KVM: selftests: aarch64: Add aarch64/page_fault_test

Add a new test for stage 2 faults when using different combinations of
guest accesses (e.g., write, S1PTW), backing source type (e.g., anon)
and types of faults (e.g., read on hugetlbfs with a hole). The next
commits will add different handling methods and more faults (e.g., uffd
and dirty logging). This first commit starts by adding two sanity checks
for all types of accesses: AF setting by the hw, and accessing memslots
with holes.

Signed-off-by: Ricardo Koller <ricarkol@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221017195834.2295901-11-ricarkol@google.com
This commit is contained in:
Ricardo Koller 2022-10-17 19:58:30 +00:00 committed by Marc Zyngier
parent 1446e33143
commit 35c5810157
4 changed files with 604 additions and 0 deletions

View file

@ -4,6 +4,7 @@
/aarch64/debug-exceptions
/aarch64/get-reg-list
/aarch64/hypercalls
/aarch64/page_fault_test
/aarch64/psci_test
/aarch64/vcpu_width_config
/aarch64/vgic_init

View file

@ -153,6 +153,7 @@ TEST_GEN_PROGS_aarch64 += aarch64/arch_timer
TEST_GEN_PROGS_aarch64 += aarch64/debug-exceptions
TEST_GEN_PROGS_aarch64 += aarch64/get-reg-list
TEST_GEN_PROGS_aarch64 += aarch64/hypercalls
TEST_GEN_PROGS_aarch64 += aarch64/page_fault_test
TEST_GEN_PROGS_aarch64 += aarch64/psci_test
TEST_GEN_PROGS_aarch64 += aarch64/vcpu_width_config
TEST_GEN_PROGS_aarch64 += aarch64/vgic_init

