tile pci: enable IOMMU to support DMA for legacy devices

This change uses the TRIO IOMMU to map the PCI DMA space and physical
memory at different addresses.  We also now use the dma_mapping_ops
to provide support for non-PCI DMA, PCIe DMA (64-bit) and legacy PCI
DMA (32-bit).  We use the kernel's software I/O TLB framework
(i.e. bounce buffers) for the legacy 32-bit PCI device support since
there are a limited number of TLB entries in the IOMMU and it is
non-trivial to handle indexing, searching, matching, etc.  For 32-bit
devices the performance impact of bounce buffers should not be a concern.

Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
This commit is contained in:
Chris Metcalf 2012-06-15 15:23:06 -04:00
parent eef015c8aa
commit 41bb38fc53
8 changed files with 592 additions and 207 deletions

View file

@ -3,6 +3,8 @@
config TILE
def_bool y
select HAVE_DMA_ATTRS
select HAVE_DMA_API_DEBUG
select HAVE_KVM if !TILEGX
select GENERIC_FIND_FIRST_BIT
select USE_GENERIC_SMP_HELPERS
@ -79,6 +81,9 @@ config ARCH_DMA_ADDR_T_64BIT
config NEED_DMA_MAP_STATE
def_bool y
config ARCH_HAS_DMA_SET_COHERENT_MASK
bool
config LOCKDEP_SUPPORT
def_bool y
@ -215,6 +220,19 @@ config HIGHMEM
config ZONE_DMA
def_bool y
config IOMMU_HELPER
bool
config NEED_SG_DMA_LENGTH
bool
config SWIOTLB
bool
default TILEGX
select IOMMU_HELPER
select NEED_SG_DMA_LENGTH
select ARCH_HAS_DMA_SET_COHERENT_MASK
# We do not currently support disabling NUMA.
config NUMA
bool # "NUMA Memory Allocation and Scheduler Support"

View file

@ -9,7 +9,6 @@ header-y += hardwall.h
generic-y += bug.h
generic-y += bugs.h
generic-y += cputime.h
generic-y += device.h
generic-y += div64.h
generic-y += emergency-restart.h
generic-y += errno.h

View file

@ -0,0 +1,33 @@
/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
* Arch specific extensions to struct device
*/
#ifndef _ASM_TILE_DEVICE_H
#define _ASM_TILE_DEVICE_H
struct dev_archdata {
/* DMA operations on that device */
struct dma_map_ops *dma_ops;
/* Offset of the DMA address from the PA. */
dma_addr_t dma_offset;
/* Highest DMA address that can be generated by this device. */
dma_addr_t max_direct_dma_addr;
};
struct pdev_archdata {
};
#endif /* _ASM_TILE_DEVICE_H */

