Merge branch 'thermal-hfi'

Merge Intel Hardware Feedback Interface (HFI) thermal driver for
5.18-rc1 and update the intel-speed-select utility to support that
driver.

* thermal-hfi:
  tools/power/x86/intel-speed-select: v1.12 release
  tools/power/x86/intel-speed-select: HFI support
  tools/power/x86/intel-speed-select: OOB daemon mode
  thermal: intel: hfi: INTEL_HFI_THERMAL depends on NET
  thermal: netlink: Fix parameter type of thermal_genl_cpu_capability_event() stub
  thermal: intel: hfi: Notify user space for HFI events
  thermal: netlink: Add a new event to notify CPU capabilities change
  thermal: intel: hfi: Enable notification interrupt
  thermal: intel: hfi: Handle CPU hotplug events
  thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface
  x86/cpu: Add definitions for the Intel Hardware Feedback Interface
  x86/Documentation: Describe the Intel Hardware Feedback Interface
This commit is contained in:
Rafael J. Wysocki 2022-03-18 19:00:26 +01:00
commit 31035f3e20
18 changed files with 1392 additions and 16 deletions

View File

@ -21,6 +21,7 @@ x86-specific Documentation
tlb
mtrr
pat
intel-hfi
intel-iommu
intel_txt
amd-memory-encryption

View File

@ -0,0 +1,72 @@
.. SPDX-License-Identifier: GPL-2.0
============================================================
Hardware-Feedback Interface for scheduling on Intel Hardware
============================================================
Overview
--------
Intel has described the Hardware Feedback Interface (HFI) in the Intel 64 and
IA-32 Architectures Software Developer's Manual (Intel SDM) Volume 3 Section
14.6 [1]_.
The HFI gives the operating system a performance and energy efficiency
capability data for each CPU in the system. Linux can use the information from
the HFI to influence task placement decisions.
The Hardware Feedback Interface
-------------------------------
The Hardware Feedback Interface provides to the operating system information
about the performance and energy efficiency of each CPU in the system. Each
capability is given as a unit-less quantity in the range [0-255]. Higher values
indicate higher capability. Energy efficiency and performance are reported in
separate capabilities. Even though on some systems these two metrics may be
related, they are specified as independent capabilities in the Intel SDM.
These capabilities may change at runtime as a result of changes in the
operating conditions of the system or the action of external factors. The rate
at which these capabilities are updated is specific to each processor model. On
some models, capabilities are set at boot time and never change. On others,
capabilities may change every tens of milliseconds. For instance, a remote
mechanism may be used to lower Thermal Design Power. Such change can be
reflected in the HFI. Likewise, if the system needs to be throttled due to
excessive heat, the HFI may reflect reduced performance on specific CPUs.
The kernel or a userspace policy daemon can use these capabilities to modify
task placement decisions. For instance, if either the performance or energy
capabilities of a given logical processor becomes zero, it is an indication that
the hardware recommends to the operating system to not schedule any tasks on
that processor for performance or energy efficiency reasons, respectively.
Implementation details for Linux
--------------------------------
The infrastructure to handle thermal event interrupts has two parts. In the
Local Vector Table of a CPU's local APIC, there exists a register for the
Thermal Monitor Register. This register controls how interrupts are delivered
to a CPU when the thermal monitor generates and interrupt. Further details
can be found in the Intel SDM Vol. 3 Section 10.5 [1]_.
The thermal monitor may generate interrupts per CPU or per package. The HFI
generates package-level interrupts. This monitor is configured and initialized
via a set of machine-specific registers. Specifically, the HFI interrupt and
status are controlled via designated bits in the IA32_PACKAGE_THERM_INTERRUPT
and IA32_PACKAGE_THERM_STATUS registers, respectively. There exists one HFI
table per package. Further details can be found in the Intel SDM Vol. 3
Section 14.9 [1]_.
The hardware issues an HFI interrupt after updating the HFI table and is ready
for the operating system to consume it. CPUs receive such interrupt via the
thermal entry in the Local APIC's Local Vector Table.
When servicing such interrupt, the HFI driver parses the updated table and
relays the update to userspace using the thermal notification framework. Given
that there may be many HFI updates every second, the updates relayed to
userspace are throttled at a rate of CONFIG_HZ jiffies.
References
----------
.. [1] https://www.intel.com/sdm

View File

@ -330,6 +330,7 @@
#define X86_FEATURE_HWP_ACT_WINDOW (14*32+ 9) /* HWP Activity Window */
#define X86_FEATURE_HWP_EPP (14*32+10) /* HWP Energy Perf. Preference */
#define X86_FEATURE_HWP_PKG_REQ (14*32+11) /* HWP Package Level Request */
#define X86_FEATURE_HFI (14*32+19) /* Hardware Feedback Interface */
/* AMD SVM Feature Identification, CPUID level 0x8000000a (EDX), word 15 */
#define X86_FEATURE_NPT (15*32+ 0) /* Nested Page Table support */

View File

@ -705,12 +705,14 @@
#define PACKAGE_THERM_STATUS_PROCHOT (1 << 0)
#define PACKAGE_THERM_STATUS_POWER_LIMIT (1 << 10)
#define PACKAGE_THERM_STATUS_HFI_UPDATED (1 << 26)
#define MSR_IA32_PACKAGE_THERM_INTERRUPT 0x000001b2
#define PACKAGE_THERM_INT_HIGH_ENABLE (1 << 0)
#define PACKAGE_THERM_INT_LOW_ENABLE (1 << 1)
#define PACKAGE_THERM_INT_PLN_ENABLE (1 << 24)
#define PACKAGE_THERM_INT_HFI_ENABLE (1 << 25)
/* Thermal Thresholds Support */
#define THERM_INT_THRESHOLD0_ENABLE (1 << 15)
@ -959,4 +961,8 @@
#define MSR_VM_IGNNE 0xc0010115
#define MSR_VM_HSAVE_PA 0xc0010117
/* Hardware Feedback Interface */
#define MSR_IA32_HW_FEEDBACK_PTR 0x17d0
#define MSR_IA32_HW_FEEDBACK_CONFIG 0x17d1
#endif /* _ASM_X86_MSR_INDEX_H */

View File

@ -99,3 +99,17 @@ config INTEL_MENLOW
Intel Menlow platform.
If unsure, say N.
config INTEL_HFI_THERMAL
bool "Intel Hardware Feedback Interface"
depends on NET
depends on CPU_SUP_INTEL
depends on X86_THERMAL_VECTOR
select THERMAL_NETLINK
help
Select this option to enable the Hardware Feedback Interface. If
selected, hardware provides guidance to the operating system on
the performance and energy efficiency capabilities of each CPU.
These capabilities may change as a result of changes in the operating
conditions of the system such power and thermal limits. If selected,
the kernel relays updates in CPUs' capabilities to userspace.

