compatible = "arm,cortex-a53";
device_type = "cpu";
reg = <0x0 0x101>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 1>;
operating-points-v2 = <&cpu_opp0_table>;
};
cpu@2 {
compatible = "arm,cortex-a53";
device_type = "cpu";
reg = <0x0 0x102>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 2>;
operating-points-v2 = <&cpu_opp1_table>;
};
cpu@3 {
compatible = "arm,cortex-a53";
device_type = "cpu";
reg = <0x0 0x103>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 3>;
operating-points-v2 = <&cpu_opp1_table>;
};
};
cpu_opp0_table: opp-table-0 {
compatible = "operating-points-v2";
opp-shared;
};
cpu_opp1_table: opp-table-1 {
compatible = "operating-points-v2";
opp-shared;
};
...

View file

@ -1,622 +0,0 @@
Generic OPP (Operating Performance Points) Bindings
----------------------------------------------------
Devices work at voltage-current-frequency combinations and some implementations
have the liberty of choosing these. These combinations are called Operating
Performance Points aka OPPs. This document defines bindings for these OPPs
applicable across wide range of devices. For illustration purpose, this document
uses CPU as a device.
This document contain multiple versions of OPP binding and only one of them
should be used per device.
Binding 1: operating-points
============================
This binding only supports voltage-frequency pairs.
Properties:
- operating-points: An array of 2-tuples items, and each item consists
of frequency and voltage like <freq-kHz vol-uV>.
freq: clock frequency in kHz
vol: voltage in microvolt
Examples:
cpu@0 {
compatible = "arm,cortex-a9";
reg = <0>;
next-level-cache = <&L2>;
operating-points = <
/* kHz uV */
792000 1100000
396000 950000
198000 850000
>;
};
Binding 2: operating-points-v2
============================
* Property: operating-points-v2
Devices supporting OPPs must set their "operating-points-v2" property with
phandle to a OPP table in their DT node. The OPP core will use this phandle to
find the operating points for the device.
This can contain more than one phandle for power domain providers that provide
multiple power domains. That is, one phandle for each power domain. If only one
phandle is available, then the same OPP table will be used for all power domains
provided by the power domain provider.
If required, this can be extended for SoC vendor specific bindings. Such bindings
should be documented as Documentation/devicetree/bindings/power/<vendor>-opp.txt
and should have a compatible description like: "operating-points-v2-<vendor>".
* OPP Table Node
This describes the OPPs belonging to a device. This node can have following
properties:
Required properties:
- compatible: Allow OPPs to express their compatibility. It should be:
"operating-points-v2".
- OPP nodes: One or more OPP nodes describing voltage-current-frequency
combinations. Their name isn't significant but their phandle can be used to
reference an OPP. These are mandatory except for the case where the OPP table
is present only to indicate dependency between devices using the opp-shared
property.
Optional properties:
- opp-shared: Indicates that device nodes using this OPP Table Node's phandle
switch their DVFS state together, i.e. they share clock/voltage/current lines.
Missing property means devices have independent clock/voltage/current lines,
but they share OPP tables.
- status: Marks the OPP table enabled/disabled.
* OPP Node
This defines voltage-current-frequency combinations along with other related
properties.
Required properties:
- opp-hz: Frequency in Hz, expressed as a 64-bit big-endian integer. This is a
required property for all device nodes, unless another "required" property to
uniquely identify the OPP nodes exists. Devices like power domains must have
another (implementation dependent) property.
- opp-peak-kBps: Peak bandwidth in kilobytes per second, expressed as an array
of 32-bit big-endian integers. Each element of the array represents the
peak bandwidth value of each interconnect path. The number of elements should
match the number of interconnect paths.
Optional properties:
- opp-microvolt: voltage in micro Volts.
A single regulator's voltage is specified with an array of size one or three.
Single entry is for target voltage and three entries are for <target min max>
voltages.
Entries for multiple regulators shall be provided in the same field separated
by angular brackets <>. The OPP binding doesn't provide any provisions to
relate the values to their power supplies or the order in which the supplies
need to be configured and that is left for the implementation specific
binding.
Entries for all regulators shall be of the same size, i.e. either all use a
single value or triplets.
- opp-microvolt-<name>: Named opp-microvolt property. This is exactly similar to
the above opp-microvolt property, but allows multiple voltage ranges to be
provided for the same OPP. At runtime, the platform can pick a <name> and
matching opp-microvolt-<name> property will be enabled for all OPPs. If the
platform doesn't pick a specific <name> or the <name> doesn't match with any
opp-microvolt-<name> properties, then opp-microvolt property shall be used, if
present.
- opp-microamp: The maximum current drawn by the device in microamperes
considering system specific parameters (such as transients, process, aging,
maximum operating temperature range etc.) as necessary. This may be used to
set the most efficient regulator operating mode.
Should only be set if opp-microvolt is set for the OPP.
Entries for multiple regulators shall be provided in the same field separated
by angular brackets <>. If current values aren't required for a regulator,
then it shall be filled with 0. If current values aren't required for any of
the regulators, then this field is not required. The OPP binding doesn't
provide any provisions to relate the values to their power supplies or the
order in which the supplies need to be configured and that is left for the
implementation specific binding.
- opp-microamp-<name>: Named opp-microamp property. Similar to
opp-microvolt-<name> property, but for microamp instead.
- opp-level: A value representing the performance level of the device,
expressed as a 32-bit integer.
- opp-avg-kBps: Average bandwidth in kilobytes per second, expressed as an array
of 32-bit big-endian integers. Each element of the array represents the
average bandwidth value of each interconnect path. The number of elements
should match the number of interconnect paths. This property is only
meaningful in OPP tables where opp-peak-kBps is present.
- clock-latency-ns: Specifies the maximum possible transition latency (in
nanoseconds) for switching to this OPP from any other OPP.
- turbo-mode: Marks the OPP to be used only for turbo modes. Turbo mode is
available on some platforms, where the device can run over its operating
frequency for a short duration of time limited by the device's power, current
and thermal limits.
- opp-suspend: Marks the OPP to be used during device suspend. If multiple OPPs
in the table have this, the OPP with highest opp-hz will be used.
- opp-supported-hw: This property allows a platform to enable only a subset of
the OPPs from the larger set present in the OPP table, based on the current
version of the hardware (already known to the operating system).
Each block present in the array of blocks in this property, represents a
sub-group of hardware versions supported by the OPP. i.e. <sub-group A>,
<sub-group B>, etc. The OPP will be enabled if _any_ of these sub-groups match
the hardware's version.
Each sub-group is a platform defined array representing the hierarchy of
hardware versions supported by the platform. For a platform with three
hierarchical levels of version (X.Y.Z), this field shall look like
opp-supported-hw = <X1 Y1 Z1>, <X2 Y2 Z2>, <X3 Y3 Z3>.
Each level (eg. X1) in version hierarchy is represented by a 32 bit value, one
bit per version and so there can be maximum 32 versions per level. Logical AND
(&) operation is performed for each level with the hardware's level version
and a non-zero output for _all_ the levels in a sub-group means the OPP is
supported by hardware. A value of 0xFFFFFFFF for each level in the sub-group
will enable the OPP for all versions for the hardware.
- status: Marks the node enabled/disabled.