View file

@ -20,69 +20,80 @@
#include <linux/cache.h>
#include <linux/io.h>
/*
* Note that on x86 and powerpc, there is a "struct dma_mapping_ops"
* that is used for all the DMA operations. For now, we don't have an
* equivalent on tile, because we only have a single way of doing DMA.
* (Tilera bug 7994 to use dma_mapping_ops.)
*/
extern struct dma_map_ops *tile_dma_map_ops;
extern struct dma_map_ops *gx_pci_dma_map_ops;
extern struct dma_map_ops *gx_legacy_pci_dma_map_ops;
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
static inline struct dma_map_ops *get_dma_ops(struct device *dev)
{
if (dev && dev->archdata.dma_ops)
return dev->archdata.dma_ops;
else
return tile_dma_map_ops;
}
extern dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction);
extern void dma_unmap_single(struct device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction);
extern int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction);
extern void dma_unmap_sg(struct device *dev, struct scatterlist *sg,
int nhwentries, enum dma_data_direction);
extern dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction);
extern void dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size, enum dma_data_direction);
extern void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction);
extern void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction);
static inline dma_addr_t get_dma_offset(struct device *dev)
{
return dev->archdata.dma_offset;
}
static inline void set_dma_offset(struct device *dev, dma_addr_t off)
{
dev->archdata.dma_offset = off;
}
void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
{
return paddr + get_dma_offset(dev);
}
void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle);
static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr)
{
return daddr - get_dma_offset(dev);
}
extern void dma_sync_single_for_cpu(struct device *, dma_addr_t, size_t,
enum dma_data_direction);
extern void dma_sync_single_for_device(struct device *, dma_addr_t,
size_t, enum dma_data_direction);
extern void dma_sync_single_range_for_cpu(struct device *, dma_addr_t,
unsigned long offset, size_t,
enum dma_data_direction);
extern void dma_sync_single_range_for_device(struct device *, dma_addr_t,
unsigned long offset, size_t,
enum dma_data_direction);
extern void dma_cache_sync(struct device *dev, void *vaddr, size_t,
enum dma_data_direction);
static inline void dma_mark_clean(void *addr, size_t size) {}
#include <asm-generic/dma-mapping-common.h>
static inline void set_dma_ops(struct device *dev, struct dma_map_ops *ops)
{
dev->archdata.dma_ops = ops;
}
static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size)
{
if (!dev->dma_mask)
return 0;
return addr + size - 1 <= *dev->dma_mask;
}
static inline int
dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return 0;
return get_dma_ops(dev)->mapping_error(dev, dma_addr);
}
static inline int
dma_supported(struct device *dev, u64 mask)
{
return 1;
return get_dma_ops(dev)->dma_supported(dev, mask);
}
static inline int
dma_set_mask(struct device *dev, u64 mask)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
/* Handle legacy PCI devices with limited memory addressability. */
if ((dma_ops == gx_pci_dma_map_ops) && (mask <= DMA_BIT_MASK(32))) {
set_dma_ops(dev, gx_legacy_pci_dma_map_ops);
set_dma_offset(dev, 0);
if (mask > dev->archdata.max_direct_dma_addr)
mask = dev->archdata.max_direct_dma_addr;
}
if (!dev->dma_mask || !dma_supported(dev, mask))
return -EIO;
@ -91,4 +102,43 @@ dma_set_mask(struct device *dev, u64 mask)
return 0;
}
static inline void *dma_alloc_attrs(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag,
struct dma_attrs *attrs)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
void *cpu_addr;
cpu_addr = dma_ops->alloc(dev, size, dma_handle, flag, attrs);
debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
return cpu_addr;
}
static inline void dma_free_attrs(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
dma_ops->free(dev, size, cpu_addr, dma_handle, attrs);
}
#define dma_alloc_coherent(d, s, h, f) dma_alloc_attrs(d, s, h, f, NULL)
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_attrs(d, s, h, f, NULL)
#define dma_free_coherent(d, s, v, h) dma_free_attrs(d, s, v, h, NULL)
#define dma_free_noncoherent(d, s, v, h) dma_free_attrs(d, s, v, h, NULL)
/*
* dma_alloc_noncoherent() is #defined to return coherent memory,
* so there's no need to do any flushing here.
*/
static inline void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction)
{
}
#endif /* _ASM_TILE_DMA_MAPPING_H */