View File

@ -13,3 +13,4 @@ obj-$(CONFIG_INTEL_PCH_THERMAL) += intel_pch_thermal.o
obj-$(CONFIG_INTEL_TCC_COOLING) += intel_tcc_cooling.o
obj-$(CONFIG_X86_THERMAL_VECTOR) += therm_throt.o
obj-$(CONFIG_INTEL_MENLOW) += intel_menlow.o
obj-$(CONFIG_INTEL_HFI_THERMAL) += intel_hfi.o

View File

@ -0,0 +1,569 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Hardware Feedback Interface Driver
*
* Copyright (c) 2021, Intel Corporation.
*
* Authors: Aubrey Li <aubrey.li@linux.intel.com>
* Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
*
*
* The Hardware Feedback Interface provides a performance and energy efficiency
* capability information for each CPU in the system. Depending on the processor
* model, hardware may periodically update these capabilities as a result of
* changes in the operating conditions (e.g., power limits or thermal
* constraints). On other processor models, there is a single HFI update
* at boot.
*
* This file provides functionality to process HFI updates and relay these
* updates to userspace.
*/
#define pr_fmt(fmt) "intel-hfi: " fmt
#include <linux/bitops.h>
#include <linux/cpufeature.h>
#include <linux/cpumask.h>
#include <linux/gfp.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/math.h>
#include <linux/mutex.h>
#include <linux/percpu-defs.h>
#include <linux/printk.h>
#include <linux/processor.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/topology.h>
#include <linux/workqueue.h>
#include <asm/msr.h>
#include "../thermal_core.h"
#include "intel_hfi.h"
#define THERM_STATUS_CLEAR_PKG_MASK (BIT(1) | BIT(3) | BIT(5) | BIT(7) | \
BIT(9) | BIT(11) | BIT(26))
/* Hardware Feedback Interface MSR configuration bits */
#define HW_FEEDBACK_PTR_VALID_BIT BIT(0)
#define HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT BIT(0)
/* CPUID detection and enumeration definitions for HFI */
#define CPUID_HFI_LEAF 6
union hfi_capabilities {
struct {
u8 performance:1;
u8 energy_efficiency:1;
u8 __reserved:6;
} split;
u8 bits;
};
union cpuid6_edx {
struct {
union hfi_capabilities capabilities;
u32 table_pages:4;
u32 __reserved:4;
s32 index:16;
} split;
u32 full;
};
/**
* struct hfi_cpu_data - HFI capabilities per CPU
* @perf_cap: Performance capability
* @ee_cap: Energy efficiency capability
*
* Capabilities of a logical processor in the HFI table. These capabilities are
* unitless.
*/
struct hfi_cpu_data {
u8 perf_cap;
u8 ee_cap;
} __packed;
/**
* struct hfi_hdr - Header of the HFI table
* @perf_updated: Hardware updated performance capabilities
* @ee_updated: Hardware updated energy efficiency capabilities
*
* Properties of the data in an HFI table.
*/
struct hfi_hdr {
u8 perf_updated;
u8 ee_updated;
} __packed;
/**
* struct hfi_instance - Representation of an HFI instance (i.e., a table)
* @local_table: Base of the local copy of the HFI table
* @timestamp: Timestamp of the last update of the local table.
* Located at the base of the local table.
* @hdr: Base address of the header of the local table
* @data: Base address of the data of the local table
* @cpus: CPUs represented in this HFI table instance
* @hw_table: Pointer to the HFI table of this instance
* @update_work: Delayed work to process HFI updates
* @table_lock: Lock to protect acceses to the table of this instance
* @event_lock: Lock to process HFI interrupts
*
* A set of parameters to parse and navigate a specific HFI table.
*/
struct hfi_instance {
union {
void *local_table;
u64 *timestamp;
};
void *hdr;
void *data;
cpumask_var_t cpus;
void *hw_table;
struct delayed_work update_work;
raw_spinlock_t table_lock;
raw_spinlock_t event_lock;
};
/**
* struct hfi_features - Supported HFI features
* @nr_table_pages: Size of the HFI table in 4KB pages
* @cpu_stride: Stride size to locate the capability data of a logical
* processor within the table (i.e., row stride)
* @hdr_size: Size of the table header
*
* Parameters and supported features that are common to all HFI instances
*/
struct hfi_features {
unsigned int nr_table_pages;
unsigned int cpu_stride;
unsigned int hdr_size;
};
/**
* struct hfi_cpu_info - Per-CPU attributes to consume HFI data
* @index: Row of this CPU in its HFI table
* @hfi_instance: Attributes of the HFI table to which this CPU belongs
*
* Parameters to link a logical processor to an HFI table and a row within it.
*/
struct hfi_cpu_info {
s16 index;
struct hfi_instance *hfi_instance;
};
static DEFINE_PER_CPU(struct hfi_cpu_info, hfi_cpu_info) = { .index = -1 };
static int max_hfi_instances;
static struct hfi_instance *hfi_instances;
static struct hfi_features hfi_features;
static DEFINE_MUTEX(hfi_instance_lock);
static struct workqueue_struct *hfi_updates_wq;
#define HFI_UPDATE_INTERVAL HZ
#define HFI_MAX_THERM_NOTIFY_COUNT 16
static void get_hfi_caps(struct hfi_instance *hfi_instance,
struct thermal_genl_cpu_caps *cpu_caps)
{
int cpu, i = 0;
raw_spin_lock_irq(&hfi_instance->table_lock);
for_each_cpu(cpu, hfi_instance->cpus) {
struct hfi_cpu_data *caps;
s16 index;
index = per_cpu(hfi_cpu_info, cpu).index;
caps = hfi_instance->data + index * hfi_features.cpu_stride;
cpu_caps[i].cpu = cpu;
/*
* Scale performance and energy efficiency to
* the [0, 1023] interval that thermal netlink uses.
*/
cpu_caps[i].performance = caps->perf_cap << 2;
cpu_caps[i].efficiency = caps->ee_cap << 2;
++i;
}
raw_spin_unlock_irq(&hfi_instance->table_lock);
}
/*
* Call update_capabilities() when there are changes in the HFI table.
*/
static void update_capabilities(struct hfi_instance *hfi_instance)
{
struct thermal_genl_cpu_caps *cpu_caps;
int i = 0, cpu_count;
/* CPUs may come online/offline while processing an HFI update. */
mutex_lock(&hfi_instance_lock);
cpu_count = cpumask_weight(hfi_instance->cpus);
/* No CPUs to report in this hfi_instance. */
if (!cpu_count)
goto out;
cpu_caps = kcalloc(cpu_count, sizeof(*cpu_caps), GFP_KERNEL);
if (!cpu_caps)
goto out;
get_hfi_caps(hfi_instance, cpu_caps);
if (cpu_count < HFI_MAX_THERM_NOTIFY_COUNT)
goto last_cmd;
/* Process complete chunks of HFI_MAX_THERM_NOTIFY_COUNT capabilities. */
for (i = 0;
(i + HFI_MAX_THERM_NOTIFY_COUNT) <= cpu_count;
i += HFI_MAX_THERM_NOTIFY_COUNT)
thermal_genl_cpu_capability_event(HFI_MAX_THERM_NOTIFY_COUNT,
&cpu_caps[i]);
cpu_count = cpu_count - i;
last_cmd:
/* Process the remaining capabilities if any. */
if (cpu_count)
thermal_genl_cpu_capability_event(cpu_count, &cpu_caps[i]);
kfree(cpu_caps);
out:
mutex_unlock(&hfi_instance_lock);
}
static void hfi_update_work_fn(struct work_struct *work)
{
struct hfi_instance *hfi_instance;
hfi_instance = container_of(to_delayed_work(work), struct hfi_instance,
update_work);
if (!hfi_instance)
return;
update_capabilities(hfi_instance);
}
void intel_hfi_process_event(__u64 pkg_therm_status_msr_val)
{
struct hfi_instance *hfi_instance;
int cpu = smp_processor_id();
struct hfi_cpu_info *info;
u64 new_timestamp;
if (!pkg_therm_status_msr_val)
return;
info = &per_cpu(hfi_cpu_info, cpu);
if (!info)
return;
/*
* A CPU is linked to its HFI instance before the thermal vector in the
* local APIC is unmasked. Hence, info->hfi_instance cannot be NULL
* when receiving an HFI event.
*/
hfi_instance = info->hfi_instance;
if (unlikely(!hfi_instance)) {
pr_debug("Received event on CPU %d but instance was null", cpu);
return;
}
/*
* On most systems, all CPUs in the package receive a package-level
* thermal interrupt when there is an HFI update. It is sufficient to
* let a single CPU to acknowledge the update and queue work to
* process it. The remaining CPUs can resume their work.
*/
if (!raw_spin_trylock(&hfi_instance->event_lock))
return;
/* Skip duplicated updates. */