- required-opps: This contains phandle to an OPP node in another device's OPP
table. It may contain an array of phandles, where each phandle points to an
OPP of a different device. It should not contain multiple phandles to the OPP
nodes in the same OPP table. This specifies the minimum required OPP of the
device(s), whose OPP's phandle is present in this property, for the
functioning of the current device at the current OPP (where this property is
present).
Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states together.
/ {
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a9";
reg = <0>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cpu0_opp_table>;
};
cpu@1 {
compatible = "arm,cortex-a9";
reg = <1>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cpu0_opp_table>;
};
};
cpu0_opp_table: opp_table0 {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <975000 970000 985000>;
opp-microamp = <70000>;
clock-latency-ns = <300000>;
opp-suspend;
};
opp-1100000000 {
opp-hz = /bits/ 64 <1100000000>;
opp-microvolt = <1000000 980000 1010000>;
opp-microamp = <80000>;
clock-latency-ns = <310000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt = <1025000>;
clock-latency-ns = <290000>;
turbo-mode;
};
};
};
Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states
independently.
/ {
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "qcom,krait";
reg = <0>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cpu_opp_table>;
};
cpu@1 {
compatible = "qcom,krait";
reg = <1>;
next-level-cache = <&L2>;
clocks = <&clk_controller 1>;
clock-names = "cpu";
cpu-supply = <&cpu_supply1>;
operating-points-v2 = <&cpu_opp_table>;
};
cpu@2 {
compatible = "qcom,krait";
reg = <2>;
next-level-cache = <&L2>;
clocks = <&clk_controller 2>;
clock-names = "cpu";
cpu-supply = <&cpu_supply2>;
operating-points-v2 = <&cpu_opp_table>;
};
cpu@3 {
compatible = "qcom,krait";
reg = <3>;
next-level-cache = <&L2>;
clocks = <&clk_controller 3>;
clock-names = "cpu";
cpu-supply = <&cpu_supply3>;
operating-points-v2 = <&cpu_opp_table>;
};
};
cpu_opp_table: opp_table {
compatible = "operating-points-v2";
/*
* Missing opp-shared property means CPUs switch DVFS states
* independently.
*/
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <975000 970000 985000>;
opp-microamp = <70000>;
clock-latency-ns = <300000>;
opp-suspend;
};
opp-1100000000 {
opp-hz = /bits/ 64 <1100000000>;
opp-microvolt = <1000000 980000 1010000>;
opp-microamp = <80000>;
clock-latency-ns = <310000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt = <1025000>;
opp-microamp = <90000;
lock-latency-ns = <290000>;
turbo-mode;
};
};
};
Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch
DVFS state together.
/ {
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a7";
reg = <0>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cluster0_opp>;
};
cpu@1 {
compatible = "arm,cortex-a7";
reg = <1>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cluster0_opp>;
};
cpu@100 {
compatible = "arm,cortex-a15";
reg = <100>;
next-level-cache = <&L2>;
clocks = <&clk_controller 1>;
clock-names = "cpu";
cpu-supply = <&cpu_supply1>;
operating-points-v2 = <&cluster1_opp>;
};
cpu@101 {
compatible = "arm,cortex-a15";
reg = <101>;
next-level-cache = <&L2>;
clocks = <&clk_controller 1>;
clock-names = "cpu";
cpu-supply = <&cpu_supply1>;
operating-points-v2 = <&cluster1_opp>;
};
};
cluster0_opp: opp_table0 {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <975000 970000 985000>;
opp-microamp = <70000>;
clock-latency-ns = <300000>;
opp-suspend;
};
opp-1100000000 {
opp-hz = /bits/ 64 <1100000000>;
opp-microvolt = <1000000 980000 1010000>;
opp-microamp = <80000>;
clock-latency-ns = <310000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt = <1025000>;
opp-microamp = <90000>;
clock-latency-ns = <290000>;
turbo-mode;
};
};
cluster1_opp: opp_table1 {
compatible = "operating-points-v2";
opp-shared;
opp-1300000000 {
opp-hz = /bits/ 64 <1300000000>;
opp-microvolt = <1050000 1045000 1055000>;
opp-microamp = <95000>;
clock-latency-ns = <400000>;
opp-suspend;
};
opp-1400000000 {
opp-hz = /bits/ 64 <1400000000>;
opp-microvolt = <1075000>;
opp-microamp = <100000>;
clock-latency-ns = <400000>;
};
opp-1500000000 {
opp-hz = /bits/ 64 <1500000000>;
opp-microvolt = <1100000 1010000 1110000>;
opp-microamp = <95000>;
clock-latency-ns = <400000>;
turbo-mode;
};
};
};
Example 4: Handling multiple regulators
/ {
cpus {
cpu@0 {
compatible = "vendor,cpu-type";
...
vcc0-supply = <&cpu_supply0>;
vcc1-supply = <&cpu_supply1>;
vcc2-supply = <&cpu_supply2>;
operating-points-v2 = <&cpu0_opp_table>;
};
};
cpu0_opp_table: opp_table0 {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <970000>, /* Supply 0 */
<960000>, /* Supply 1 */
<960000>; /* Supply 2 */
opp-microamp = <70000>, /* Supply 0 */
<70000>, /* Supply 1 */
<70000>; /* Supply 2 */
clock-latency-ns = <300000>;
};
/* OR */
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <975000 970000 985000>, /* Supply 0 */
<965000 960000 975000>, /* Supply 1 */
<965000 960000 975000>; /* Supply 2 */
opp-microamp = <70000>, /* Supply 0 */
<70000>, /* Supply 1 */
<70000>; /* Supply 2 */
clock-latency-ns = <300000>;
};
/* OR */
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <975000 970000 985000>, /* Supply 0 */
<965000 960000 975000>, /* Supply 1 */
<965000 960000 975000>; /* Supply 2 */
opp-microamp = <70000>, /* Supply 0 */
<0>, /* Supply 1 doesn't need this */
<70000>; /* Supply 2 */
clock-latency-ns = <300000>;
};
};
};
Example 5: opp-supported-hw
(example: three level hierarchy of versions: cuts, substrate and process)
/ {
cpus {
cpu@0 {
compatible = "arm,cortex-a7";
...
cpu-supply = <&cpu_supply>
operating-points-v2 = <&cpu0_opp_table_slow>;
};
};
opp_table {
compatible = "operating-points-v2";
opp-shared;
opp-600000000 {
/*
* Supports all substrate and process versions for 0xF
* cuts, i.e. only first four cuts.
*/
opp-supported-hw = <0xF 0xFFFFFFFF 0xFFFFFFFF>
opp-hz = /bits/ 64 <600000000>;
...
};
opp-800000000 {
/*
* Supports:
* - cuts: only one, 6th cut (represented by 6th bit).
* - substrate: supports 16 different substrate versions
* - process: supports 9 different process versions
*/
opp-supported-hw = <0x20 0xff0000ff 0x0000f4f0>
opp-hz = /bits/ 64 <800000000>;
...
};
opp-900000000 {
/*
* Supports:
* - All cuts and substrate where process version is 0x2.
* - All cuts and process where substrate version is 0x2.
*/
opp-supported-hw = <0xFFFFFFFF 0xFFFFFFFF 0x02>, <0xFFFFFFFF 0x01 0xFFFFFFFF>
opp-hz = /bits/ 64 <900000000>;
...
};
};
};
Example 6: opp-microvolt-<name>, opp-microamp-<name>:
(example: device with two possible microvolt ranges: slow and fast)
/ {
cpus {
cpu@0 {
compatible = "arm,cortex-a7";
...
operating-points-v2 = <&cpu0_opp_table>;
};
};
cpu0_opp_table: opp_table0 {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt-slow = <915000 900000 925000>;
opp-microvolt-fast = <975000 970000 985000>;
opp-microamp-slow = <70000>;
opp-microamp-fast = <71000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt-slow = <915000 900000 925000>, /* Supply vcc0 */
<925000 910000 935000>; /* Supply vcc1 */
opp-microvolt-fast = <975000 970000 985000>, /* Supply vcc0 */
<965000 960000 975000>; /* Supply vcc1 */
opp-microamp = <70000>; /* Will be used for both slow/fast */
};
};
};
Example 7: Single cluster Quad-core ARM cortex A53, OPP points from firmware,
distinct clock controls but two sets of clock/voltage/current lines.
/ {
cpus {
#address-cells = <2>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a53";
reg = <0x0 0x100>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 0>;
operating-points-v2 = <&cpu_opp0_table>;
};
cpu@1 {
compatible = "arm,cortex-a53";
reg = <0x0 0x101>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 1>;
operating-points-v2 = <&cpu_opp0_table>;
};
cpu@2 {
compatible = "arm,cortex-a53";
reg = <0x0 0x102>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 2>;
operating-points-v2 = <&cpu_opp1_table>;
};
cpu@3 {
compatible = "arm,cortex-a53";
reg = <0x0 0x103>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 3>;
operating-points-v2 = <&cpu_opp1_table>;
};
};
cpu_opp0_table: opp0_table {
compatible = "operating-points-v2";
opp-shared;
};
cpu_opp1_table: opp1_table {
compatible = "operating-points-v2";
opp-shared;
};
};