View file

@ -15,6 +15,7 @@
#ifndef _ASM_TILE_PCI_H
#define _ASM_TILE_PCI_H
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/numa.h>
#include <asm-generic/pci_iomap.h>
@ -53,6 +54,16 @@ static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
#define TILE_NUM_PCIE 2
/*
* The hypervisor maps the entirety of CPA-space as bus addresses, so
* bus addresses are physical addresses. The networking and block
* device layers use this boolean for bounce buffer decisions.
*/
#define PCI_DMA_BUS_IS_PHYS 1
/* generic pci stuff */
#include <asm-generic/pci.h>
#else
#include <asm/page.h>
@ -87,6 +98,46 @@ static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
*/
#define MEM_MAP_INTR_REGION_SIZE (1 << TRIO_MAP_MEM_LIM__ADDR_SHIFT)
/*
* Allocate the PCI BAR window right below 4GB.
*/
#define TILE_PCI_BAR_WINDOW_TOP (1ULL << 32)
/*
* Allocate 1GB for the PCI BAR window.
*/
#define TILE_PCI_BAR_WINDOW_SIZE (1 << 30)
/*
* This is the highest bus address targeting the host memory that
* can be generated by legacy PCI devices with 32-bit or less
* DMA capability, dictated by the BAR window size and location.
*/
#define TILE_PCI_MAX_DIRECT_DMA_ADDRESS \
(TILE_PCI_BAR_WINDOW_TOP - TILE_PCI_BAR_WINDOW_SIZE - 1)
/*
* We shift the PCI bus range for all the physical memory up by the whole PA
* range. The corresponding CPA of an incoming PCI request will be the PCI
* address minus TILE_PCI_MEM_MAP_BASE_OFFSET. This also implies
* that the 64-bit capable devices will be given DMA addresses as
* the CPA plus TILE_PCI_MEM_MAP_BASE_OFFSET. To support 32-bit
* devices, we create a separate map region that handles the low
* 4GB.
*/
#define TILE_PCI_MEM_MAP_BASE_OFFSET (1ULL << CHIP_PA_WIDTH())
/*
* End of the PCI memory resource.
*/
#define TILE_PCI_MEM_END \
((1ULL << CHIP_PA_WIDTH()) + TILE_PCI_BAR_WINDOW_TOP)
/*
* Start of the PCI memory resource.
*/
#define TILE_PCI_MEM_START (TILE_PCI_MEM_END - TILE_PCI_BAR_WINDOW_SIZE)
/*
* Structure of a PCI controller (host bridge) on Gx.
*/
@ -108,6 +159,8 @@ struct pci_controller {
int index; /* PCI domain number */
struct pci_bus *root_bus;
uint64_t mem_offset; /* cpu->bus memory mapping offset. */
int last_busno;
struct pci_ops *ops;
@ -126,14 +179,22 @@ extern gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
extern void pci_iounmap(struct pci_dev *dev, void __iomem *);
#endif /* __tilegx__ */
extern void
pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region,
struct resource *res);
extern void
pcibios_bus_to_resource(struct pci_dev *dev, struct resource *res,
struct pci_bus_region *region);
/*
* The hypervisor maps the entirety of CPA-space as bus addresses, so
* bus addresses are physical addresses. The networking and block
* device layers use this boolean for bounce buffer decisions.
* The PCI address space does not equal the physical memory address
* space (we have an IOMMU). The IDE and SCSI device layers use this
* boolean for bounce buffer decisions.
*/
#define PCI_DMA_BUS_IS_PHYS 1
#define PCI_DMA_BUS_IS_PHYS 0
#endif /* __tilegx__ */
int __init tile_pci_init(void);
int __init pcibios_init(void);
@ -169,7 +230,4 @@ static inline int pcibios_assign_all_busses(void)
/* implement the pci_ DMA API in terms of the generic device dma_ one */
#include <asm-generic/pci-dma-compat.h>
/* generic pci stuff */
#include <asm-generic/pci.h>
#endif /* _ASM_TILE_PCI_H */

