kvm: Fix page ageing bugs

1. We were calling clear_flush_young_notify in unmap_one, but we are
within an mmu notifier invalidate range scope. The spte exists no more
(due to range_start) and the accessed bit info has already been
propagated (due to kvm_pfn_set_accessed). Simply call
clear_flush_young.

2. We clear_flush_young on a primary MMU PMD, but this may be mapped
as a collection of PTEs by the secondary MMU (e.g. during log-dirty).
This required expanding the interface of the clear_flush_young mmu
notifier, so a lot of code has been trivially touched.

3. In the absence of shadow_accessed_mask (e.g. EPT A bit), we emulate
the access bit by blowing the spte. This requires proper synchronizing
with MMU notifier consumers, like every other removal of spte's does.

Signed-off-by: Andres Lagar-Cavilla <andreslc@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Andres Lagar-Cavilla 2014-09-22 14:54:42 -07:00 committed by Paolo Bonzini
parent 8a9522d2fe
commit 5712846808
16 changed files with 71 additions and 41 deletions

View File

@ -170,7 +170,8 @@ unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
/* We do not have shadow page tables, hence the empty hooks */
static inline int kvm_age_hva(struct kvm *kvm, unsigned long hva)
static inline int kvm_age_hva(struct kvm *kvm, unsigned long start,
unsigned long end)
{
return 0;
}

View File

@ -180,7 +180,8 @@ int kvm_unmap_hva_range(struct kvm *kvm,
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
/* We do not have shadow page tables, hence the empty hooks */
static inline int kvm_age_hva(struct kvm *kvm, unsigned long hva)
static inline int kvm_age_hva(struct kvm *kvm, unsigned long start,
unsigned long end)
{
return 0;
}

View File

@ -56,7 +56,7 @@
extern int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
extern int kvm_unmap_hva_range(struct kvm *kvm,
unsigned long start, unsigned long end);
extern int kvm_age_hva(struct kvm *kvm, unsigned long hva);
extern int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
extern int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
extern void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);

View File

@ -243,7 +243,7 @@ struct kvmppc_ops {
int (*unmap_hva)(struct kvm *kvm, unsigned long hva);
int (*unmap_hva_range)(struct kvm *kvm, unsigned long start,
unsigned long end);
int (*age_hva)(struct kvm *kvm, unsigned long hva);
int (*age_hva)(struct kvm *kvm, unsigned long start, unsigned long end);
int (*test_age_hva)(struct kvm *kvm, unsigned long hva);
void (*set_spte_hva)(struct kvm *kvm, unsigned long hva, pte_t pte);
void (*mmu_destroy)(struct kvm_vcpu *vcpu);

View File

@ -851,9 +851,9 @@ int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
return kvm->arch.kvm_ops->unmap_hva_range(kvm, start, end);
}
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
return kvm->arch.kvm_ops->age_hva(kvm, hva);
return kvm->arch.kvm_ops->age_hva(kvm, start, end);
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)

View File

@ -17,7 +17,8 @@ extern void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
extern int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva);
extern int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start,
unsigned long end);
extern int kvm_age_hva_hv(struct kvm *kvm, unsigned long hva);
extern int kvm_age_hva_hv(struct kvm *kvm, unsigned long start,
unsigned long end);
extern int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva);
extern void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte);

View File

@ -1002,11 +1002,11 @@ static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
return ret;
}
int kvm_age_hva_hv(struct kvm *kvm, unsigned long hva)
int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
{
if (!kvm->arch.using_mmu_notifiers)
return 0;
return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
}
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,

View File

@ -295,7 +295,8 @@ static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
return 0;
}
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long hva)
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
unsigned long end)
{
/* XXX could be more clever ;) */
return 0;

View File

@ -732,7 +732,7 @@ int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
return 0;
}
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
/* XXX could be more clever ;) */
return 0;

View File

@ -1035,7 +1035,7 @@ asmlinkage void kvm_spurious_fault(void);
#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_age_hva(struct kvm *kvm, unsigned long hva);
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
int cpuid_maxphyaddr(struct kvm_vcpu *vcpu);