View file

@ -1,7 +1,7 @@
Qualcomm OPP bindings to describe OPP nodes
The bindings are based on top of the operating-points-v2 bindings
described in Documentation/devicetree/bindings/opp/opp.txt
described in Documentation/devicetree/bindings/opp/opp-v2-base.yaml
Additional properties are described below.
* OPP Table Node

View file

@ -13,7 +13,7 @@ regulators to the device that will undergo OPP transitions we can make use
of the multi regulator binding that is part of the OPP core described here [1]
to describe both regulators needed by the platform.
[1] Documentation/devicetree/bindings/opp/opp.txt
[1] Documentation/devicetree/bindings/opp/opp-v2.yaml
Required Properties for Device Node:
- vdd-supply: phandle to regulator controlling VDD supply

View file

@ -46,7 +46,7 @@ properties:
Phandles to the OPP tables of power domains provided by a power domain
provider. If the provider provides a single power domain only or all
the power domains provided by the provider have identical OPP tables,
then this shall contain a single phandle. Refer to ../opp/opp.txt
then this shall contain a single phandle. Refer to ../opp/opp-v2-base.yaml
for more information.
"#power-domain-cells":

View file

@ -82,8 +82,6 @@ CPUfreq核心层注册一个cpufreq_driver结构体。
.resume - 一个指向per-policy恢复函数的指针该函数在关中断且在调节器再一次开始前被
调用。
.ready - 一个指向per-policy准备函数的指针该函数在策略完全初始化之后被调用。
.attr - 一个指向NULL结尾的"struct freq_attr"列表的指针,该函数允许导出值到
sysfs。

View file

@ -24,7 +24,6 @@ cpu: cpu@0 {
};
};
/* see Documentation/devicetree/bindings/opp/opp.txt */
cpu0_opp_table: opp-table {
compatible = "operating-points-v2-ti-cpu";
syscon = <&scm_conf>;

View file

@ -29,7 +29,6 @@ cpu: cpu@0 {
};
};
/* see Documentation/devicetree/bindings/opp/opp.txt */
cpu0_opp_table: opp-table {
compatible = "operating-points-v2-ti-cpu";
syscon = <&scm_conf>;

View file

@ -149,6 +149,7 @@ void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
}
DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
{
@ -165,6 +166,7 @@ void topology_set_thermal_pressure(const struct cpumask *cpus,
for_each_cpu(cpu, cpus)
WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
}
EXPORT_SYMBOL_GPL(topology_set_thermal_pressure);
static ssize_t cpu_capacity_show(struct device *dev,
struct device_attribute *attr,

View file

@ -133,6 +133,18 @@ config ARM_MEDIATEK_CPUFREQ
help
This adds the CPUFreq driver support for MediaTek SoCs.
config ARM_MEDIATEK_CPUFREQ_HW
tristate "MediaTek CPUFreq HW driver"
depends on ARCH_MEDIATEK || COMPILE_TEST
default m
help
Support for the CPUFreq HW driver.
Some MediaTek chipsets have a HW engine to offload the steps
necessary for changing the frequency of the CPUs. Firmware loaded
in this engine exposes a programming interface to the OS.
The driver implements the cpufreq interface for this HW engine.
Say Y if you want to support CPUFreq HW.
config ARM_OMAP2PLUS_CPUFREQ
bool "TI OMAP2+"
depends on ARCH_OMAP2PLUS

View file

@ -56,6 +56,7 @@ obj-$(CONFIG_ARM_IMX6Q_CPUFREQ) += imx6q-cpufreq.o
obj-$(CONFIG_ARM_IMX_CPUFREQ_DT) += imx-cpufreq-dt.o
obj-$(CONFIG_ARM_KIRKWOOD_CPUFREQ) += kirkwood-cpufreq.o
obj-$(CONFIG_ARM_MEDIATEK_CPUFREQ) += mediatek-cpufreq.o
obj-$(CONFIG_ARM_MEDIATEK_CPUFREQ_HW) += mediatek-cpufreq-hw.o
obj-$(CONFIG_MACH_MVEBU_V7) += mvebu-cpufreq.o
obj-$(CONFIG_ARM_OMAP2PLUS_CPUFREQ) += omap-cpufreq.o
obj-$(CONFIG_ARM_PXA2xx_CPUFREQ) += pxa2xx-cpufreq.o

View file

@ -889,6 +889,9 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
policy->fast_switch_possible = !acpi_pstate_strict &&
!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
pr_warn(FW_WARN "P-state 0 is not max freq\n");
return result;
err_unreg:
@ -918,16 +921,6 @@ static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
return 0;
}
static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
{
struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
policy->cpu);
unsigned int freq = policy->freq_table[0].frequency;
if (perf->states[0].core_frequency * 1000 != freq)
pr_warn(FW_WARN "P-state 0 is not max freq\n");
}
static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
{
struct acpi_cpufreq_data *data = policy->driver_data;
@ -955,7 +948,6 @@ static struct cpufreq_driver acpi_cpufreq_driver = {
.bios_limit = acpi_processor_get_bios_limit,
.init = acpi_cpufreq_cpu_init,
.exit = acpi_cpufreq_cpu_exit,
.ready = acpi_cpufreq_cpu_ready,
.resume = acpi_cpufreq_resume,
.name = "acpi-cpufreq",
.attr = acpi_cpufreq_attr,