new_timestamp = *(u64 *)hfi_instance->hw_table;
if (*hfi_instance->timestamp == new_timestamp) {
raw_spin_unlock(&hfi_instance->event_lock);
return;
}
raw_spin_lock(&hfi_instance->table_lock);
/*
* Copy the updated table into our local copy. This includes the new
* timestamp.
*/
memcpy(hfi_instance->local_table, hfi_instance->hw_table,
hfi_features.nr_table_pages << PAGE_SHIFT);
raw_spin_unlock(&hfi_instance->table_lock);
raw_spin_unlock(&hfi_instance->event_lock);
/*
* Let hardware know that we are done reading the HFI table and it is
* free to update it again.
*/
pkg_therm_status_msr_val &= THERM_STATUS_CLEAR_PKG_MASK &
~PACKAGE_THERM_STATUS_HFI_UPDATED;
wrmsrl(MSR_IA32_PACKAGE_THERM_STATUS, pkg_therm_status_msr_val);
queue_delayed_work(hfi_updates_wq, &hfi_instance->update_work,
HFI_UPDATE_INTERVAL);
}
static void init_hfi_cpu_index(struct hfi_cpu_info *info)
{
union cpuid6_edx edx;
/* Do not re-read @cpu's index if it has already been initialized. */
if (info->index > -1)
return;
edx.full = cpuid_edx(CPUID_HFI_LEAF);
info->index = edx.split.index;
}
/*
* The format of the HFI table depends on the number of capabilities that the
* hardware supports. Keep a data structure to navigate the table.
*/
static void init_hfi_instance(struct hfi_instance *hfi_instance)
{
/* The HFI header is below the time-stamp. */
hfi_instance->hdr = hfi_instance->local_table +
sizeof(*hfi_instance->timestamp);
/* The HFI data starts below the header. */
hfi_instance->data = hfi_instance->hdr + hfi_features.hdr_size;
}
/**
* intel_hfi_online() - Enable HFI on @cpu
* @cpu: CPU in which the HFI will be enabled
*
* Enable the HFI to be used in @cpu. The HFI is enabled at the die/package
* level. The first CPU in the die/package to come online does the full HFI
* initialization. Subsequent CPUs will just link themselves to the HFI
* instance of their die/package.
*
* This function is called before enabling the thermal vector in the local APIC
* in order to ensure that @cpu has an associated HFI instance when it receives
* an HFI event.
*/
void intel_hfi_online(unsigned int cpu)
{
struct hfi_instance *hfi_instance;
struct hfi_cpu_info *info;
phys_addr_t hw_table_pa;
u64 msr_val;
u16 die_id;
/* Nothing to do if hfi_instances are missing. */
if (!hfi_instances)
return;
/*
* Link @cpu to the HFI instance of its package/die. It does not
* matter whether the instance has been initialized.
*/
info = &per_cpu(hfi_cpu_info, cpu);
die_id = topology_logical_die_id(cpu);
hfi_instance = info->hfi_instance;
if (!hfi_instance) {
if (die_id < 0 || die_id >= max_hfi_instances)
return;
hfi_instance = &hfi_instances[die_id];
info->hfi_instance = hfi_instance;
}
init_hfi_cpu_index(info);
/*
* Now check if the HFI instance of the package/die of @cpu has been
* initialized (by checking its header). In such case, all we have to
* do is to add @cpu to this instance's cpumask.
*/
mutex_lock(&hfi_instance_lock);
if (hfi_instance->hdr) {
cpumask_set_cpu(cpu, hfi_instance->cpus);
goto unlock;
}
/*
* Hardware is programmed with the physical address of the first page
* frame of the table. Hence, the allocated memory must be page-aligned.
*/
hfi_instance->hw_table = alloc_pages_exact(hfi_features.nr_table_pages,
GFP_KERNEL | __GFP_ZERO);
if (!hfi_instance->hw_table)
goto unlock;
hw_table_pa = virt_to_phys(hfi_instance->hw_table);
/*
* Allocate memory to keep a local copy of the table that
* hardware generates.
*/
hfi_instance->local_table = kzalloc(hfi_features.nr_table_pages << PAGE_SHIFT,
GFP_KERNEL);
if (!hfi_instance->local_table)
goto free_hw_table;
/*
* Program the address of the feedback table of this die/package. On
* some processors, hardware remembers the old address of the HFI table
* even after having been reprogrammed and re-enabled. Thus, do not free
* the pages allocated for the table or reprogram the hardware with a
* new base address. Namely, program the hardware only once.
*/
msr_val = hw_table_pa | HW_FEEDBACK_PTR_VALID_BIT;
wrmsrl(MSR_IA32_HW_FEEDBACK_PTR, msr_val);
init_hfi_instance(hfi_instance);
INIT_DELAYED_WORK(&hfi_instance->update_work, hfi_update_work_fn);
raw_spin_lock_init(&hfi_instance->table_lock);
raw_spin_lock_init(&hfi_instance->event_lock);
cpumask_set_cpu(cpu, hfi_instance->cpus);
/*
* Enable the hardware feedback interface and never disable it. See
* comment on programming the address of the table.
*/
rdmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
msr_val |= HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT;
wrmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
unlock:
mutex_unlock(&hfi_instance_lock);
return;
free_hw_table:
free_pages_exact(hfi_instance->hw_table, hfi_features.nr_table_pages);
goto unlock;
}
/**
* intel_hfi_offline() - Disable HFI on @cpu
* @cpu: CPU in which the HFI will be disabled
*
* Remove @cpu from those covered by its HFI instance.
*
* On some processors, hardware remembers previous programming settings even
* after being reprogrammed. Thus, keep HFI enabled even if all CPUs in the
* die/package of @cpu are offline. See note in intel_hfi_online().
*/
void intel_hfi_offline(unsigned int cpu)
{
struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, cpu);
struct hfi_instance *hfi_instance;
/*
* Check if @cpu as an associated, initialized (i.e., with a non-NULL
* header). Also, HFI instances are only initialized if X86_FEATURE_HFI
* is present.
*/
hfi_instance = info->hfi_instance;
if (!hfi_instance)
return;
if (!hfi_instance->hdr)
return;
mutex_lock(&hfi_instance_lock);
cpumask_clear_cpu(cpu, hfi_instance->cpus);
mutex_unlock(&hfi_instance_lock);
}
static __init int hfi_parse_features(void)
{
unsigned int nr_capabilities;
union cpuid6_edx edx;
if (!boot_cpu_has(X86_FEATURE_HFI))
return -ENODEV;
/*
* If we are here we know that CPUID_HFI_LEAF exists. Parse the
* supported capabilities and the size of the HFI table.
*/
edx.full = cpuid_edx(CPUID_HFI_LEAF);
if (!edx.split.capabilities.split.performance) {
pr_debug("Performance reporting not supported! Not using HFI\n");
return -ENODEV;
}
/*
* The number of supported capabilities determines the number of
* columns in the HFI table. Exclude the reserved bits.
*/
edx.split.capabilities.split.__reserved = 0;
nr_capabilities = hweight8(edx.split.capabilities.bits);
/* The number of 4KB pages required by the table */
hfi_features.nr_table_pages = edx.split.table_pages + 1;
/*
* The header contains change indications for each supported feature.
* The size of the table header is rounded up to be a multiple of 8
* bytes.
*/
hfi_features.hdr_size = DIV_ROUND_UP(nr_capabilities, 8) * 8;
/*
* Data of each logical processor is also rounded up to be a multiple
* of 8 bytes.
*/
hfi_features.cpu_stride = DIV_ROUND_UP(nr_capabilities, 8) * 8;
return 0;
}
void __init intel_hfi_init(void)
{
struct hfi_instance *hfi_instance;
int i, j;
if (hfi_parse_features())
return;
/* There is one HFI instance per die/package. */
max_hfi_instances = topology_max_packages() *
topology_max_die_per_package();
/*
* This allocation may fail. CPU hotplug callbacks must check
* for a null pointer.
*/
hfi_instances = kcalloc(max_hfi_instances, sizeof(*hfi_instances),
GFP_KERNEL);
if (!hfi_instances)
return;
for (i = 0; i < max_hfi_instances; i++) {
hfi_instance = &hfi_instances[i];
if (!zalloc_cpumask_var(&hfi_instance->cpus, GFP_KERNEL))
goto err_nomem;
}
hfi_updates_wq = create_singlethread_workqueue("hfi-updates");
if (!hfi_updates_wq)
goto err_nomem;
return;
err_nomem:
for (j = 0; j < i; ++j) {
hfi_instance = &hfi_instances[j];
free_cpumask_var(hfi_instance->cpus);
}
kfree(hfi_instances);
hfi_instances = NULL;
}