View file

@ -14,6 +14,7 @@
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/swiotlb.h>
#include <linux/vmalloc.h>
#include <linux/export.h>
#include <asm/tlbflush.h>
@ -31,10 +32,9 @@
#define PAGE_HOME_DMA PAGE_HOME_HASH
#endif
void *dma_alloc_coherent(struct device *dev,
size_t size,
dma_addr_t *dma_handle,
gfp_t gfp)
static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
struct dma_attrs *attrs)
{
u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
int node = dev_to_node(dev);
@ -68,19 +68,19 @@ void *dma_alloc_coherent(struct device *dev,
}
*dma_handle = addr;
return page_address(pg);
}
EXPORT_SYMBOL(dma_alloc_coherent);
/*
* Free memory that was allocated with dma_alloc_coherent.
* Free memory that was allocated with tile_dma_alloc_coherent.
*/
void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
static void tile_dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
homecache_free_pages((unsigned long)vaddr, get_order(size));
}
EXPORT_SYMBOL(dma_free_coherent);
/*
* The map routines "map" the specified address range for DMA
@ -199,38 +199,9 @@ static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
}
}
/*
* dma_map_single can be passed any memory address, and there appear
* to be no alignment constraints.
*
* There is a chance that the start of the buffer will share a cache
* line with some other data that has been touched in the meantime.
*/
dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction direction)
{
dma_addr_t dma_addr = __pa(ptr);
BUG_ON(!valid_dma_direction(direction));
WARN_ON(size == 0);
__dma_prep_pa_range(dma_addr, size, direction);
return dma_addr;
}
EXPORT_SYMBOL(dma_map_single);
void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
__dma_complete_pa_range(dma_addr, size, direction);
}
EXPORT_SYMBOL(dma_unmap_single);
int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
enum dma_data_direction direction)
static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
@ -242,14 +213,17 @@ int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_prep_pa_range(sg->dma_address, sg->length, direction);
#ifdef CONFIG_NEED_SG_DMA_LENGTH
sg->dma_length = sg->length;
#endif
}
return nents;
}
EXPORT_SYMBOL(dma_map_sg);
void dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
enum dma_data_direction direction)
static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
@ -261,46 +235,50 @@ void dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
direction);
}
}
EXPORT_SYMBOL(dma_unmap_sg);
dma_addr_t dma_map_page(struct device *dev, struct page *page,
static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction)
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
BUG_ON(offset + size > PAGE_SIZE);
__dma_prep_page(page, offset, size, direction);
return page_to_pa(page) + offset;
}
EXPORT_SYMBOL(dma_map_page);
void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
enum dma_data_direction direction)
static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
dma_address & PAGE_OFFSET, size, direction);
}
EXPORT_SYMBOL(dma_unmap_page);
void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction direction)
static void tile_dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
__dma_complete_pa_range(dma_handle, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_for_cpu);
void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction direction)
static void tile_dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
{
__dma_prep_pa_range(dma_handle, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_for_device);
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
static void tile_dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
@ -313,10 +291,10 @@ void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
sg_dma_len(sg), direction);
}
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
static void tile_dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
@ -329,31 +307,280 @@ void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
sg_dma_len(sg), direction);
}
}
EXPORT_SYMBOL(dma_sync_sg_for_device);
void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
static inline int
tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
return 0;
}
EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
void dma_sync_single_range_for_device(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
static inline int
tile_dma_supported(struct device *dev, u64 mask)
{
dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
return 1;
}
static struct dma_map_ops tile_default_dma_map_ops = {
.alloc = tile_dma_alloc_coherent,
.free = tile_dma_free_coherent,
.map_page = tile_dma_map_page,
.unmap_page = tile_dma_unmap_page,
.map_sg = tile_dma_map_sg,
.unmap_sg = tile_dma_unmap_sg,
.sync_single_for_cpu = tile_dma_sync_single_for_cpu,
.sync_single_for_device = tile_dma_sync_single_for_device,
.sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
.sync_sg_for_device = tile_dma_sync_sg_for_device,
