iio: frequency: admfm2000: New driver

Dual microwave down converter module with input RF and LO frequency
ranges from 0.5 to 32 GHz and an output IF frequency range from 0.1 to
8 GHz. It consists of a LNA, mixer, IF filter, DSA, and IF amplifier
for each down conversion path.

Signed-off-by: Kim Seer Paller <kimseer.paller@analog.com>
Link: https://lore.kernel.org/r/20240123081059.5746-2-kimseer.paller@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
This commit is contained in:
Kim Seer Paller 2024-01-23 16:10:59 +08:00 committed by Jonathan Cameron
parent 7b5f651127
commit 5659785a32
4 changed files with 294 additions and 0 deletions

View file

@ -1273,6 +1273,7 @@ L: linux-iio@vger.kernel.org
S: Supported
W: https://ez.analog.com/linux-software-drivers
F: Documentation/devicetree/bindings/iio/frequency/adi,admfm2000.yaml
F: drivers/iio/frequency/admfm2000.c
ANALOG DEVICES INC ADMV1013 DRIVER
M: Antoniu Miclaus <antoniu.miclaus@analog.com>

View file

@ -60,6 +60,16 @@ config ADF4377
To compile this driver as a module, choose M here: the
module will be called adf4377.
config ADMFM2000
tristate "Analog Devices ADMFM2000 Dual Microwave Down Converter"
depends on GPIOLIB
help
Say yes here to build support for Analog Devices ADMFM2000 Dual
Microwave Down Converter.
To compile this driver as a module, choose M here: the
module will be called admfm2000.
config ADMV1013
tristate "Analog Devices ADMV1013 Microwave Upconverter"
depends on SPI && COMMON_CLK

View file

@ -8,6 +8,7 @@ obj-$(CONFIG_AD9523) += ad9523.o
obj-$(CONFIG_ADF4350) += adf4350.o
obj-$(CONFIG_ADF4371) += adf4371.o
obj-$(CONFIG_ADF4377) += adf4377.o
obj-$(CONFIG_ADMFM2000) += admfm2000.o
obj-$(CONFIG_ADMV1013) += admv1013.o
obj-$(CONFIG_ADMV1014) += admv1014.o
obj-$(CONFIG_ADMV4420) += admv4420.o