View file

@ -0,0 +1,594 @@
// SPDX-License-Identifier: GPL-2.0
/*
* page_fault_test.c - Test stage 2 faults.
*
* This test tries different combinations of guest accesses (e.g., write,
* S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
* hugetlbfs with a hole). It checks that the expected handling method is
* called (e.g., uffd faults with the right address and write/read flag).
*/
#define _GNU_SOURCE
#include <linux/bitmap.h>
#include <fcntl.h>
#include <test_util.h>
#include <kvm_util.h>
#include <processor.h>
#include <asm/sysreg.h>
#include <linux/bitfield.h>
#include "guest_modes.h"
#include "userfaultfd_util.h"
/* Guest virtual addresses that point to the test page and its PTE. */
#define TEST_GVA 0xc0000000
#define TEST_EXEC_GVA (TEST_GVA + 0x8)
#define TEST_PTE_GVA 0xb0000000
#define TEST_DATA 0x0123456789ABCDEF
static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;
#define CMD_NONE (0)
#define CMD_SKIP_TEST (1ULL << 1)
#define CMD_HOLE_PT (1ULL << 2)
#define CMD_HOLE_DATA (1ULL << 3)
#define PREPARE_FN_NR 10
#define CHECK_FN_NR 10
struct test_desc {
const char *name;
uint64_t mem_mark_cmd;
/* Skip the test if any prepare function returns false */
bool (*guest_prepare[PREPARE_FN_NR])(void);
void (*guest_test)(void);
void (*guest_test_check[CHECK_FN_NR])(void);
void (*dabt_handler)(struct ex_regs *regs);
void (*iabt_handler)(struct ex_regs *regs);
uint32_t pt_memslot_flags;
uint32_t data_memslot_flags;
bool skip;
};
struct test_params {
enum vm_mem_backing_src_type src_type;
struct test_desc *test_desc;
};
static inline void flush_tlb_page(uint64_t vaddr)
{
uint64_t page = vaddr >> 12;
dsb(ishst);
asm volatile("tlbi vaae1is, %0" :: "r" (page));
dsb(ish);
isb();
}
static void guest_write64(void)
{
uint64_t val;
WRITE_ONCE(*guest_test_memory, TEST_DATA);
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, TEST_DATA);
}
/* Check the system for atomic instructions. */
static bool guest_check_lse(void)
{
uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
uint64_t atomic;
atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_ATOMICS), isar0);
return atomic >= 2;
}
static bool guest_check_dc_zva(void)
{
uint64_t dczid = read_sysreg(dczid_el0);
uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_DZP), dczid);
return dzp == 0;
}
/* Compare and swap instruction. */
static void guest_cas(void)
{
uint64_t val;
GUEST_ASSERT(guest_check_lse());
asm volatile(".arch_extension lse\n"
"casal %0, %1, [%2]\n"
:: "r" (0), "r" (TEST_DATA), "r" (guest_test_memory));
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, TEST_DATA);
}
static void guest_read64(void)
{
uint64_t val;
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, 0);
}
/* Address translation instruction */
static void guest_at(void)
{
uint64_t par;
asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
par = read_sysreg(par_el1);
isb();
/* Bit 1 indicates whether the AT was successful */
GUEST_ASSERT_EQ(par & 1, 0);
}
/*
* The size of the block written by "dc zva" is guaranteed to be between (2 <<
* 0) and (2 << 9), which is safe in our case as we need the write to happen
* for at least a word, and not more than a page.
*/
static void guest_dc_zva(void)
{
uint16_t val;
asm volatile("dc zva, %0" :: "r" (guest_test_memory));
dsb(ish);
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, 0);
}
/*
* Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
* And that's special because KVM must take special care with those: they
* should still count as accesses for dirty logging or user-faulting, but
* should be handled differently on mmio.
*/
static void guest_ld_preidx(void)
{
uint64_t val;
uint64_t addr = TEST_GVA - 8;
/*
* This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
* in a gap between memslots not backing by anything.
*/
asm volatile("ldr %0, [%1, #8]!"
: "=r" (val), "+r" (addr));
GUEST_ASSERT_EQ(val, 0);
GUEST_ASSERT_EQ(addr, TEST_GVA);
}
static void guest_st_preidx(void)
{
uint64_t val = TEST_DATA;
uint64_t addr = TEST_GVA - 8;
asm volatile("str %0, [%1, #8]!"
: "+r" (val), "+r" (addr));
GUEST_ASSERT_EQ(addr, TEST_GVA);
val = READ_ONCE(*guest_test_memory);
}
static bool guest_set_ha(void)
{
uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
uint64_t hadbs, tcr;
/* Skip if HA is not supported. */
hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_HADBS), mmfr1);
if (hadbs == 0)
return false;
tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
write_sysreg(tcr, tcr_el1);
isb();
return true;
}
static bool guest_clear_pte_af(void)
{
*((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
flush_tlb_page(TEST_GVA);
return true;
}
static void guest_check_pte_af(void)
{
dsb(ish);
GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
}