.mapping_error = tile_dma_mapping_error,
.dma_supported = tile_dma_supported
};
struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
EXPORT_SYMBOL(tile_dma_map_ops);
/* Generic PCI DMA mapping functions */
static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
struct dma_attrs *attrs)
{
int node = dev_to_node(dev);
int order = get_order(size);
struct page *pg;
dma_addr_t addr;
gfp |= __GFP_ZERO;
pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
if (pg == NULL)
return NULL;
addr = page_to_phys(pg);
*dma_handle = phys_to_dma(dev, addr);
return page_address(pg);
}
EXPORT_SYMBOL(dma_sync_single_range_for_device);
/*
* dma_alloc_noncoherent() is #defined to return coherent memory,
* so there's no need to do any flushing here.
* Free memory that was allocated with tile_pci_dma_alloc_coherent.
*/
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
homecache_free_pages((unsigned long)vaddr, get_order(size));
}
static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nents == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_prep_pa_range(sg->dma_address, sg->length, direction);
sg->dma_address = phys_to_dma(dev, sg->dma_address);
#ifdef CONFIG_NEED_SG_DMA_LENGTH
sg->dma_length = sg->length;
#endif
}
return nents;
}
static void tile_pci_dma_unmap_sg(struct device *dev,
struct scatterlist *sglist, int nents,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_complete_pa_range(sg->dma_address, sg->length,
direction);
}
}
static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
BUG_ON(offset + size > PAGE_SIZE);
__dma_prep_page(page, offset, size, direction);
return phys_to_dma(dev, page_to_pa(page) + offset);
}
static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
dma_address = dma_to_phys(dev, dma_address);
__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
dma_address & PAGE_OFFSET, size, direction);
}
static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
dma_handle = dma_to_phys(dev, dma_handle);
__dma_complete_pa_range(dma_handle, size, direction);
}
EXPORT_SYMBOL(dma_cache_sync);
static void tile_pci_dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction
direction)
{
dma_handle = dma_to_phys(dev, dma_handle);
__dma_prep_pa_range(dma_handle, size, direction);
}
static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sglist,
int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_cpu(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
static void tile_pci_dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sglist,
int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_device(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
static inline int
tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return 0;
}
static inline int
tile_pci_dma_supported(struct device *dev, u64 mask)
{
return 1;
}
static struct dma_map_ops tile_pci_default_dma_map_ops = {
.alloc = tile_pci_dma_alloc_coherent,
.free = tile_pci_dma_free_coherent,
.map_page = tile_pci_dma_map_page,
.unmap_page = tile_pci_dma_unmap_page,
.map_sg = tile_pci_dma_map_sg,
.unmap_sg = tile_pci_dma_unmap_sg,
.sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
.sync_single_for_device = tile_pci_dma_sync_single_for_device,
.sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
.sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
.mapping_error = tile_pci_dma_mapping_error,
.dma_supported = tile_pci_dma_supported
};
struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
EXPORT_SYMBOL(gx_pci_dma_map_ops);
/* PCI DMA mapping functions for legacy PCI devices */
#ifdef CONFIG_SWIOTLB
static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
struct dma_attrs *attrs)
{
gfp |= GFP_DMA;
return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
}
static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_addr,
struct dma_attrs *attrs)
{
swiotlb_free_coherent(dev, size, vaddr, dma_addr);
}
static struct dma_map_ops pci_swiotlb_dma_ops = {
.alloc = tile_swiotlb_alloc_coherent,
.free = tile_swiotlb_free_coherent,
.map_page = swiotlb_map_page,
.unmap_page = swiotlb_unmap_page,
.map_sg = swiotlb_map_sg_attrs,
.unmap_sg = swiotlb_unmap_sg_attrs,
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
.sync_single_for_device = swiotlb_sync_single_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = swiotlb_sync_sg_for_device,
.dma_supported = swiotlb_dma_supported,
.mapping_error = swiotlb_dma_mapping_error,
};
struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
#else
struct dma_map_ops *gx_legacy_pci_dma_map_ops;
#endif
EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
/* Handle legacy PCI devices with limited memory addressability. */
if (((dma_ops == gx_pci_dma_map_ops) ||
(dma_ops == gx_legacy_pci_dma_map_ops)) &&
(mask <= DMA_BIT_MASK(32))) {
if (mask > dev->archdata.max_direct_dma_addr)
mask = dev->archdata.max_direct_dma_addr;
}
if (!dma_supported(dev, mask))
return -EIO;
dev->coherent_dma_mask = mask;
return 0;
}
EXPORT_SYMBOL(dma_set_coherent_mask);
#endif