View file

@ -137,11 +137,15 @@ static const struct of_device_id blocklist[] __initconst = {
{ .compatible = "qcom,apq8096", },
{ .compatible = "qcom,msm8996", },
{ .compatible = "qcom,qcs404", },
{ .compatible = "qcom,sa8155p" },
{ .compatible = "qcom,sc7180", },
{ .compatible = "qcom,sc7280", },
{ .compatible = "qcom,sc8180x", },
{ .compatible = "qcom,sdm845", },
{ .compatible = "qcom,sm6350", },
{ .compatible = "qcom,sm8150", },
{ .compatible = "qcom,sm8250", },
{ .compatible = "qcom,sm8350", },
{ .compatible = "st,stih407", },
{ .compatible = "st,stih410", },

View file

@ -143,8 +143,6 @@ static int cpufreq_init(struct cpufreq_policy *policy)
cpufreq_dt_attr[1] = &cpufreq_freq_attr_scaling_boost_freqs;
}
dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
return 0;
out_clk_put:
@ -184,6 +182,7 @@ static struct cpufreq_driver dt_cpufreq_driver = {
.exit = cpufreq_exit,
.online = cpufreq_online,
.offline = cpufreq_offline,
.register_em = cpufreq_register_em_with_opp,
.name = "cpufreq-dt",
.attr = cpufreq_dt_attr,
.suspend = cpufreq_generic_suspend,

View file

@ -1491,6 +1491,19 @@ static int cpufreq_online(unsigned int cpu)
write_lock_irqsave(&cpufreq_driver_lock, flags);
list_add(&policy->policy_list, &cpufreq_policy_list);
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
/*
* Register with the energy model before
* sched_cpufreq_governor_change() is called, which will result
* in rebuilding of the sched domains, which should only be done
* once the energy model is properly initialized for the policy
* first.
*
* Also, this should be called before the policy is registered
* with cooling framework.
*/
if (cpufreq_driver->register_em)
cpufreq_driver->register_em(policy);
}
ret = cpufreq_init_policy(policy);
@ -1504,10 +1517,6 @@ static int cpufreq_online(unsigned int cpu)
kobject_uevent(&policy->kobj, KOBJ_ADD);
/* Callback for handling stuff after policy is ready */
if (cpufreq_driver->ready)
cpufreq_driver->ready(policy);
if (cpufreq_thermal_control_enabled(cpufreq_driver))
policy->cdev = of_cpufreq_cooling_register(policy);

View file

@ -192,7 +192,6 @@ static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
policy->clk = clks[ARM].clk;
cpufreq_generic_init(policy, freq_table, transition_latency);
policy->suspend_freq = max_freq;
dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
return 0;
}
@ -204,6 +203,7 @@ static struct cpufreq_driver imx6q_cpufreq_driver = {
.target_index = imx6q_set_target,
.get = cpufreq_generic_get,
.init = imx6q_cpufreq_init,
.register_em = cpufreq_register_em_with_opp,
.name = "imx6q-cpufreq",
.attr = cpufreq_generic_attr,
.suspend = cpufreq_generic_suspend,

View file

@ -32,7 +32,6 @@
#include <asm/cpu_device_id.h>
#include <asm/cpufeature.h>
#include <asm/intel-family.h>
#include "../drivers/thermal/intel/thermal_interrupt.h"
#define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
@ -220,7 +219,6 @@ struct global_params {
* @sched_flags: Store scheduler flags for possible cross CPU update
* @hwp_boost_min: Last HWP boosted min performance
* @suspended: Whether or not the driver has been suspended.
* @hwp_notify_work: workqueue for HWP notifications.
*
* This structure stores per CPU instance data for all CPUs.
*/
@ -259,7 +257,6 @@ struct cpudata {
unsigned int sched_flags;
u32 hwp_boost_min;
bool suspended;
struct delayed_work hwp_notify_work;
};
static struct cpudata **all_cpu_data;
@ -1628,40 +1625,6 @@ static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
/************************** sysfs end ************************/
static void intel_pstate_notify_work(struct work_struct *work)
{
mutex_lock(&intel_pstate_driver_lock);
cpufreq_update_policy(smp_processor_id());
wrmsrl(MSR_HWP_STATUS, 0);
mutex_unlock(&intel_pstate_driver_lock);
}
void notify_hwp_interrupt(void)
{
unsigned int this_cpu = smp_processor_id();
struct cpudata *cpudata;
u64 value;
if (!hwp_active || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
return;
rdmsrl(MSR_HWP_STATUS, value);
if (!(value & 0x01))
return;
cpudata = all_cpu_data[this_cpu];
schedule_delayed_work_on(this_cpu, &cpudata->hwp_notify_work, msecs_to_jiffies(10));
}
static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
{
/* Enable HWP notification interrupt for guaranteed performance change */
if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
}
}
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
{
/* First disable HWP notification interrupt as we don't process them */
@ -1671,8 +1634,6 @@ static void intel_pstate_hwp_enable(struct cpudata *cpudata)
wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
if (cpudata->epp_default == -EINVAL)
cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
intel_pstate_enable_hwp_interrupt(cpudata);
}
static int atom_get_min_pstate(void)