View File

@ -1417,18 +1417,7 @@ static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
struct rmap_iterator uninitialized_var(iter);
int young = 0;
/*
* In case of absence of EPT Access and Dirty Bits supports,
* emulate the accessed bit for EPT, by checking if this page has
* an EPT mapping, and clearing it if it does. On the next access,
* a new EPT mapping will be established.
* This has some overhead, but not as much as the cost of swapping
* out actively used pages or breaking up actively used hugepages.
*/
if (!shadow_accessed_mask) {
young = kvm_unmap_rmapp(kvm, rmapp, slot, gfn, level, data);
goto out;
}
BUG_ON(!shadow_accessed_mask);
for (sptep = rmap_get_first(*rmapp, &iter); sptep;
sptep = rmap_get_next(&iter)) {
@ -1440,7 +1429,6 @@ static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
(unsigned long *)sptep);
}
}
out:
trace_kvm_age_page(gfn, level, slot, young);
return young;
}
@ -1489,9 +1477,29 @@ static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
kvm_flush_remote_tlbs(vcpu->kvm);
}
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
/*
* In case of absence of EPT Access and Dirty Bits supports,
* emulate the accessed bit for EPT, by checking if this page has
* an EPT mapping, and clearing it if it does. On the next access,
* a new EPT mapping will be established.
* This has some overhead, but not as much as the cost of swapping
* out actively used pages or breaking up actively used hugepages.
*/
if (!shadow_accessed_mask) {
/*
* We are holding the kvm->mmu_lock, and we are blowing up
* shadow PTEs. MMU notifier consumers need to be kept at bay.
* This is correct as long as we don't decouple the mmu_lock
* protected regions (like invalidate_range_start|end does).
*/
kvm->mmu_notifier_seq++;
return kvm_handle_hva_range(kvm, start, end, 0,
kvm_unmap_rmapp);
}
return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)

View File

@ -402,9 +402,11 @@ static void __mn_flush_page(struct mmu_notifier *mn,
static int mn_clear_flush_young(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address)
unsigned long start,
unsigned long end)
{
__mn_flush_page(mn, address);
for (; start < end; start += PAGE_SIZE)
__mn_flush_page(mn, start);
return 0;
}

View File

@ -57,10 +57,13 @@ struct mmu_notifier_ops {
* pte. This way the VM will provide proper aging to the
* accesses to the page through the secondary MMUs and not
* only to the ones through the Linux pte.
* Start-end is necessary in case the secondary MMU is mapping the page
* at a smaller granularity than the primary MMU.
*/
int (*clear_flush_young)(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address);
unsigned long start,
unsigned long end);
/*
* test_young is called to check the young/accessed bitflag in
@ -175,7 +178,8 @@ extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
extern void __mmu_notifier_release(struct mm_struct *mm);
extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
unsigned long address);
unsigned long start,
unsigned long end);
extern int __mmu_notifier_test_young(struct mm_struct *mm,
unsigned long address);
extern void __mmu_notifier_change_pte(struct mm_struct *mm,
@ -194,10 +198,11 @@ static inline void mmu_notifier_release(struct mm_struct *mm)
}
static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
unsigned long address)
unsigned long start,
unsigned long end)
{
if (mm_has_notifiers(mm))
return __mmu_notifier_clear_flush_young(mm, address);
return __mmu_notifier_clear_flush_young(mm, start, end);
return 0;
}
@ -255,7 +260,9 @@ static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
unsigned long ___address = __address; \
__young = ptep_clear_flush_young(___vma, ___address, __ptep); \
__young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
___address); \
___address, \
___address + \
PAGE_SIZE); \
__young; \
})
@ -266,7 +273,9 @@ static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
unsigned long ___address = __address; \
__young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
__young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
___address); \
___address, \
___address + \
PMD_SIZE); \
__young; \
})
@ -301,7 +310,8 @@ static inline void mmu_notifier_release(struct mm_struct *mm)
}
static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
unsigned long address)
unsigned long start,
unsigned long end)
{
return 0;
}

View File

@ -107,7 +107,8 @@ void __mmu_notifier_release(struct mm_struct *mm)
* existed or not.
*/
int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
unsigned long address)
unsigned long start,
unsigned long end)
{
struct mmu_notifier *mn;
int young = 0, id;
@ -115,7 +116,7 @@ int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
id = srcu_read_lock(&srcu);
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
if (mn->ops->clear_flush_young)
young |= mn->ops->clear_flush_young(mn, mm, address);
young |= mn->ops->clear_flush_young(mn, mm, start, end);
}
srcu_read_unlock(&srcu, id);

View File

@ -1355,7 +1355,11 @@ static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
continue; /* don't unmap */
}
if (ptep_clear_flush_young_notify(vma, address, pte))
/*
* No need for _notify because we're within an
* mmu_notifier_invalidate_range_ {start|end} scope.
*/
if (ptep_clear_flush_young(vma, address, pte))
continue;
/* Nuke the page table entry. */

View File

@ -369,7 +369,8 @@ static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address)
unsigned long start,
unsigned long end)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int young, idx;
@ -377,7 +378,7 @@ static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
idx = srcu_read_lock(&kvm->srcu);
spin_lock(&kvm->mmu_lock);
young = kvm_age_hva(kvm, address);
young = kvm_age_hva(kvm, start, end);
if (young)
kvm_flush_remote_tlbs(kvm);