View file

@ -40,22 +40,8 @@
#include <arch/sim.h>
/*
* Initialization flow and process
* -------------------------------
*
* This files containes the routines to search for PCI buses,
* This file containes the routines to search for PCI buses,
* enumerate the buses, and configure any attached devices.
*
* There are two entry points here:
* 1) tile_pci_init
* This sets up the pci_controller structs, and opens the
* FDs to the hypervisor. This is called from setup_arch() early
* in the boot process.
* 2) pcibios_init
* This probes the PCI bus(es) for any attached hardware. It's
* called by subsys_initcall. All of the real work is done by the
* generic Linux PCI layer.
*
*/
#define DEBUG_PCI_CFG 0
@ -110,6 +96,21 @@ static struct pci_ops tile_cfg_ops;
/* Mask of CPUs that should receive PCIe interrupts. */
static struct cpumask intr_cpus_map;
/* PCI I/O space support is not implemented. */
static struct resource pci_ioport_resource = {
.name = "PCI IO",
.start = 0,
.end = 0,
.flags = IORESOURCE_IO,
};
static struct resource pci_iomem_resource = {
.name = "PCI mem",
.start = TILE_PCI_MEM_START,
.end = TILE_PCI_MEM_END,
.flags = IORESOURCE_MEM,
};
/*
* We don't need to worry about the alignment of resources.
*/
@ -334,8 +335,6 @@ static int __devinit tile_init_irqs(struct pci_controller *controller)
}
/*
* First initialization entry point, called from setup_arch().
*
* Find valid controllers and fill in pci_controller structs for each
* of them.
*
@ -583,10 +582,7 @@ static int __devinit setup_pcie_rc_delay(char *str)
early_param("pcie_rc_delay", setup_pcie_rc_delay);
/*
* Second PCI initialization entry point, called by subsys_initcall.
*
* The controllers have been set up by the time we get here, by a call to
* tile_pci_init.
* PCI initialization entry point, called by subsys_initcall.
*/
int __init pcibios_init(void)
{
@ -594,15 +590,13 @@ int __init pcibios_init(void)
LIST_HEAD(resources);
int i;
tile_pci_init();
if (num_rc_controllers == 0 && num_ep_controllers == 0)
return 0;
pr_info("PCI: Probing PCI hardware\n");
/*
* We loop over all the TRIO shims and set up the MMIO mappings.
* This step can't be done in tile_pci_init because the MM subsystem
* hasn't been initialized then.
*/
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
gxio_trio_context_t *context = &trio_contexts[i];
@ -645,9 +639,7 @@ int __init pcibios_init(void)
unsigned int class_code_revision;
int trio_index;
int mac;
#ifndef USE_SHARED_PCIE_CONFIG_REGION
int ret;
#endif
if (trio_context->fd < 0)
continue;
@ -802,8 +794,6 @@ int __init pcibios_init(void)
pr_err("PCI: PCI CFG PIO alloc failure for mac %d "
"on TRIO %d, give up\n", mac, trio_index);
/* TBD: cleanup ... */
continue;
}
@ -819,8 +809,6 @@ int __init pcibios_init(void)
pr_err("PCI: PCI CFG PIO init failure for mac %d "
"on TRIO %d, give up\n", mac, trio_index);
/* TBD: cleanup ... */
continue;
}
@ -837,8 +825,6 @@ int __init pcibios_init(void)
pr_err("PCI: PIO map failure for mac %d on TRIO %d\n",
mac, trio_index);
/* TBD: cleanup ... */
continue;
}
@ -852,7 +838,14 @@ int __init pcibios_init(void)
continue;
}
pci_add_resource(&resources, &iomem_resource);
/*
* The PCI memory resource is located above the PA space.
* The memory range for the PCI root bus should not overlap
* with the physical RAM