View file

@ -0,0 +1,308 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2020 MediaTek Inc.
*/
#include <linux/bitfield.h>
#include <linux/cpufreq.h>
#include <linux/energy_model.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#define LUT_MAX_ENTRIES 32U
#define LUT_FREQ GENMASK(11, 0)
#define LUT_ROW_SIZE 0x4
#define CPUFREQ_HW_STATUS BIT(0)
#define SVS_HW_STATUS BIT(1)
#define POLL_USEC 1000
#define TIMEOUT_USEC 300000
enum {
REG_FREQ_LUT_TABLE,
REG_FREQ_ENABLE,
REG_FREQ_PERF_STATE,
REG_FREQ_HW_STATE,
REG_EM_POWER_TBL,
REG_FREQ_LATENCY,
REG_ARRAY_SIZE,
};
struct mtk_cpufreq_data {
struct cpufreq_frequency_table *table;
void __iomem *reg_bases[REG_ARRAY_SIZE];
int nr_opp;
};
static const u16 cpufreq_mtk_offsets[REG_ARRAY_SIZE] = {
[REG_FREQ_LUT_TABLE] = 0x0,
[REG_FREQ_ENABLE] = 0x84,
[REG_FREQ_PERF_STATE] = 0x88,
[REG_FREQ_HW_STATE] = 0x8c,
[REG_EM_POWER_TBL] = 0x90,
[REG_FREQ_LATENCY] = 0x110,
};
static int __maybe_unused
mtk_cpufreq_get_cpu_power(unsigned long *mW,
unsigned long *KHz, struct device *cpu_dev)
{
struct mtk_cpufreq_data *data;
struct cpufreq_policy *policy;
int i;
policy = cpufreq_cpu_get_raw(cpu_dev->id);
if (!policy)
return 0;
data = policy->driver_data;
for (i = 0; i < data->nr_opp; i++) {
if (data->table[i].frequency < *KHz)
break;
}
i--;
*KHz = data->table[i].frequency;
*mW = readl_relaxed(data->reg_bases[REG_EM_POWER_TBL] +
i * LUT_ROW_SIZE) / 1000;
return 0;
}
static int mtk_cpufreq_hw_target_index(struct cpufreq_policy *policy,
unsigned int index)
{
struct mtk_cpufreq_data *data = policy->driver_data;
writel_relaxed(index, data->reg_bases[REG_FREQ_PERF_STATE]);
return 0;
}
static unsigned int mtk_cpufreq_hw_get(unsigned int cpu)
{
struct mtk_cpufreq_data *data;
struct cpufreq_policy *policy;
unsigned int index;
policy = cpufreq_cpu_get_raw(cpu);
if (!policy)
return 0;
data = policy->driver_data;
index = readl_relaxed(data->reg_bases[REG_FREQ_PERF_STATE]);
index = min(index, LUT_MAX_ENTRIES - 1);
return data->table[index].frequency;
}
static unsigned int mtk_cpufreq_hw_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct mtk_cpufreq_data *data = policy->driver_data;
unsigned int index;
index = cpufreq_table_find_index_dl(policy, target_freq);
writel_relaxed(index, data->reg_bases[REG_FREQ_PERF_STATE]);
return policy->freq_table[index].frequency;
}
static int mtk_cpu_create_freq_table(struct platform_device *pdev,
struct mtk_cpufreq_data *data)
{
struct device *dev = &pdev->dev;
u32 temp, i, freq, prev_freq = 0;
void __iomem *base_table;
data->table = devm_kcalloc(dev, LUT_MAX_ENTRIES + 1,
sizeof(*data->table), GFP_KERNEL);
if (!data->table)
return -ENOMEM;
base_table = data->reg_bases[REG_FREQ_LUT_TABLE];
for (i = 0; i < LUT_MAX_ENTRIES; i++) {
temp = readl_relaxed(base_table + (i * LUT_ROW_SIZE));
freq = FIELD_GET(LUT_FREQ, temp) * 1000;
if (freq == prev_freq)
break;
data->table[i].frequency = freq;
dev_dbg(dev, "index=%d freq=%d\n", i, data->table[i].frequency);
prev_freq = freq;
}
data->table[i].frequency = CPUFREQ_TABLE_END;
data->nr_opp = i;
return 0;
}
static int mtk_cpu_resources_init(struct platform_device *pdev,
struct cpufreq_policy *policy,
const u16 *offsets)
{
struct mtk_cpufreq_data *data;
struct device *dev = &pdev->dev;
void __iomem *base;
int ret, i;
int index;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
index = of_perf_domain_get_sharing_cpumask(policy->cpu, "performance-domains",
"#performance-domain-cells",
policy->cpus);
if (index < 0)
return index;
base = devm_platform_ioremap_resource(pdev, index);
if (IS_ERR(base))
return PTR_ERR(base);
for (i = REG_FREQ_LUT_TABLE; i < REG_ARRAY_SIZE; i++)
data->reg_bases[i] = base + offsets[i];
ret = mtk_cpu_create_freq_table(pdev, data);
if (ret) {
dev_info(dev, "Domain-%d failed to create freq table\n", index);
return ret;
}
policy->freq_table = data->table;
policy->driver_data = data;
return 0;
}
static int mtk_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
{
struct platform_device *pdev = cpufreq_get_driver_data();
int sig, pwr_hw = CPUFREQ_HW_STATUS | SVS_HW_STATUS;
struct mtk_cpufreq_data *data;
unsigned int latency;
int ret;
/* Get the bases of cpufreq for domains */
ret = mtk_cpu_resources_init(pdev, policy, platform_get_drvdata(pdev));
if (ret) {
dev_info(&pdev->dev, "CPUFreq resource init failed\n");
return ret;
}
data = policy->driver_data;
latency = readl_relaxed(data->reg_bases[REG_FREQ_LATENCY]) * 1000;
if (!latency)
latency = CPUFREQ_ETERNAL;
policy->cpuinfo.transition_latency = latency;
policy->fast_switch_possible = true;
/* HW should be in enabled state to proceed now */
writel_relaxed(0x1, data->reg_bases[REG_FREQ_ENABLE]);
if (readl_poll_timeout(data->reg_bases[REG_FREQ_HW_STATE], sig,
(sig & pwr_hw) == pwr_hw, POLL_USEC,
TIMEOUT_USEC)) {
if (!(sig & CPUFREQ_HW_STATUS)) {
pr_info("cpufreq hardware of CPU%d is not enabled\n",
policy->cpu);
return -ENODEV;
}
pr_info("SVS of CPU%d is not enabled\n", policy->cpu);
}
return 0;
}
static int mtk_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
{
struct mtk_cpufreq_data *data = policy->driver_data;
/* HW should be in paused state now */
writel_relaxed(0x0, data->reg_bases[REG_FREQ_ENABLE]);
return 0;
}
static void mtk_cpufreq_register_em(struct cpufreq_policy *policy)
{
struct em_data_callback em_cb = EM_DATA_CB(mtk_cpufreq_get_cpu_power);
struct mtk_cpufreq_data *data = policy->driver_data;
em_dev_register_perf_domain(get_cpu_device(policy->cpu), data->nr_opp,
&em_cb, policy->cpus, true);
}
static struct cpufreq_driver cpufreq_mtk_hw_driver = {
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
CPUFREQ_IS_COOLING_DEV,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = mtk_cpufreq_hw_target_index,
.get = mtk_cpufreq_hw_get,
.init = mtk_cpufreq_hw_cpu_init,
.exit = mtk_cpufreq_hw_cpu_exit,
.register_em = mtk_cpufreq_register_em,
.fast_switch = mtk_cpufreq_hw_fast_switch,
.name = "mtk-cpufreq-hw",
.attr = cpufreq_generic_attr,
};
static int mtk_cpufreq_hw_driver_probe(struct platform_device *pdev)
{
const void *data;
int ret;
data = of_device_get_match_data(&pdev->dev);
if (!data)
return -EINVAL;
platform_set_drvdata(pdev, (void *) data);
cpufreq_mtk_hw_driver.driver_data = pdev;
ret = cpufreq_register_driver(&cpufreq_mtk_hw_driver);
if (ret)
dev_err(&pdev->dev, "CPUFreq HW driver failed to register\n");
return ret;
}
static int mtk_cpufreq_hw_driver_remove(struct platform_device *pdev)
{
return cpufreq_unregister_driver(&cpufreq_mtk_hw_driver);
}
static const struct of_device_id mtk_cpufreq_hw_match[] = {
{ .compatible = "mediatek,cpufreq-hw", .data = &cpufreq_mtk_offsets },
{}
};
static struct platform_driver mtk_cpufreq_hw_driver = {
.probe = mtk_cpufreq_hw_driver_probe,
.remove = mtk_cpufreq_hw_driver_remove,
.driver = {
.name = "mtk-cpufreq-hw",
.of_match_table = mtk_cpufreq_hw_match,
},
};
module_platform_driver(mtk_cpufreq_hw_driver);
MODULE_AUTHOR("Hector Yuan <hector.yuan@mediatek.com>");
MODULE_DESCRIPTION("Mediatek cpufreq-hw driver");
MODULE_LICENSE("GPL v2");