static void guest_exec(void)
{
int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
int ret;
ret = code();
GUEST_ASSERT_EQ(ret, 0x77);
}
static bool guest_prepare(struct test_desc *test)
{
bool (*prepare_fn)(void);
int i;
for (i = 0; i < PREPARE_FN_NR; i++) {
prepare_fn = test->guest_prepare[i];
if (prepare_fn && !prepare_fn())
return false;
}
return true;
}
static void guest_test_check(struct test_desc *test)
{
void (*check_fn)(void);
int i;
for (i = 0; i < CHECK_FN_NR; i++) {
check_fn = test->guest_test_check[i];
if (check_fn)
check_fn();
}
}
static void guest_code(struct test_desc *test)
{
if (!guest_prepare(test))
GUEST_SYNC(CMD_SKIP_TEST);
GUEST_SYNC(test->mem_mark_cmd);
if (test->guest_test)
test->guest_test();
guest_test_check(test);
GUEST_DONE();
}
static void no_dabt_handler(struct ex_regs *regs)
{
GUEST_ASSERT_1(false, read_sysreg(far_el1));
}
static void no_iabt_handler(struct ex_regs *regs)
{
GUEST_ASSERT_1(false, regs->pc);
}
/* Returns true to continue the test, and false if it should be skipped. */
static bool punch_hole_in_backing_store(struct kvm_vm *vm,
struct userspace_mem_region *region)
{
void *hva = (void *)region->region.userspace_addr;
uint64_t paging_size = region->region.memory_size;
int ret, fd = region->fd;
if (fd != -1) {
ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
0, paging_size);
TEST_ASSERT(ret == 0, "fallocate failed\n");
} else {
ret = madvise(hva, paging_size, MADV_DONTNEED);
TEST_ASSERT(ret == 0, "madvise failed\n");
}
return true;
}
/* Returns true to continue the test, and false if it should be skipped. */
static bool handle_cmd(struct kvm_vm *vm, int cmd)
{
struct userspace_mem_region *data_region, *pt_region;
bool continue_test = true;
data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
if (cmd == CMD_SKIP_TEST)
continue_test = false;
if (cmd & CMD_HOLE_PT)
continue_test = punch_hole_in_backing_store(vm, pt_region);
if (cmd & CMD_HOLE_DATA)
continue_test = punch_hole_in_backing_store(vm, data_region);
return continue_test;
}
typedef uint32_t aarch64_insn_t;
extern aarch64_insn_t __exec_test[2];
noinline void __return_0x77(void)
{
asm volatile("__exec_test: mov x0, #0x77\n"
"ret\n");
}
/*
* Note that this function runs on the host before the test VM starts: there's
* no need to sync the D$ and I$ caches.
*/
static void load_exec_code_for_test(struct kvm_vm *vm)
{
uint64_t *code;
struct userspace_mem_region *region;
void *hva;
region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
hva = (void *)region->region.userspace_addr;
assert(TEST_EXEC_GVA > TEST_GVA);
code = hva + TEST_EXEC_GVA - TEST_GVA;
memcpy(code, __exec_test, sizeof(__exec_test));
}
static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
struct test_desc *test)
{
vm_init_descriptor_tables(vm);
vcpu_init_descriptor_tables(vcpu);
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
ESR_EC_DABT, no_dabt_handler);
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
ESR_EC_IABT, no_iabt_handler);
}
static void setup_gva_maps(struct kvm_vm *vm)
{
struct userspace_mem_region *region;
uint64_t pte_gpa;
region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
/* Map TEST_GVA first. This will install a new PTE. */
virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
/* Then map TEST_PTE_GVA to the above PTE. */
pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
}
enum pf_test_memslots {
CODE_AND_DATA_MEMSLOT,
PAGE_TABLE_MEMSLOT,
TEST_DATA_MEMSLOT,
};
/*
* Create a memslot for code and data at pfn=0, and test-data and PT ones
* at max_gfn.
*/
static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
{
uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
uint64_t guest_page_size = vm->page_size;
uint64_t max_gfn = vm_compute_max_gfn(vm);
/* Enough for 2M of code when using 4K guest pages. */
uint64_t code_npages = 512;
uint64_t pt_size, data_size, data_gpa;
/*
* This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
* VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs. That's 13
* pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
* twice that just in case.
*/
pt_size = 26 * guest_page_size;
/* memslot sizes and gpa's must be aligned to the backing page size */
pt_size = align_up(pt_size, backing_src_pagesz);
data_size = align_up(guest_page_size, backing_src_pagesz);
data_gpa = (max_gfn * guest_page_size) - data_size;
data_gpa = align_down(data_gpa, backing_src_pagesz);
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
CODE_AND_DATA_MEMSLOT, code_npages, 0);
vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;
vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
p->test_desc->pt_memslot_flags);
vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;
vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