View File

@ -0,0 +1,17 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _INTEL_HFI_H
#define _INTEL_HFI_H
#if defined(CONFIG_INTEL_HFI_THERMAL)
void __init intel_hfi_init(void);
void intel_hfi_online(unsigned int cpu);
void intel_hfi_offline(unsigned int cpu);
void intel_hfi_process_event(__u64 pkg_therm_status_msr_val);
#else
static inline void intel_hfi_init(void) { }
static inline void intel_hfi_online(unsigned int cpu) { }
static inline void intel_hfi_offline(unsigned int cpu) { }
static inline void intel_hfi_process_event(__u64 pkg_therm_status_msr_val) { }
#endif /* CONFIG_INTEL_HFI_THERMAL */
#endif /* _INTEL_HFI_H */

View File

@ -32,6 +32,7 @@
#include <asm/irq.h>
#include <asm/msr.h>
#include "intel_hfi.h"
#include "thermal_interrupt.h"
/* How long to wait between reporting thermal events */
@ -475,6 +476,13 @@ static int thermal_throttle_online(unsigned int cpu)
INIT_DELAYED_WORK(&state->package_throttle.therm_work, throttle_active_work);
INIT_DELAYED_WORK(&state->core_throttle.therm_work, throttle_active_work);
/*
* The first CPU coming online will enable the HFI. Usually this causes
* hardware to issue an HFI thermal interrupt. Such interrupt will reach
* the CPU once we enable the thermal vector in the local APIC.
*/
intel_hfi_online(cpu);
/* Unmask the thermal vector after the above workqueues are initialized. */
l = apic_read(APIC_LVTTHMR);
apic_write(APIC_LVTTHMR, l & ~APIC_LVT_MASKED);
@ -492,6 +500,8 @@ static int thermal_throttle_offline(unsigned int cpu)
l = apic_read(APIC_LVTTHMR);
apic_write(APIC_LVTTHMR, l | APIC_LVT_MASKED);
intel_hfi_offline(cpu);
cancel_delayed_work_sync(&state->package_throttle.therm_work);
cancel_delayed_work_sync(&state->core_throttle.therm_work);
@ -509,6 +519,8 @@ static __init int thermal_throttle_init_device(void)
if (!atomic_read(&therm_throt_en))
return 0;
intel_hfi_init();
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/therm:online",
thermal_throttle_online,
thermal_throttle_offline);
@ -608,6 +620,10 @@ void intel_thermal_interrupt(void)
PACKAGE_THERM_STATUS_POWER_LIMIT,
POWER_LIMIT_EVENT,
PACKAGE_LEVEL);
if (this_cpu_has(X86_FEATURE_HFI))
intel_hfi_process_event(msr_val &
PACKAGE_THERM_STATUS_HFI_UPDATED);
}
}
@ -717,6 +733,12 @@ void intel_init_thermal(struct cpuinfo_x86 *c)
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
l | (PACKAGE_THERM_INT_LOW_ENABLE
| PACKAGE_THERM_INT_HIGH_ENABLE), h);
if (cpu_has(c, X86_FEATURE_HFI)) {
rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
l | PACKAGE_THERM_INT_HFI_ENABLE, h);
}
}
rdmsr(MSR_IA32_MISC_ENABLE, l, h);