View file

@ -448,8 +448,6 @@ static int mtk_cpufreq_init(struct cpufreq_policy *policy)
policy->driver_data = info;
policy->clk = info->cpu_clk;
dev_pm_opp_of_register_em(info->cpu_dev, policy->cpus);
return 0;
}
@ -471,6 +469,7 @@ static struct cpufreq_driver mtk_cpufreq_driver = {
.get = cpufreq_generic_get,
.init = mtk_cpufreq_init,
.exit = mtk_cpufreq_exit,
.register_em = cpufreq_register_em_with_opp,
.name = "mtk-cpufreq",
.attr = cpufreq_generic_attr,
};

View file

@ -131,7 +131,6 @@ static int omap_cpu_init(struct cpufreq_policy *policy)
/* FIXME: what's the actual transition time? */
cpufreq_generic_init(policy, freq_table, 300 * 1000);
dev_pm_opp_of_register_em(mpu_dev, policy->cpus);
return 0;
}
@ -150,6 +149,7 @@ static struct cpufreq_driver omap_driver = {
.get = cpufreq_generic_get,
.init = omap_cpu_init,
.exit = omap_cpu_exit,
.register_em = cpufreq_register_em_with_opp,
.name = "omap",
.attr = cpufreq_generic_attr,
};

View file

@ -7,12 +7,14 @@
#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/interconnect.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#define LUT_MAX_ENTRIES 40U
#define LUT_SRC GENMASK(31, 30)
@ -22,10 +24,13 @@
#define CLK_HW_DIV 2
#define LUT_TURBO_IND 1
#define HZ_PER_KHZ 1000
struct qcom_cpufreq_soc_data {
u32 reg_enable;
u32 reg_freq_lut;
u32 reg_volt_lut;
u32 reg_current_vote;
u32 reg_perf_state;
u8 lut_row_size;
};
@ -34,6 +39,16 @@ struct qcom_cpufreq_data {
void __iomem *base;
struct resource *res;
const struct qcom_cpufreq_soc_data *soc_data;
/*
* Mutex to synchronize between de-init sequence and re-starting LMh
* polling/interrupts
*/
struct mutex throttle_lock;
int throttle_irq;
bool cancel_throttle;
struct delayed_work throttle_work;
struct cpufreq_policy *policy;
};
static unsigned long cpu_hw_rate, xo_rate;
@ -251,10 +266,92 @@ static void qcom_get_related_cpus(int index, struct cpumask *m)
}
}
static unsigned int qcom_lmh_get_throttle_freq(struct qcom_cpufreq_data *data)
{
unsigned int val = readl_relaxed(data->base + data->soc_data->reg_current_vote);
return (val & 0x3FF) * 19200;
}
static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data)
{
unsigned long max_capacity, capacity, freq_hz, throttled_freq;
struct cpufreq_policy *policy = data->policy;
int cpu = cpumask_first(policy->cpus);
struct device *dev = get_cpu_device(cpu);
struct dev_pm_opp *opp;
unsigned int freq;
/*
* Get the h/w throttled frequency, normalize it using the
* registered opp table and use it to calculate thermal pressure.
*/
freq = qcom_lmh_get_throttle_freq(data);
freq_hz = freq * HZ_PER_KHZ;
opp = dev_pm_opp_find_freq_floor(dev, &freq_hz);
if (IS_ERR(opp) && PTR_ERR(opp) == -ERANGE)
dev_pm_opp_find_freq_ceil(dev, &freq_hz);
throttled_freq = freq_hz / HZ_PER_KHZ;
/* Update thermal pressure */
max_capacity = arch_scale_cpu_capacity(cpu);
capacity = mult_frac(max_capacity, throttled_freq, policy->cpuinfo.max_freq);
/* Don't pass boost capacity to scheduler */
if (capacity > max_capacity)
capacity = max_capacity;
arch_set_thermal_pressure(policy->cpus, max_capacity - capacity);
/*
* In the unlikely case policy is unregistered do not enable
* polling or h/w interrupt
*/
mutex_lock(&data->throttle_lock);
if (data->cancel_throttle)
goto out;
/*
* If h/w throttled frequency is higher than what cpufreq has requested
* for, then stop polling and switch back to interrupt mechanism.
*/
if (throttled_freq >= qcom_cpufreq_hw_get(cpu))
enable_irq(data->throttle_irq);
else
mod_delayed_work(system_highpri_wq, &data->throttle_work,
msecs_to_jiffies(10));
out:
mutex_unlock(&data->throttle_lock);
}
static void qcom_lmh_dcvs_poll(struct work_struct *work)
{
struct qcom_cpufreq_data *data;
data = container_of(work, struct qcom_cpufreq_data, throttle_work.work);
qcom_lmh_dcvs_notify(data);
}
static irqreturn_t qcom_lmh_dcvs_handle_irq(int irq, void *data)
{
struct qcom_cpufreq_data *c_data = data;
/* Disable interrupt and enable polling */
disable_irq_nosync(c_data->throttle_irq);
qcom_lmh_dcvs_notify(c_data);
return 0;
}
static const struct qcom_cpufreq_soc_data qcom_soc_data = {
.reg_enable = 0x0,
.reg_freq_lut = 0x110,
.reg_volt_lut = 0x114,
.reg_current_vote = 0x704,
.reg_perf_state = 0x920,
.lut_row_size = 32,
};
@ -274,6 +371,51 @@ static const struct of_device_id qcom_cpufreq_hw_match[] = {
};
MODULE_DEVICE_TABLE(of, qcom_cpufreq_hw_match);
static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index)
{
struct qcom_cpufreq_data *data = policy->driver_data;
struct platform_device *pdev = cpufreq_get_driver_data();
char irq_name[15];
int ret;
/*
* Look for LMh interrupt. If no interrupt line is specified /
* if there is an error, allow cpufreq to be enabled as usual.
*/
data->throttle_irq = platform_get_irq(pdev, index);
if (data->throttle_irq <= 0)
return data->throttle_irq == -EPROBE_DEFER ? -EPROBE_DEFER : 0;
data->cancel_throttle = false;
data->policy = policy;
mutex_init(&data->throttle_lock);
INIT_DEFERRABLE_WORK(&data->throttle_work, qcom_lmh_dcvs_poll);
snprintf(irq_name, sizeof(irq_name), "dcvsh-irq-%u", policy->cpu);
ret = request_threaded_irq(data->throttle_irq, NULL, qcom_lmh_dcvs_handle_irq,
IRQF_ONESHOT, irq_name, data);
if (ret) {
dev_err(&pdev->dev, "Error registering %s: %d\n", irq_name, ret);
return 0;
}
return 0;
}
static void qcom_cpufreq_hw_lmh_exit(struct qcom_cpufreq_data *data)
{
if (data->throttle_irq <= 0)
return;
mutex_lock(&data->throttle_lock);
data->cancel_throttle = true;
mutex_unlock(&data->throttle_lock);
cancel_delayed_work_sync(&data->throttle_work);
free_irq(data->throttle_irq, data);
}
static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
{
struct platform_device *pdev = cpufreq_get_driver_data();
@ -348,6 +490,7 @@ static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
}
policy->driver_data = data;
policy->dvfs_possible_from_any_cpu = true;
ret = qcom_cpufreq_hw_read_lut(cpu_dev, policy);
if (ret) {
@ -362,14 +505,16 @@ static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
goto error;
}
dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
if (policy_has_boost_freq(policy)) {
ret = cpufreq_enable_boost_support();
if (ret)
dev_warn(cpu_dev, "failed to enable boost: %d\n", ret);
}
ret = qcom_cpufreq_hw_lmh_init(policy, index);
if (ret)
goto error;
return 0;
error:
kfree(data);
@ -389,6 +534,7 @@ static int qcom_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
dev_pm_opp_remove_all_dynamic(cpu_dev);
dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
qcom_cpufreq_hw_lmh_exit(data);
kfree(policy->freq_table);
kfree(data);
iounmap(base);
@ -412,6 +558,7 @@ static struct cpufreq_driver cpufreq_qcom_hw_driver = {
.get = qcom_cpufreq_hw_get,
.init = qcom_cpufreq_hw_cpu_init,
.exit = qcom_cpufreq_hw_cpu_exit,
.register_em = cpufreq_register_em_with_opp,
.fast_switch = qcom_cpufreq_hw_fast_switch,
.name = "qcom-cpufreq-hw",
.attr = qcom_cpufreq_hw_attr,