View file

@ -0,0 +1,282 @@
// SPDX-License-Identifier: GPL-2.0
/*
* ADMFM2000 Dual Microwave Down Converter
*
* Copyright 2024 Analog Devices Inc.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/iio/iio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#define ADMFM2000_MIXER_MODE 0
#define ADMFM2000_DIRECT_IF_MODE 1
#define ADMFM2000_DSA_GPIOS 5
#define ADMFM2000_MODE_GPIOS 2
#define ADMFM2000_MAX_GAIN 0
#define ADMFM2000_MIN_GAIN -31000
#define ADMFM2000_DEFAULT_GAIN -0x20
struct admfm2000_state {
struct mutex lock; /* protect sensor state */
struct gpio_desc *sw1_ch[2];
struct gpio_desc *sw2_ch[2];
struct gpio_desc *dsa1_gpios[5];
struct gpio_desc *dsa2_gpios[5];
u32 gain[2];
};
static int admfm2000_mode(struct iio_dev *indio_dev, u32 chan, u32 mode)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int i;
switch (mode) {
case ADMFM2000_MIXER_MODE:
for (i = 0; i < ADMFM2000_MODE_GPIOS; i++) {
gpiod_set_value_cansleep(st->sw1_ch[i], (chan == 0) ? 1 : 0);
gpiod_set_value_cansleep(st->sw2_ch[i], (chan == 0) ? 0 : 1);
}
return 0;
case ADMFM2000_DIRECT_IF_MODE:
for (i = 0; i < ADMFM2000_MODE_GPIOS; i++) {
gpiod_set_value_cansleep(st->sw1_ch[i], (chan == 0) ? 0 : 1);
gpiod_set_value_cansleep(st->sw2_ch[i], (chan == 0) ? 1 : 0);
}
return 0;
default:
return -EINVAL;
}
}
static int admfm2000_attenuation(struct iio_dev *indio_dev, u32 chan, u32 value)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int i;
switch (chan) {
case 0:
for (i = 0; i < ADMFM2000_DSA_GPIOS; i++)
gpiod_set_value_cansleep(st->dsa1_gpios[i], value & (1 << i));
return 0;
case 1:
for (i = 0; i < ADMFM2000_DSA_GPIOS; i++)
gpiod_set_value_cansleep(st->dsa2_gpios[i], value & (1 << i));
return 0;
default:
return -EINVAL;
}
}
static int admfm2000_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int gain;
switch (mask) {
case IIO_CHAN_INFO_HARDWAREGAIN:
mutex_lock(&st->lock);
gain = ~(st->gain[chan->channel]) * -1000;
*val = gain / 1000;
*val2 = (gain % 1000) * 1000;
mutex_unlock(&st->lock);
return IIO_VAL_INT_PLUS_MICRO_DB;
default:
return -EINVAL;
}
}
static int admfm2000_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int gain, ret;
if (val < 0)
gain = (val * 1000) - (val2 / 1000);
else
gain = (val * 1000) + (val2 / 1000);
if (gain > ADMFM2000_MAX_GAIN || gain < ADMFM2000_MIN_GAIN)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_HARDWAREGAIN:
mutex_lock(&st->lock);
st->gain[chan->channel] = ~((abs(gain) / 1000) & 0x1F);
ret = admfm2000_attenuation(indio_dev, chan->channel,
st->gain[chan->channel]);
mutex_unlock(&st->lock);
return ret;
default:
return -EINVAL;
}
}
static int admfm2000_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_HARDWAREGAIN:
return IIO_VAL_INT_PLUS_MICRO_DB;
default:
return -EINVAL;
}
}
static const struct iio_info admfm2000_info = {
.read_raw = &admfm2000_read_raw,
.write_raw = &admfm2000_write_raw,
.write_raw_get_fmt = &admfm2000_write_raw_get_fmt,
};
#define ADMFM2000_CHAN(_channel) { \
.type = IIO_VOLTAGE, \
.output = 1, \
.indexed = 1, \
.channel = _channel, \
.info_mask_separate = BIT(IIO_CHAN_INFO_HARDWAREGAIN), \
}
static const struct iio_chan_spec admfm2000_channels[] = {
ADMFM2000_CHAN(0),
ADMFM2000_CHAN(1),
};
static int admfm2000_channel_config(struct admfm2000_state *st,
struct iio_dev *indio_dev)
{
struct platform_device *pdev = to_platform_device(indio_dev->dev.parent);
struct device *dev = &pdev->dev;
struct fwnode_handle *child;
struct gpio_desc **dsa;
struct gpio_desc **sw;
int ret, i;
bool mode;
u32 reg;
device_for_each_child_node(dev, child) {
ret = fwnode_property_read_u32(child, "reg", &reg);
if (ret) {
fwnode_handle_put(child);
return dev_err_probe(dev, ret,
"Failed to get reg property\n");
}
if (reg >= indio_dev->num_channels) {
fwnode_handle_put(child);
return dev_err_probe(dev, -EINVAL, "reg bigger than: %d\n",
indio_dev->num_channels);
}
if (fwnode_property_present(child, "adi,mixer-mode"))
mode = ADMFM2000_MIXER_MODE;
else
mode = ADMFM2000_DIRECT_IF_MODE;
switch (reg) {
case 0:
sw = st->sw1_ch;
dsa = st->dsa1_gpios;
break;
case 1:
sw = st->sw2_ch;
dsa = st->dsa2_gpios;
break;
default:
fwnode_handle_put(child);
return -EINVAL;
}
for (i = 0; i < ADMFM2000_MODE_GPIOS; i++) {
sw[i] = devm_fwnode_gpiod_get_index(dev, child, "switch",
i, GPIOD_OUT_LOW, NULL);
if (IS_ERR(sw[i])) {
fwnode_handle_put(child);
return dev_err_probe(dev, PTR_ERR(sw[i]),
"Failed to get gpios\n");
}
}
for (i = 0; i < ADMFM2000_DSA_GPIOS; i++) {
dsa[i] = devm_fwnode_gpiod_get_index(dev, child,
"attenuation", i,
GPIOD_OUT_LOW, NULL);
if (IS_ERR(dsa[i])) {
fwnode_handle_put(child);
return dev_err_probe(dev, PTR_ERR(dsa[i]),
"Failed to get gpios\n");
}
}
ret = admfm2000_mode(indio_dev, reg, mode);
if (ret) {
fwnode_handle_put(child);
return ret;
}
}
return 0;
}
static int admfm2000_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct admfm2000_state *st;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
indio_dev->name = "admfm2000";
indio_dev->num_channels = ARRAY_SIZE(admfm2000_channels);
indio_dev->channels = admfm2000_channels;
indio_dev->info = &admfm2000_info;
indio_dev->modes = INDIO_DIRECT_MODE;
st->gain[0] = ADMFM2000_DEFAULT_GAIN;
st->gain[1] = ADMFM2000_DEFAULT_GAIN;
mutex_init(&st->lock);
ret = admfm2000_channel_config(st, indio_dev);
if (ret)
return ret;
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id admfm2000_of_match[] = {
{ .compatible = "adi,admfm2000" },
{ }
};
MODULE_DEVICE_TABLE(of, admfm2000_of_match);
static struct platform_driver admfm2000_driver = {
.driver = {
.name = "admfm2000",
.of_match_table = admfm2000_of_match,
},
.probe = admfm2000_probe,
};
module_platform_driver(admfm2000_driver);
MODULE_AUTHOR("Kim Seer Paller <kimseer.paller@analog.com>");
MODULE_DESCRIPTION("ADMFM2000 Dual Microwave Down Converter");
MODULE_LICENSE("GPL");