View File

@ -43,6 +43,11 @@ static const struct nla_policy thermal_genl_policy[THERMAL_GENL_ATTR_MAX + 1] =
[THERMAL_GENL_ATTR_CDEV_MAX_STATE] = { .type = NLA_U32 },
[THERMAL_GENL_ATTR_CDEV_NAME] = { .type = NLA_STRING,
.len = THERMAL_NAME_LENGTH },
/* CPU capabilities */
[THERMAL_GENL_ATTR_CPU_CAPABILITY] = { .type = NLA_NESTED },
[THERMAL_GENL_ATTR_CPU_CAPABILITY_ID] = { .type = NLA_U32 },
[THERMAL_GENL_ATTR_CPU_CAPABILITY_PERFORMANCE] = { .type = NLA_U32 },
[THERMAL_GENL_ATTR_CPU_CAPABILITY_EFFICIENCY] = { .type = NLA_U32 },
};
struct param {
@ -58,6 +63,8 @@ struct param {
int temp;
int cdev_state;
int cdev_max_state;
struct thermal_genl_cpu_caps *cpu_capabilities;
int cpu_capabilities_count;
};
typedef int (*cb_t)(struct param *);
@ -190,6 +197,42 @@ static int thermal_genl_event_gov_change(struct param *p)
return 0;
}
static int thermal_genl_event_cpu_capability_change(struct param *p)
{
struct thermal_genl_cpu_caps *cpu_cap = p->cpu_capabilities;
struct sk_buff *msg = p->msg;
struct nlattr *start_cap;
int i;
start_cap = nla_nest_start(msg, THERMAL_GENL_ATTR_CPU_CAPABILITY);
if (!start_cap)
return -EMSGSIZE;
for (i = 0; i < p->cpu_capabilities_count; ++i) {
if (nla_put_u32(msg, THERMAL_GENL_ATTR_CPU_CAPABILITY_ID,
cpu_cap->cpu))
goto out_cancel_nest;
if (nla_put_u32(msg, THERMAL_GENL_ATTR_CPU_CAPABILITY_PERFORMANCE,
cpu_cap->performance))
goto out_cancel_nest;
if (nla_put_u32(msg, THERMAL_GENL_ATTR_CPU_CAPABILITY_EFFICIENCY,
cpu_cap->efficiency))
goto out_cancel_nest;
++cpu_cap;
}
nla_nest_end(msg, start_cap);
return 0;
out_cancel_nest:
nla_nest_cancel(msg, start_cap);
return -EMSGSIZE;
}
int thermal_genl_event_tz_delete(struct param *p)
__attribute__((alias("thermal_genl_event_tz")));
@ -219,6 +262,7 @@ static cb_t event_cb[] = {
[THERMAL_GENL_EVENT_CDEV_DELETE] = thermal_genl_event_cdev_delete,
[THERMAL_GENL_EVENT_CDEV_STATE_UPDATE] = thermal_genl_event_cdev_state_update,
[THERMAL_GENL_EVENT_TZ_GOV_CHANGE] = thermal_genl_event_gov_change,
[THERMAL_GENL_EVENT_CPU_CAPABILITY_CHANGE] = thermal_genl_event_cpu_capability_change,
};
/*
@ -356,6 +400,15 @@ int thermal_notify_tz_gov_change(int tz_id, const char *name)
return thermal_genl_send_event(THERMAL_GENL_EVENT_TZ_GOV_CHANGE, &p);
}
int thermal_genl_cpu_capability_event(int count,
struct thermal_genl_cpu_caps *caps)
{
struct param p = { .cpu_capabilities_count = count, .cpu_capabilities = caps };
return thermal_genl_send_event(THERMAL_GENL_EVENT_CPU_CAPABILITY_CHANGE, &p);
}
EXPORT_SYMBOL_GPL(thermal_genl_cpu_capability_event);
/*************************** Command encoding ********************************/
static int __thermal_genl_cmd_tz_get_id(struct thermal_zone_device *tz,

View File

@ -4,6 +4,12 @@
* Author: Daniel Lezcano <daniel.lezcano@linaro.org>
*/
struct thermal_genl_cpu_caps {
int cpu;
int performance;
int efficiency;
};
/* Netlink notification function */
#ifdef CONFIG_THERMAL_NETLINK
int __init thermal_netlink_init(void);
@ -23,6 +29,8 @@ int thermal_notify_cdev_add(int cdev_id, const char *name, int max_state);
int thermal_notify_cdev_delete(int cdev_id);
int thermal_notify_tz_gov_change(int tz_id, const char *name);
int thermal_genl_sampling_temp(int id, int temp);
int thermal_genl_cpu_capability_event(int count,
struct thermal_genl_cpu_caps *caps);
#else
static inline int thermal_netlink_init(void)
{
@ -101,4 +109,10 @@ static inline int thermal_genl_sampling_temp(int id, int temp)
{
return 0;
}
static inline int thermal_genl_cpu_capability_event(int count, struct thermal_genl_cpu_caps *caps)
{
return 0;
}
#endif /* CONFIG_THERMAL_NETLINK */

View File

@ -44,7 +44,10 @@ enum thermal_genl_attr {
THERMAL_GENL_ATTR_CDEV_MAX_STATE,
THERMAL_GENL_ATTR_CDEV_NAME,
THERMAL_GENL_ATTR_GOV_NAME,
THERMAL_GENL_ATTR_CPU_CAPABILITY,
THERMAL_GENL_ATTR_CPU_CAPABILITY_ID,
THERMAL_GENL_ATTR_CPU_CAPABILITY_PERFORMANCE,
THERMAL_GENL_ATTR_CPU_CAPABILITY_EFFICIENCY,
__THERMAL_GENL_ATTR_MAX,
};
#define THERMAL_GENL_ATTR_MAX (__THERMAL_GENL_ATTR_MAX - 1)
@ -71,6 +74,7 @@ enum thermal_genl_event {
THERMAL_GENL_EVENT_CDEV_DELETE, /* Cdev unbound */
THERMAL_GENL_EVENT_CDEV_STATE_UPDATE, /* Cdev state updated */
THERMAL_GENL_EVENT_TZ_GOV_CHANGE, /* Governor policy changed */
THERMAL_GENL_EVENT_CPU_CAPABILITY_CHANGE, /* CPU capability changed */
__THERMAL_GENL_EVENT_MAX,
};
#define THERMAL_GENL_EVENT_MAX (__THERMAL_GENL_EVENT_MAX - 1)

View File

@ -1 +1 @@
intel-speed-select-y += isst-config.o isst-core.o isst-display.o
intel-speed-select-y += isst-config.o isst-core.o isst-display.o isst-daemon.o hfi-events.o