*/
pci_add_resource_offset(&resources, &iomem_resource,
1ULL << CHIP_PA_WIDTH());
bus = pci_scan_root_bus(NULL, 0, controller->ops,
controller, &resources);
controller->root_bus = bus;
@ -922,11 +915,6 @@ int __init pcibios_init(void)
continue;
}
/*
* We always assign 32-bit PCI bus BAR ranges.
*/
BUG_ON(bus_address_hi != 0);
/*
* Alloc a PIO region for PCI memory access for each RC port.
*/
@ -936,8 +924,6 @@ int __init pcibios_init(void)
"give up\n", controller->trio_index,
controller->mac);
/* TBD: cleanup ... */
continue;
}
@ -950,15 +936,13 @@ int __init pcibios_init(void)
ret = gxio_trio_init_pio_region_aux(trio_context,
controller->pio_mem_index,
controller->mac,
bus_address_hi,
0,
0);
if (ret < 0) {
pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, "
"give up\n", controller->trio_index,
controller->mac);
/* TBD: cleanup ... */
continue;
}
@ -980,8 +964,6 @@ int __init pcibios_init(void)
controller->trio_index,
controller->mac, j);
/* TBD: cleanup ... */
goto alloc_mem_map_failed;
}
@ -991,9 +973,13 @@ int __init pcibios_init(void)
* Initialize the Mem-Map and the I/O MMU so that all
* the physical memory can be accessed by the endpoint
* devices. The base bus address is set to the base CPA
* of this memory controller, so is the base VA. The
* of this memory controller plus an offset (see pci.h).
* The region's base VA is set to the base CPA. The
* I/O MMU table essentially translates the CPA to
* the real PA.
* the real PA. Implicitly, for node 0, we create
* a separate Mem-Map region that serves as the inbound
* window for legacy 32-bit devices. This is a direct
* map of the low 4GB CPA space.
*/
ret = gxio_trio_init_memory_map_mmu_aux(trio_context,
controller->mem_maps[j],
@ -1001,7 +987,8 @@ int __init pcibios_init(void)
nr_pages << PAGE_SHIFT,
trio_context->asid,
controller->mac,
start_pfn << PAGE_SHIFT,
(start_pfn << PAGE_SHIFT) +
TILE_PCI_MEM_MAP_BASE_OFFSET,
j,
GXIO_TRIO_ORDER_MODE_UNORDERED);
if (ret < 0) {
@ -1010,11 +997,8 @@ int __init pcibios_init(void)
controller->trio_index,
controller->mac, j);
/* TBD: cleanup ... */
goto alloc_mem_map_failed;
}
continue;
alloc_mem_map_failed:
@ -1028,11 +1012,19 @@ int __init pcibios_init(void)
subsys_initcall(pcibios_init);
/*
* No bus fixups needed.
* PCI scan code calls the arch specific pcibios_fixup_bus() each time it scans
* a new bridge. Called after each bus is probed, but before its children are
* examined.
*/
void __devinit pcibios_fixup_bus(struct pci_bus *bus)
{
/* Nothing needs to be done. */
struct pci_dev *dev = bus->self;
if (!dev) {
/* This is the root bus. */
bus->resource[0] = &pci_ioport_resource;
bus->resource[1] = &pci_iomem_resource;
}
}
/*
@ -1069,6 +1061,17 @@ int pcibios_enable_device(struct pci_dev *dev, int mask)
return pci_enable_resources(dev, mask);
}
/* Called for each device after PCI setup is done. */
static void __init
pcibios_fixup_final(struct pci_dev *pdev)
{
set_dma_ops(&pdev->dev, gx_pci_dma_map_ops);
set_dma_offset(&pdev->dev, TILE_PCI_MEM_MAP_BASE_OFFSET);
pdev->dev.archdata.max_direct_dma_addr =
TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
}
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_final);
/* Map a PCI MMIO bus address into VA space. */
void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
{