View file

@ -22,7 +22,9 @@
struct scmi_data {
int domain_id;
int nr_opp;
struct device *cpu_dev;
cpumask_var_t opp_shared_cpus;
};
static struct scmi_protocol_handle *ph;
@ -123,9 +125,6 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
struct device *cpu_dev;
struct scmi_data *priv;
struct cpufreq_frequency_table *freq_table;
struct em_data_callback em_cb = EM_DATA_CB(scmi_get_cpu_power);
cpumask_var_t opp_shared_cpus;
bool power_scale_mw;
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
@ -133,9 +132,15 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
return -ENODEV;
}
if (!zalloc_cpumask_var(&opp_shared_cpus, GFP_KERNEL))
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
if (!zalloc_cpumask_var(&priv->opp_shared_cpus, GFP_KERNEL)) {
ret = -ENOMEM;
goto out_free_priv;
}
/* Obtain CPUs that share SCMI performance controls */
ret = scmi_get_sharing_cpus(cpu_dev, policy->cpus);
if (ret) {
@ -148,14 +153,14 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
* The OPP 'sharing cpus' info may come from DT through an empty opp
* table and opp-shared.
*/
ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, opp_shared_cpus);
if (ret || !cpumask_weight(opp_shared_cpus)) {
ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, priv->opp_shared_cpus);
if (ret || !cpumask_weight(priv->opp_shared_cpus)) {
/*
* Either opp-table is not set or no opp-shared was found.
* Use the CPU mask from SCMI to designate CPUs sharing an OPP
* table.
*/
cpumask_copy(opp_shared_cpus, policy->cpus);
cpumask_copy(priv->opp_shared_cpus, policy->cpus);
}
/*
@ -180,7 +185,7 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
goto out_free_opp;
}
ret = dev_pm_opp_set_sharing_cpus(cpu_dev, opp_shared_cpus);
ret = dev_pm_opp_set_sharing_cpus(cpu_dev, priv->opp_shared_cpus);
if (ret) {
dev_err(cpu_dev, "%s: failed to mark OPPs as shared: %d\n",
__func__, ret);
@ -188,21 +193,13 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
goto out_free_opp;
}
power_scale_mw = perf_ops->power_scale_mw_get(ph);
em_dev_register_perf_domain(cpu_dev, nr_opp, &em_cb,
opp_shared_cpus, power_scale_mw);
}
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv) {
ret = -ENOMEM;
goto out_free_opp;
priv->nr_opp = nr_opp;
}
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
if (ret) {
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
goto out_free_priv;
goto out_free_opp;
}
priv->cpu_dev = cpu_dev;
@ -223,17 +220,16 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
policy->fast_switch_possible =
perf_ops->fast_switch_possible(ph, cpu_dev);
free_cpumask_var(opp_shared_cpus);
return 0;
out_free_priv:
kfree(priv);
out_free_opp:
dev_pm_opp_remove_all_dynamic(cpu_dev);
out_free_cpumask:
free_cpumask_var(opp_shared_cpus);
free_cpumask_var(priv->opp_shared_cpus);
out_free_priv:
kfree(priv);
return ret;
}
@ -244,11 +240,33 @@ static int scmi_cpufreq_exit(struct cpufreq_policy *policy)
dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
dev_pm_opp_remove_all_dynamic(priv->cpu_dev);
free_cpumask_var(priv->opp_shared_cpus);
kfree(priv);
return 0;
}
static void scmi_cpufreq_register_em(struct cpufreq_policy *policy)
{
struct em_data_callback em_cb = EM_DATA_CB(scmi_get_cpu_power);
bool power_scale_mw = perf_ops->power_scale_mw_get(ph);
struct scmi_data *priv = policy->driver_data;
/*
* This callback will be called for each policy, but we don't need to
* register with EM every time. Despite not being part of the same
* policy, some CPUs may still share their perf-domains, and a CPU from
* another policy may already have registered with EM on behalf of CPUs
* of this policy.
*/
if (!priv->nr_opp)
return;
em_dev_register_perf_domain(get_cpu_device(policy->cpu), priv->nr_opp,
&em_cb, priv->opp_shared_cpus,
power_scale_mw);
}
static struct cpufreq_driver scmi_cpufreq_driver = {
.name = "scmi",
.flags = CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
@ -261,6 +279,7 @@ static struct cpufreq_driver scmi_cpufreq_driver = {
.get = scmi_cpufreq_get_rate,
.init = scmi_cpufreq_init,
.exit = scmi_cpufreq_exit,
.register_em = scmi_cpufreq_register_em,
};
static int scmi_cpufreq_probe(struct scmi_device *sdev)

View file

@ -163,8 +163,6 @@ static int scpi_cpufreq_init(struct cpufreq_policy *policy)
policy->fast_switch_possible = false;
dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
return 0;
out_free_cpufreq_table:
@ -200,6 +198,7 @@ static struct cpufreq_driver scpi_cpufreq_driver = {
.init = scpi_cpufreq_init,
.exit = scpi_cpufreq_exit,
.target_index = scpi_cpufreq_set_target,
.register_em = cpufreq_register_em_with_opp,
};
static int scpi_cpufreq_probe(struct platform_device *pdev)

