EDAC/amd64: Document heterogeneous system enumeration

Document High Bandwidth Memory (HBM) and AMD heterogeneous system
topology and enumeration.

  [ bp: Simplify and de-marketize, unify, massage. ]

Signed-off-by: Muralidhara M K <muralidhara.mk@amd.com>
Co-developed-by: Naveen Krishna Chatradhi <naveenkrishna.chatradhi@amd.com>
Signed-off-by: Naveen Krishna Chatradhi <naveenkrishna.chatradhi@amd.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230515113537.1052146-4-muralimk@amd.com
This commit is contained in:
Muralidhara M K 2023-05-15 11:35:35 +00:00 committed by Borislav Petkov (AMD)
parent c35977b00f
commit 4f3fa571a4
1 changed files with 120 additions and 0 deletions

View File

@ -106,6 +106,16 @@ will occupy those chip-select rows.
This term is avoided because it is unclear when needing to distinguish
between chip-select rows and socket sets.
* High Bandwidth Memory (HBM)
HBM is a new memory type with low power consumption and ultra-wide
communication lanes. It uses vertically stacked memory chips (DRAM dies)
interconnected by microscopic wires called "through-silicon vias," or
TSVs.
Several stacks of HBM chips connect to the CPU or GPU through an ultra-fast
interconnect called the "interposer". Therefore, HBM's characteristics
are nearly indistinguishable from on-chip integrated RAM.
Memory Controllers
------------------
@ -176,3 +186,113 @@ nodes::
the L1 and L2 directories would be "edac_device_block's"
.. kernel-doc:: drivers/edac/edac_device.h
Heterogeneous system support
----------------------------
An AMD heterogeneous system is built by connecting the data fabrics of
both CPUs and GPUs via custom xGMI links. Thus, the data fabric on the
GPU nodes can be accessed the same way as the data fabric on CPU nodes.
The MI200 accelerators are data center GPUs. They have 2 data fabrics,
and each GPU data fabric contains four Unified Memory Controllers (UMC).
Each UMC contains eight channels. Each UMC channel controls one 128-bit
HBM2e (2GB) channel (equivalent to 8 X 2GB ranks). This creates a total
of 4096-bits of DRAM data bus.
While the UMC is interfacing a 16GB (8high X 2GB DRAM) HBM stack, each UMC
channel is interfacing 2GB of DRAM (represented as rank).
Memory controllers on AMD GPU nodes can be represented in EDAC thusly:
GPU DF / GPU Node -> EDAC MC
GPU UMC -> EDAC CSROW
GPU UMC channel -> EDAC CHANNEL
For example: a heterogeneous system with 1 AMD CPU is connected to
4 MI200 (Aldebaran) GPUs using xGMI.
Some more heterogeneous hardware details:
- The CPU UMC (Unified Memory Controller) is mostly the same as the GPU UMC.
They have chip selects (csrows) and channels. However, the layouts are different
for performance, physical layout, or other reasons.
- CPU UMCs use 1 channel, In this case UMC = EDAC channel. This follows the
marketing speak. CPU has X memory channels, etc.
- CPU UMCs use up to 4 chip selects, So UMC chip select = EDAC CSROW.
- GPU UMCs use 1 chip select, So UMC = EDAC CSROW.
- GPU UMCs use 8 channels, So UMC channel = EDAC channel.
The EDAC subsystem provides a mechanism to handle AMD heterogeneous
systems by calling system specific ops for both CPUs and GPUs.
AMD GPU nodes are enumerated in sequential order based on the PCI
hierarchy, and the first GPU node is assumed to have a Node ID value
following those of the CPU nodes after latter are fully populated::
$ ls /sys/devices/system/edac/mc/
mc0 - CPU MC node 0
mc1 |
mc2 |- GPU card[0] => node 0(mc1), node 1(mc2)
mc3 |
mc4 |- GPU card[1] => node 0(mc3), node 1(mc4)
mc5 |
mc6 |- GPU card[2] => node 0(mc5), node 1(mc6)
mc7 |
mc8 |- GPU card[3] => node 0(mc7), node 1(mc8)
For example, a heterogeneous system with one AMD CPU is connected to
four MI200 (Aldebaran) GPUs using xGMI. This topology can be represented
via the following sysfs entries::
/sys/devices/system/edac/mc/..
CPU # CPU node
├── mc 0
GPU Nodes are enumerated sequentially after CPU nodes have been populated
GPU card 1 # Each MI200 GPU has 2 nodes/mcs
├── mc 1 # GPU node 0 == mc1, Each MC node has 4 UMCs/CSROWs
│   ├── csrow 0 # UMC 0
│   │   ├── channel 0 # Each UMC has 8 channels
│   │   ├── channel 1 # size of each channel is 2 GB, so each UMC has 16 GB
│   │   ├── channel 2
│   │   ├── channel 3
│   │   ├── channel 4
│   │   ├── channel 5
│   │   ├── channel 6
│   │   ├── channel 7
│   ├── csrow 1 # UMC 1
│   │   ├── channel 0
│   │   ├── ..
│   │   ├── channel 7
│   ├── .. ..
│   ├── csrow 3 # UMC 3
│   │   ├── channel 0
│   │   ├── ..
│   │   ├── channel 7
│   ├── rank 0
│   ├── .. ..
│   ├── rank 31 # total 32 ranks/dimms from 4 UMCs
├── mc 2 # GPU node 1 == mc2
│   ├── .. # each GPU has total 64 GB
GPU card 2
├── mc 3
│   ├── ..
├── mc 4
│   ├── ..
GPU card 3
├── mc 5
│   ├── ..
├── mc 6
│   ├── ..
GPU card 4
├── mc 7
│   ├── ..
├── mc 8
│   ├── ..