View File

@ -13,8 +13,8 @@ endif
# Do not use make's built-in rules
# (this improves performance and avoids hard-to-debug behaviour);
MAKEFLAGS += -r
override CFLAGS += -O2 -Wall -g -D_GNU_SOURCE -I$(OUTPUT)include
override CFLAGS += -O2 -Wall -g -D_GNU_SOURCE -I$(OUTPUT)include -I/usr/include/libnl3
override LDFLAGS += -lnl-genl-3 -lnl-3
ALL_TARGETS := intel-speed-select
ALL_PROGRAMS := $(patsubst %,$(OUTPUT)%,$(ALL_TARGETS))
@ -31,7 +31,11 @@ $(OUTPUT)include/linux/isst_if.h: ../../../../include/uapi/linux/isst_if.h
mkdir -p $(OUTPUT)include/linux 2>&1 || true
ln -sf $(CURDIR)/../../../../include/uapi/linux/isst_if.h $@
prepare: $(OUTPUT)include/linux/isst_if.h
$(OUTPUT)include/linux/thermal.h: ../../../../include/uapi/linux/thermal.h
mkdir -p $(OUTPUT)include/linux 2>&1 || true
ln -sf $(CURDIR)/../../../../include/uapi/linux/thermal.h $@
prepare: $(OUTPUT)include/linux/isst_if.h $(OUTPUT)include/linux/thermal.h
ISST_IN := $(OUTPUT)intel-speed-select-in.o

View File

@ -0,0 +1,309 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Intel Speed Select -- Read HFI events for OOB
* Copyright (c) 2022 Intel Corporation.
*/
/*
* This file incorporates work covered by the following copyright and
* permission notice:
* WPA Supplicant - driver interaction with Linux nl80211/cfg80211
* Copyright (c) 2003-2008, Jouni Malinen <j@w1.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of
* BSD license.
*
* Requires
* libnl-genl-3-dev
*
* For Fedora/CenOS
* dnf install libnl3-devel
* For Ubuntu
* apt install libnl-3-dev libnl-genl-3-dev
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <getopt.h>
#include <signal.h>
#include <netlink/genl/genl.h>
#include <netlink/genl/family.h>
#include <netlink/genl/ctrl.h>
#include <linux/thermal.h>
#include "isst.h"
struct hfi_event_data {
struct nl_sock *nl_handle;
struct nl_cb *nl_cb;
};
struct hfi_event_data drv;
static int ack_handler(struct nl_msg *msg, void *arg)
{
int *err = arg;
*err = 0;
return NL_STOP;
}
static int finish_handler(struct nl_msg *msg, void *arg)
{
int *ret = arg;
*ret = 0;
return NL_SKIP;
}
static int error_handler(struct sockaddr_nl *nla, struct nlmsgerr *err,
void *arg)
{
int *ret = arg;
*ret = err->error;
return NL_SKIP;
}
static int seq_check_handler(struct nl_msg *msg, void *arg)
{
return NL_OK;
}
static int send_and_recv_msgs(struct hfi_event_data *drv,
struct nl_msg *msg,
int (*valid_handler)(struct nl_msg *, void *),
void *valid_data)
{
struct nl_cb *cb;
int err = -ENOMEM;
cb = nl_cb_clone(drv->nl_cb);
if (!cb)
goto out;
err = nl_send_auto_complete(drv->nl_handle, msg);
if (err < 0)
goto out;
err = 1;
nl_cb_err(cb, NL_CB_CUSTOM, error_handler, &err);
nl_cb_set(cb, NL_CB_FINISH, NL_CB_CUSTOM, finish_handler, &err);
nl_cb_set(cb, NL_CB_ACK, NL_CB_CUSTOM, ack_handler, &err);
if (valid_handler)
nl_cb_set(cb, NL_CB_VALID, NL_CB_CUSTOM,
valid_handler, valid_data);
while (err > 0)
nl_recvmsgs(drv->nl_handle, cb);
out:
nl_cb_put(cb);
nlmsg_free(msg);
return err;
}
struct family_data {
const char *group;
int id;
};
static int family_handler(struct nl_msg *msg, void *arg)
{
struct family_data *res = arg;
struct nlattr *tb[CTRL_ATTR_MAX + 1];
struct genlmsghdr *gnlh = nlmsg_data(nlmsg_hdr(msg));
struct nlattr *mcgrp;
int i;
nla_parse(tb, CTRL_ATTR_MAX, genlmsg_attrdata(gnlh, 0),
genlmsg_attrlen(gnlh, 0), NULL);
if (!tb[CTRL_ATTR_MCAST_GROUPS])
return NL_SKIP;
nla_for_each_nested(mcgrp, tb[CTRL_ATTR_MCAST_GROUPS], i) {
struct nlattr *tb2[CTRL_ATTR_MCAST_GRP_MAX + 1];
nla_parse(tb2, CTRL_ATTR_MCAST_GRP_MAX, nla_data(mcgrp),
nla_len(mcgrp), NULL);
if (!tb2[CTRL_ATTR_MCAST_GRP_NAME] ||
!tb2[CTRL_ATTR_MCAST_GRP_ID] ||
strncmp(nla_data(tb2[CTRL_ATTR_MCAST_GRP_NAME]),
res->group,
nla_len(tb2[CTRL_ATTR_MCAST_GRP_NAME])) != 0)
continue;
res->id = nla_get_u32(tb2[CTRL_ATTR_MCAST_GRP_ID]);
break;
};
return 0;
}
static int nl_get_multicast_id(struct hfi_event_data *drv,
const char *family, const char *group)
{
struct nl_msg *msg;
int ret = -1;
struct family_data res = { group, -ENOENT };
msg = nlmsg_alloc();
if (!msg)
return -ENOMEM;
genlmsg_put(msg, 0, 0, genl_ctrl_resolve(drv->nl_handle, "nlctrl"),
0, 0, CTRL_CMD_GETFAMILY, 0);
NLA_PUT_STRING(msg, CTRL_ATTR_FAMILY_NAME, family);
ret = send_and_recv_msgs(drv, msg, family_handler, &res);
msg = NULL;
if (ret == 0)
ret = res.id;
nla_put_failure:
nlmsg_free(msg);
return ret;
}
struct perf_cap {
int cpu;
int perf;
int eff;
};
static void process_hfi_event(struct perf_cap *perf_cap)
{
process_level_change(perf_cap->cpu);
}
static int handle_event(struct nl_msg *n, void *arg)
{
struct nlmsghdr *nlh = nlmsg_hdr(n);
struct genlmsghdr *genlhdr = genlmsg_hdr(nlh);
struct nlattr *attrs[THERMAL_GENL_ATTR_MAX + 1];
int ret;
struct perf_cap perf_cap;
ret = genlmsg_parse(nlh, 0, attrs, THERMAL_GENL_ATTR_MAX, NULL);
debug_printf("Received event %d parse_rer:%d\n", genlhdr->cmd, ret);
if (genlhdr->cmd == THERMAL_GENL_EVENT_CPU_CAPABILITY_CHANGE) {
struct nlattr *cap;
int j, index = 0;
debug_printf("THERMAL_GENL_EVENT_CPU_CAPABILITY_CHANGE\n");
nla_for_each_nested(cap, attrs[THERMAL_GENL_ATTR_CPU_CAPABILITY], j) {
switch (index) {
case 0:
perf_cap.cpu = nla_get_u32(cap);
break;
case 1:
perf_cap.perf = nla_get_u32(cap);
break;
case 2:
perf_cap.eff = nla_get_u32(cap);
break;
default:
break;
}
++index;
if (index == 3) {
index = 0;
process_hfi_event(&perf_cap);
}
}
}
return 0;
}
static int _hfi_exit;
static int check_hf_suport(void)
{
unsigned int eax = 0, ebx = 0, ecx = 0, edx = 0;
__cpuid(6, eax, ebx, ecx, edx);
if (eax & BIT(19))
return 1;
return 0;
}
int hfi_main(void)
{
struct nl_sock *sock;
struct nl_cb *cb;
int err = 0;
int mcast_id;
int no_block = 0;
if (!check_hf_suport()) {
fprintf(stderr, "CPU Doesn't support HFI\n");
return -1;
}
sock = nl_socket_alloc();
if (!sock) {
fprintf(stderr, "nl_socket_alloc failed\n");
return -1;
}
if (genl_connect(sock)) {
fprintf(stderr, "genl_connect(sk_event) failed\n");
goto free_sock;
}
drv.nl_handle = sock;
drv.nl_cb = cb = nl_cb_alloc(NL_CB_DEFAULT);
if (drv.nl_cb == NULL) {
printf("Failed to allocate netlink callbacks");
goto free_sock;
}
mcast_id = nl_get_multicast_id(&drv, THERMAL_GENL_FAMILY_NAME,
THERMAL_GENL_EVENT_GROUP_NAME);
if (mcast_id < 0) {
fprintf(stderr, "nl_get_multicast_id failed\n");
goto free_sock;
}
if (nl_socket_add_membership(sock, mcast_id)) {
fprintf(stderr, "nl_socket_add_membership failed");
goto free_sock;
}
nl_cb_set(cb, NL_CB_SEQ_CHECK, NL_CB_CUSTOM, seq_check_handler, 0);
nl_cb_set(cb, NL_CB_VALID, NL_CB_CUSTOM, handle_event, NULL);
if (no_block)
nl_socket_set_nonblocking(sock);
debug_printf("hfi is initialized\n");
while (!_hfi_exit && !err) {
err = nl_recvmsgs(sock, cb);
debug_printf("nl_recv_message err:%d\n", err);
}
return 0;
/* Netlink library doesn't have calls to dealloc cb or disconnect */
free_sock:
nl_socket_free(sock);
return -1;
}
void hfi_exit(void)
{
_hfi_exit = 1;
}