View file

@ -145,16 +145,6 @@ static int sh_cpufreq_cpu_exit(struct cpufreq_policy *policy)
return 0;
}
static void sh_cpufreq_cpu_ready(struct cpufreq_policy *policy)
{
struct device *dev = get_cpu_device(policy->cpu);
dev_info(dev, "CPU Frequencies - Minimum %u.%03u MHz, "
"Maximum %u.%03u MHz.\n",
policy->min / 1000, policy->min % 1000,
policy->max / 1000, policy->max % 1000);
}
static struct cpufreq_driver sh_cpufreq_driver = {
.name = "sh",
.flags = CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING,
@ -163,7 +153,6 @@ static struct cpufreq_driver sh_cpufreq_driver = {
.verify = sh_cpufreq_verify,
.init = sh_cpufreq_cpu_init,
.exit = sh_cpufreq_cpu_exit,
.ready = sh_cpufreq_cpu_ready,
.attr = cpufreq_generic_attr,
};

View file

@ -15,7 +15,6 @@
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/cpu_cooling.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/mutex.h>
@ -47,7 +46,6 @@ static bool bL_switching_enabled;
#define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq)
#define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
static struct thermal_cooling_device *cdev[MAX_CLUSTERS];
static struct clk *clk[MAX_CLUSTERS];
static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
static atomic_t cluster_usage[MAX_CLUSTERS + 1];
@ -442,8 +440,6 @@ static int ve_spc_cpufreq_init(struct cpufreq_policy *policy)
policy->freq_table = freq_table[cur_cluster];
policy->cpuinfo.transition_latency = 1000000; /* 1 ms */
dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
if (is_bL_switching_enabled())
per_cpu(cpu_last_req_freq, policy->cpu) =
clk_get_cpu_rate(policy->cpu);
@ -457,11 +453,6 @@ static int ve_spc_cpufreq_exit(struct cpufreq_policy *policy)
struct device *cpu_dev;
int cur_cluster = cpu_to_cluster(policy->cpu);
if (cur_cluster < MAX_CLUSTERS) {
cpufreq_cooling_unregister(cdev[cur_cluster]);
cdev[cur_cluster] = NULL;
}
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__,
@ -473,17 +464,6 @@ static int ve_spc_cpufreq_exit(struct cpufreq_policy *policy)
return 0;
}
static void ve_spc_cpufreq_ready(struct cpufreq_policy *policy)
{
int cur_cluster = cpu_to_cluster(policy->cpu);
/* Do not register a cpu_cooling device if we are in IKS mode */
if (cur_cluster >= MAX_CLUSTERS)
return;
cdev[cur_cluster] = of_cpufreq_cooling_register(policy);
}
static struct cpufreq_driver ve_spc_cpufreq_driver = {
.name = "vexpress-spc",
.flags = CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
@ -493,7 +473,7 @@ static struct cpufreq_driver ve_spc_cpufreq_driver = {
.get = ve_spc_cpufreq_get_rate,
.init = ve_spc_cpufreq_init,
.exit = ve_spc_cpufreq_exit,
.ready = ve_spc_cpufreq_ready,
.register_em = cpufreq_register_em_with_opp,
.attr = cpufreq_generic_attr,
};
@ -553,6 +533,9 @@ static int ve_spc_cpufreq_probe(struct platform_device *pdev)
for (i = 0; i < MAX_CLUSTERS; i++)
mutex_init(&cluster_lock[i]);
if (!is_bL_switching_enabled())
ve_spc_cpufreq_driver.flags |= CPUFREQ_IS_COOLING_DEV;
ret = cpufreq_register_driver(&ve_spc_cpufreq_driver);
if (ret) {
pr_info("%s: Failed registering platform driver: %s, err: %d\n",

View file

@ -9,10 +9,14 @@
#define _LINUX_CPUFREQ_H
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/completion.h>
#include <linux/kobject.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pm_opp.h>
#include <linux/pm_qos.h>
#include <linux/spinlock.h>
#include <linux/sysfs.h>
@ -365,14 +369,17 @@ struct cpufreq_driver {
int (*suspend)(struct cpufreq_policy *policy);
int (*resume)(struct cpufreq_policy *policy);
/* Will be called after the driver is fully initialized */
void (*ready)(struct cpufreq_policy *policy);
struct freq_attr **attr;
/* platform specific boost support code */
bool boost_enabled;
int (*set_boost)(struct cpufreq_policy *policy, int state);
/*
* Set by drivers that want to register with the energy model after the
* policy is properly initialized, but before the governor is started.
*/
void (*register_em)(struct cpufreq_policy *policy);
};
/* flags */
@ -995,6 +1002,55 @@ static inline int cpufreq_table_count_valid_entries(const struct cpufreq_policy
return count;
}
static inline int parse_perf_domain(int cpu, const char *list_name,
const char *cell_name)
{
struct device_node *cpu_np;
struct of_phandle_args args;
int ret;
cpu_np = of_cpu_device_node_get(cpu);
if (!cpu_np)
return -ENODEV;
ret = of_parse_phandle_with_args(cpu_np, list_name, cell_name, 0,
&args);
if (ret < 0)
return ret;
of_node_put(cpu_np);
return args.args[0];
}
static inline int of_perf_domain_get_sharing_cpumask(int pcpu, const char *list_name,
const char *cell_name, struct cpumask *cpumask)
{
int target_idx;
int cpu, ret;
ret = parse_perf_domain(pcpu, list_name, cell_name);
if (ret < 0)
return ret;
target_idx = ret;
cpumask_set_cpu(pcpu, cpumask);
for_each_possible_cpu(cpu) {
if (cpu == pcpu)
continue;
ret = parse_perf_domain(pcpu, list_name, cell_name);
if (ret < 0)
continue;
if (target_idx == ret)
cpumask_set_cpu(cpu, cpumask);
}
return target_idx;
}
#else
static inline int cpufreq_boost_trigger_state(int state)
{
@ -1014,6 +1070,12 @@ static inline bool policy_has_boost_freq(struct cpufreq_policy *policy)
{
return false;
}
static inline int of_perf_domain_get_sharing_cpumask(int pcpu, const char *list_name,
const char *cell_name, struct cpumask *cpumask)
{
return -EOPNOTSUPP;
}
#endif
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
@ -1035,7 +1097,6 @@ void arch_set_freq_scale(const struct cpumask *cpus,
{
}
#endif
/* the following are really really optional */
extern struct freq_attr cpufreq_freq_attr_scaling_available_freqs;
extern struct freq_attr cpufreq_freq_attr_scaling_boost_freqs;
@ -1046,4 +1107,10 @@ unsigned int cpufreq_generic_get(unsigned int cpu);
void cpufreq_generic_init(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table,
unsigned int transition_latency);
static inline void cpufreq_register_em_with_opp(struct cpufreq_policy *policy)
{
dev_pm_opp_of_register_em(get_cpu_device(policy->cpu),
policy->related_cpus);
}
#endif /* _LINUX_CPUFREQ_H */