View file

@ -23,6 +23,7 @@
#include <linux/irq.h>
#include <linux/kexec.h>
#include <linux/pci.h>
#include <linux/swiotlb.h>
#include <linux/initrd.h>
#include <linux/io.h>
#include <linux/highmem.h>
@ -109,7 +110,7 @@ static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
};
static nodemask_t __initdata isolnodes;
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
enum { DEFAULT_PCI_RESERVE_MB = 64 };
static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
unsigned long __initdata pci_reserve_start_pfn = -1U;
@ -160,7 +161,7 @@ static int __init setup_isolnodes(char *str)
}
early_param("isolnodes", setup_isolnodes);
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
static int __init setup_pci_reserve(char* str)
{
unsigned long mb;
@ -411,7 +412,7 @@ static void __init setup_memory(void)
continue;
}
#endif
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
/*
* Blocks that overlap the pci reserved region must
* have enough space to hold the maximum percpu data
@ -604,11 +605,9 @@ static void __init setup_bootmem_allocator_node(int i)
/* Free all the space back into the allocator. */
free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
#if defined(CONFIG_PCI)
#if defined(CONFIG_PCI) && !defined(__tilegx__)
/*
* Throw away any memory aliased by the PCI region. FIXME: this
* is a temporary hack to work around bug 10502, and needs to be
* fixed properly.
* Throw away any memory aliased by the PCI region.
*/
if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start)
reserve_bootmem(PFN_PHYS(pci_reserve_start_pfn),
@ -1353,8 +1352,7 @@ void __init setup_arch(char **cmdline_p)
setup_cpu_maps();
#ifdef CONFIG_PCI
#if !defined (__tilegx__)
#if defined(CONFIG_PCI) && !defined(__tilegx__)
/*
* Initialize the PCI structures. This is done before memory
* setup so that we know whether or not a pci_reserve region
@ -1362,7 +1360,6 @@ void __init setup_arch(char **cmdline_p)
*/
if (tile_pci_init() == 0)
pci_reserve_mb = 0;
#endif
/* PCI systems reserve a region just below 4GB for mapping iomem. */
pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
@ -1384,6 +1381,10 @@ void __init setup_arch(char **cmdline_p)
* any memory using the bootmem allocator.
*/
#ifdef CONFIG_SWIOTLB
swiotlb_init(0);
#endif
paging_init();
setup_numa_mapping();
zone_sizes_init();
@ -1391,10 +1392,6 @@ void __init setup_arch(char **cmdline_p)
setup_cpu(1);
setup_clock();
load_hv_initrd();
#if defined(CONFIG_PCI) && defined (__tilegx__)
tile_pci_init();
#endif
}
@ -1538,11 +1535,11 @@ static struct resource code_resource = {
};
/*
* We reserve all resources above 4GB so that PCI won't try to put
* On Pro, we reserve all resources above 4GB so that PCI won't try to put
* mappings above 4GB; the standard allows that for some devices but
* the probing code trunates values to 32 bits.
*/
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
static struct resource* __init
insert_non_bus_resource(void)
{
@ -1588,7 +1585,7 @@ static int __init request_standard_resources(void)
enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
iomem_resource.end = -1LL;
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
insert_non_bus_resource();
#endif
@ -1596,7 +1593,7 @@ static int __init request_standard_resources(void)
u64 start_pfn = node_start_pfn[i];
u64 end_pfn = node_end_pfn[i];
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
if (start_pfn <= pci_reserve_start_pfn &&
end_pfn > pci_reserve_start_pfn) {
if (end_pfn > pci_reserve_end_pfn)