View File

@ -15,7 +15,8 @@ struct process_cmd_struct {
int arg;
};
static const char *version_str = "v1.11";
static const char *version_str = "v1.12";
static const int supported_api_ver = 1;
static struct isst_if_platform_info isst_platform_info;
static char *progname;
@ -368,7 +369,7 @@ int get_topo_max_cpus(void)
return topo_max_cpus;
}
static void set_cpu_online_offline(int cpu, int state)
void set_cpu_online_offline(int cpu, int state)
{
char buffer[128];
int fd, ret;
@ -409,12 +410,10 @@ static void force_all_cpus_online(void)
unlink("/var/run/isst_cpu_topology.dat");
}
#define MAX_PACKAGE_COUNT 8
#define MAX_DIE_PER_PACKAGE 2
static void for_each_online_package_in_set(void (*callback)(int, void *, void *,
void *, void *),
void *arg1, void *arg2, void *arg3,
void *arg4)
void for_each_online_package_in_set(void (*callback)(int, void *, void *,
void *, void *),
void *arg1, void *arg2, void *arg3,
void *arg4)
{
int max_packages[MAX_PACKAGE_COUNT * MAX_PACKAGE_COUNT];
int pkg_index = 0, i;
@ -2803,7 +2802,9 @@ static void usage(void)
printf("\t[-p|--pause] : Delay between two mail box commands in milliseconds\n");
printf("\t[-r|--retry] : Retry count for mail box commands on failure, default 3\n");
printf("\t[-v|--version] : Print version\n");
printf("\t[-b|--oob : Start a daemon to process HFI events for perf profile change from Out of Band agent.\n");
printf("\t[-n|--no-daemon : Don't run as daemon. By default --oob will turn on daemon mode\n");
printf("\t[-w|--delay : Delay for reading config level state change in OOB poll mode.\n");
printf("\nResult format\n");
printf("\tResult display uses a common format for each command:\n");
printf("\tResults are formatted in text/JSON with\n");
@ -2837,6 +2838,9 @@ static void cmdline(int argc, char **argv)
int opt, force_cpus_online = 0;
int option_index = 0;
int ret;
int oob_mode = 0;
int poll_interval = -1;
int no_daemon = 0;
static struct option long_options[] = {
{ "all-cpus-online", no_argument, 0, 'a' },
@ -2849,6 +2853,9 @@ static void cmdline(int argc, char **argv)
{ "out", required_argument, 0, 'o' },
{ "retry", required_argument, 0, 'r' },
{ "version", no_argument, 0, 'v' },
{ "oob", no_argument, 0, 'b' },
{ "no-daemon", no_argument, 0, 'n' },
{ "poll-interval", required_argument, 0, 'w' },
{ 0, 0, 0, 0 }
};
@ -2875,7 +2882,7 @@ static void cmdline(int argc, char **argv)
}
progname = argv[0];
while ((opt = getopt_long_only(argc, argv, "+c:df:hio:va", long_options,
while ((opt = getopt_long_only(argc, argv, "+c:df:hio:vabw:n", long_options,
&option_index)) != -1) {
switch (opt) {
case 'a':
@ -2920,12 +2927,26 @@ static void cmdline(int argc, char **argv)
case 'v':
print_version();
break;
case 'b':
oob_mode = 1;
break;
case 'n':
no_daemon = 1;
break;
case 'w':
ret = strtol(optarg, &ptr, 10);
if (!ret) {
fprintf(stderr, "Invalid poll interval count\n");
exit(0);
}
poll_interval = ret;
break;
default:
usage();
}
}
if (optind > (argc - 2)) {
if (optind > (argc - 2) && !oob_mode) {
usage();
exit(0);
}
@ -2936,6 +2957,17 @@ static void cmdline(int argc, char **argv)
set_cpu_present_cpu_mask();
set_cpu_target_cpu_mask();
if (oob_mode) {
create_cpu_map();
if (debug_flag)
fprintf(stderr, "OOB mode is enabled in debug mode\n");
ret = isst_daemon(debug_flag, poll_interval, no_daemon);
if (ret)
fprintf(stderr, "OOB mode enable failed\n");
goto out;
}
if (!is_clx_n_platform()) {
ret = isst_fill_platform_info();
if (ret)