data_size / guest_page_size,
p->test_desc->data_memslot_flags);
vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
}
static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
{
struct test_desc *test = p->test_desc;
pr_debug("Test: %s\n", test->name);
pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
pr_debug("Testing memory backing src type: %s\n",
vm_mem_backing_src_alias(p->src_type)->name);
}
/*
* This function either succeeds, skips the test (after setting test->skip), or
* fails with a TEST_FAIL that aborts all tests.
*/
static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
struct test_desc *test)
{
struct ucall uc;
for (;;) {
vcpu_run(vcpu);
switch (get_ucall(vcpu, &uc)) {
case UCALL_SYNC:
if (!handle_cmd(vm, uc.args[1])) {
test->skip = true;
goto done;
}
break;
case UCALL_ABORT:
REPORT_GUEST_ASSERT_2(uc, "values: %#lx, %#lx");
break;
case UCALL_DONE:
goto done;
default:
TEST_FAIL("Unknown ucall %lu", uc.cmd);
}
}
done:
pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
}
static void run_test(enum vm_guest_mode mode, void *arg)
{
struct test_params *p = (struct test_params *)arg;
struct test_desc *test = p->test_desc;
struct kvm_vm *vm;
struct kvm_vcpu *vcpu;
print_test_banner(mode, p);
vm = ____vm_create(mode);
setup_memslots(vm, p);
kvm_vm_elf_load(vm, program_invocation_name);
vcpu = vm_vcpu_add(vm, 0, guest_code);
setup_gva_maps(vm);
ucall_init(vm, NULL);
load_exec_code_for_test(vm);
setup_abort_handlers(vm, vcpu, test);
vcpu_args_set(vcpu, 1, test);
vcpu_run_loop(vm, vcpu, test);
ucall_uninit(vm);
kvm_vm_free(vm);
}
static void help(char *name)
{
puts("");
printf("usage: %s [-h] [-s mem-type]\n", name);
puts("");
guest_modes_help();
backing_src_help("-s");
puts("");
}
#define SNAME(s) #s
#define SCAT2(a, b) SNAME(a ## _ ## b)
#define SCAT3(a, b, c) SCAT2(a, SCAT2(b, c))
#define _CHECK(_test) _CHECK_##_test
#define _PREPARE(_test) _PREPARE_##_test
#define _PREPARE_guest_read64 NULL
#define _PREPARE_guest_ld_preidx NULL
#define _PREPARE_guest_write64 NULL
#define _PREPARE_guest_st_preidx NULL
#define _PREPARE_guest_exec NULL
#define _PREPARE_guest_at NULL
#define _PREPARE_guest_dc_zva guest_check_dc_zva
#define _PREPARE_guest_cas guest_check_lse
/* With or without access flag checks */
#define _PREPARE_with_af guest_set_ha, guest_clear_pte_af
#define _PREPARE_no_af NULL
#define _CHECK_with_af guest_check_pte_af
#define _CHECK_no_af NULL
/* Performs an access and checks that no faults were triggered. */
#define TEST_ACCESS(_access, _with_af, _mark_cmd) \
{ \
.name = SCAT3(_access, _with_af, #_mark_cmd), \
.guest_prepare = { _PREPARE(_with_af), \
_PREPARE(_access) }, \
.mem_mark_cmd = _mark_cmd, \
.guest_test = _access, \
.guest_test_check = { _CHECK(_with_af) }, \
}
static struct test_desc tests[] = {
/* Check that HW is setting the Access Flag (AF) (sanity checks). */
TEST_ACCESS(guest_read64, with_af, CMD_NONE),
TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
TEST_ACCESS(guest_cas, with_af, CMD_NONE),
TEST_ACCESS(guest_write64, with_af, CMD_NONE),
TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
TEST_ACCESS(guest_exec, with_af, CMD_NONE),
/*
* Punch a hole in the data backing store, and then try multiple
* accesses: reads should rturn zeroes, and writes should
* re-populate the page. Moreover, the test also check that no
* exception was generated in the guest. Note that this
* reading/writing behavior is the same as reading/writing a
* punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
* userspace.
*/
TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),
{ 0 }
};
static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
{
struct test_desc *t;
for (t = &tests[0]; t->name; t++) {
if (t->skip)
continue;
struct test_params p = {
.src_type = src_type,
.test_desc = t,
};
for_each_guest_mode(run_test, &p);
}
}
int main(int argc, char *argv[])
{
enum vm_mem_backing_src_type src_type;
int opt;
setbuf(stdout, NULL);
src_type = DEFAULT_VM_MEM_SRC;
while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
switch (opt) {
case 'm':
guest_modes_cmdline(optarg);
break;
case 's':
src_type = parse_backing_src_type(optarg);
break;
case 'h':
default:
help(argv[0]);
exit(0);
}
}
for_each_test_and_guest_mode(src_type);
return 0;
}

View file

@ -105,11 +105,19 @@ enum {
#define ESR_EC_MASK (ESR_EC_NUM - 1)
#define ESR_EC_SVC64 0x15
#define ESR_EC_IABT 0x21
#define ESR_EC_DABT 0x25
#define ESR_EC_HW_BP_CURRENT 0x31
#define ESR_EC_SSTEP_CURRENT 0x33
#define ESR_EC_WP_CURRENT 0x35
#define ESR_EC_BRK_INS 0x3c
/* Access flag */
#define PTE_AF (1ULL << 10)
/* Access flag update enable/disable */
#define TCR_EL1_HA (1ULL << 39)
void aarch64_get_supported_page_sizes(uint32_t ipa,
bool *ps4k, bool *ps16k, bool *ps64k);