View File

@ -0,0 +1,244 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Intel Speed Select -- Allow speed select to daemonize
* Copyright (c) 2022 Intel Corporation.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <getopt.h>
#include <signal.h>
#include <time.h>
#include "isst.h"
static int per_package_levels_info[MAX_PACKAGE_COUNT][MAX_DIE_PER_PACKAGE];
static time_t per_package_levels_tm[MAX_PACKAGE_COUNT][MAX_DIE_PER_PACKAGE];
static void init_levels(void)
{
int i, j;
for (i = 0; i < MAX_PACKAGE_COUNT; ++i)
for (j = 0; j < MAX_DIE_PER_PACKAGE; ++j)
per_package_levels_info[i][j] = -1;
}
void process_level_change(int cpu)
{
struct isst_pkg_ctdp_level_info ctdp_level;
int pkg_id = get_physical_package_id(cpu);
int die_id = get_physical_die_id(cpu);
struct isst_pkg_ctdp pkg_dev;
time_t tm;
int ret;
if (pkg_id >= MAX_PACKAGE_COUNT || die_id > MAX_DIE_PER_PACKAGE) {
debug_printf("Invalid package/die info for cpu:%d\n", cpu);
return;
}
tm = time(NULL);
if (tm - per_package_levels_tm[pkg_id][die_id] < 2 )
return;
per_package_levels_tm[pkg_id][die_id] = tm;
ret = isst_get_ctdp_levels(cpu, &pkg_dev);
if (ret) {
debug_printf("Can't get tdp levels for cpu:%d\n", cpu);
return;
}
debug_printf("Get Config level %d pkg:%d die:%d current_level:%d \n", cpu,
pkg_id, die_id, pkg_dev.current_level);
if (pkg_dev.locked) {
debug_printf("config TDP s locked \n");
return;
}
if (per_package_levels_info[pkg_id][die_id] == pkg_dev.current_level)
return;
debug_printf("**Config level change for cpu:%d pkg:%d die:%d from %d to %d\n",
cpu, pkg_id, die_id, per_package_levels_info[pkg_id][die_id],
pkg_dev.current_level);
per_package_levels_info[pkg_id][die_id] = pkg_dev.current_level;
ctdp_level.core_cpumask_size =
alloc_cpu_set(&ctdp_level.core_cpumask);
ret = isst_get_coremask_info(cpu, pkg_dev.current_level, &ctdp_level);
if (ret) {
free_cpu_set(ctdp_level.core_cpumask);
debug_printf("Can't get core_mask:%d\n", cpu);
return;
}
if (ctdp_level.cpu_count) {
int i, max_cpus = get_topo_max_cpus();
for (i = 0; i < max_cpus; ++i) {
if (pkg_id != get_physical_package_id(i) || die_id != get_physical_die_id(i))
continue;
if (CPU_ISSET_S(i, ctdp_level.core_cpumask_size, ctdp_level.core_cpumask)) {
fprintf(stderr, "online cpu %d\n", i);
set_cpu_online_offline(i, 1);
} else {
fprintf(stderr, "offline cpu %d\n", i);
set_cpu_online_offline(i, 0);
}
}
}
free_cpu_set(ctdp_level.core_cpumask);
}
static void _poll_for_config_change(int cpu, void *arg1, void *arg2,
void *arg3, void *arg4)
{
process_level_change(cpu);
}
static void poll_for_config_change(void)
{
for_each_online_package_in_set(_poll_for_config_change, NULL, NULL,
NULL, NULL);
}
static int done = 0;
static int pid_file_handle;
static void signal_handler(int sig)
{
switch (sig) {
case SIGINT:
case SIGTERM:
done = 1;
hfi_exit();
exit(0);
break;
default:
break;
}
}
static void daemonize(char *rundir, char *pidfile)
{
int pid, sid, i;
char str[10];
struct sigaction sig_actions;
sigset_t sig_set;
int ret;
if (getppid() == 1)
return;
sigemptyset(&sig_set);
sigaddset(&sig_set, SIGCHLD);
sigaddset(&sig_set, SIGTSTP);
sigaddset(&sig_set, SIGTTOU);
sigaddset(&sig_set, SIGTTIN);
sigprocmask(SIG_BLOCK, &sig_set, NULL);
sig_actions.sa_handler = signal_handler;
sigemptyset(&sig_actions.sa_mask);
sig_actions.sa_flags = 0;
sigaction(SIGHUP, &sig_actions, NULL);
sigaction(SIGTERM, &sig_actions, NULL);
sigaction(SIGINT, &sig_actions, NULL);
pid = fork();
if (pid < 0) {
/* Could not fork */
exit(EXIT_FAILURE);
}
if (pid > 0)
exit(EXIT_SUCCESS);
umask(027);
sid = setsid();
if (sid < 0)
exit(EXIT_FAILURE);
/* close all descriptors */
for (i = getdtablesize(); i >= 0; --i)
close(i);
i = open("/dev/null", O_RDWR);
ret = dup(i);
if (ret == -1)
exit(EXIT_FAILURE);
ret = dup(i);
if (ret == -1)
exit(EXIT_FAILURE);
ret = chdir(rundir);
if (ret == -1)
exit(EXIT_FAILURE);
pid_file_handle = open(pidfile, O_RDWR | O_CREAT, 0600);
if (pid_file_handle == -1) {
/* Couldn't open lock file */
exit(1);
}
/* Try to lock file */
#ifdef LOCKF_SUPPORT
if (lockf(pid_file_handle, F_TLOCK, 0) == -1) {
#else
if (flock(pid_file_handle, LOCK_EX|LOCK_NB) < 0) {
#endif
/* Couldn't get lock on lock file */
fprintf(stderr, "Couldn't get lock file %d\n", getpid());
exit(1);
}
snprintf(str, sizeof(str), "%d\n", getpid());
ret = write(pid_file_handle, str, strlen(str));
if (ret == -1)
exit(EXIT_FAILURE);
close(i);
}
int isst_daemon(int debug_mode, int poll_interval, int no_daemon)
{
int ret;
if (!no_daemon && poll_interval < 0 && !debug_mode) {
fprintf(stderr, "OOB mode is enabled and will run as daemon\n");
daemonize((char *) "/tmp/",
(char *)"/tmp/hfi-events.pid");
} else {
signal(SIGINT, signal_handler);
}
init_levels();
if (poll_interval < 0) {
ret = hfi_main();
if (ret) {
fprintf(stderr, "HFI initialization failed\n");
}
fprintf(stderr, "Must specify poll-interval\n");
return ret;
}
debug_printf("Starting loop\n");
while (!done) {
sleep(poll_interval);
poll_for_config_change();
}
return 0;
}

View File

@ -76,6 +76,9 @@
#define DISP_FREQ_MULTIPLIER 100
#define MAX_PACKAGE_COUNT 8
#define MAX_DIE_PER_PACKAGE 2
struct isst_clos_config {
int pkg_id;
int die_id;
@ -260,4 +263,14 @@ extern int is_skx_based_platform(void);
extern int is_spr_platform(void);
extern int is_icx_platform(void);
extern void isst_trl_display_information(int cpu, FILE *outf, unsigned long long trl);
extern void set_cpu_online_offline(int cpu, int state);
extern void for_each_online_package_in_set(void (*callback)(int, void *, void *,
void *, void *),
void *arg1, void *arg2, void *arg3,
void *arg4);
extern int isst_daemon(int debug_mode, int poll_interval, int no_daemon);
extern void process_level_change(int cpu);
extern int hfi_main(void);
extern void hfi_exit(void);
#endif