diff --git a/drivers/net/wan/z85230.c b/drivers/net/wan/z85230.c index 002b8c99ab5b..982a03488a00 100644 --- a/drivers/net/wan/z85230.c +++ b/drivers/net/wan/z85230.c @@ -1,7 +1,5 @@ // SPDX-License-Identifier: GPL-2.0-or-later -/* - * - * (c) Copyright 1998 Alan Cox +/* (c) Copyright 1998 Alan Cox * (c) Copyright 2000, 2001 Red Hat Inc * * Development of this driver was funded by Equiinet Ltd @@ -12,7 +10,7 @@ * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the * unification of all the Z85x30 asynchronous drivers for real. * - * DMA now uses get_free_page as kmalloc buffers may span a 64K + * DMA now uses get_free_page as kmalloc buffers may span a 64K * boundary. * * Modified for SMP safety and SMP locking by Alan Cox @@ -55,14 +53,13 @@ #include "z85230.h" - /** * z8530_read_port - Architecture specific interface function * @p: port to read * * Provided port access methods. The Comtrol SV11 requires no delays * between accesses and uses PC I/O. Some drivers may need a 5uS delay - * + * * In the longer term this should become an architecture specific * section so that this can become a generic driver interface for all * platforms. For now we only handle PC I/O ports with or without the @@ -74,8 +71,9 @@ static inline int z8530_read_port(unsigned long p) { - u8 r=inb(Z8530_PORT_OF(p)); - if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */ + u8 r = inb(Z8530_PORT_OF(p)); + + if (p & Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */ udelay(5); return r; } @@ -95,34 +93,30 @@ static inline int z8530_read_port(unsigned long p) * dread 5uS sanity delay. */ - static inline void z8530_write_port(unsigned long p, u8 d) { - outb(d,Z8530_PORT_OF(p)); - if(p&Z8530_PORT_SLEEP) + outb(d, Z8530_PORT_OF(p)); + if (p & Z8530_PORT_SLEEP) udelay(5); } - - static void z8530_rx_done(struct z8530_channel *c); static void z8530_tx_done(struct z8530_channel *c); - /** - * read_zsreg - Read a register from a Z85230 + * read_zsreg - Read a register from a Z85230 * @c: Z8530 channel to read from (2 per chip) * @reg: Register to read * FIXME: Use a spinlock. - * + * * Most of the Z8530 registers are indexed off the control registers. * A read is done by writing to the control register and reading the * register back. The caller must hold the lock */ - + static inline u8 read_zsreg(struct z8530_channel *c, u8 reg) { - if(reg) + if (reg) z8530_write_port(c->ctrlio, reg); return z8530_read_port(c->ctrlio); } @@ -138,7 +132,8 @@ static inline u8 read_zsreg(struct z8530_channel *c, u8 reg) static inline u8 read_zsdata(struct z8530_channel *c) { u8 r; - r=z8530_read_port(c->dataio); + + r = z8530_read_port(c->dataio); return r; } @@ -156,10 +151,9 @@ static inline u8 read_zsdata(struct z8530_channel *c) */ static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val) { - if(reg) + if (reg) z8530_write_port(c->ctrlio, reg); z8530_write_port(c->ctrlio, val); - } /** @@ -182,108 +176,94 @@ static inline void write_zsctrl(struct z8530_channel *c, u8 val) * * Write directly to the data register on the Z8530 */ - - static inline void write_zsdata(struct z8530_channel *c, u8 val) { z8530_write_port(c->dataio, val); } -/* - * Register loading parameters for a dead port +/* Register loading parameters for a dead port */ - -u8 z8530_dead_port[]= -{ + +u8 z8530_dead_port[] = { 255 }; - EXPORT_SYMBOL(z8530_dead_port); -/* - * Register loading parameters for currently supported circuit types +/* Register loading parameters for currently supported circuit types */ - -/* - * Data clocked by telco end. This is the correct data for the UK +/* Data clocked by telco end. This is the correct data for the UK * "kilostream" service, and most other similar services. */ - -u8 z8530_hdlc_kilostream[]= -{ - 4, SYNC_ENAB|SDLC|X1CLK, + +u8 z8530_hdlc_kilostream[] = { + 4, SYNC_ENAB | SDLC | X1CLK, 2, 0, /* No vector */ 1, 0, - 3, ENT_HM|RxCRC_ENAB|Rx8, - 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, + 3, ENT_HM | RxCRC_ENAB | Rx8, + 5, TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR, 9, 0, /* Disable interrupts */ 6, 0xFF, 7, FLAG, - 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/ + 10, ABUNDER | NRZ | CRCPS,/*MARKIDLE ??*/ 11, TCTRxCP, 14, DISDPLL, - 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, - 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, - 9, NV|MIE|NORESET, + 15, DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE, + 1, EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx, + 9, NV | MIE | NORESET, 255 }; - EXPORT_SYMBOL(z8530_hdlc_kilostream); -/* - * As above but for enhanced chips. +/* As above but for enhanced chips. */ - -u8 z8530_hdlc_kilostream_85230[]= -{ - 4, SYNC_ENAB|SDLC|X1CLK, + +u8 z8530_hdlc_kilostream_85230[] = { + 4, SYNC_ENAB | SDLC | X1CLK, 2, 0, /* No vector */ 1, 0, - 3, ENT_HM|RxCRC_ENAB|Rx8, - 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, + 3, ENT_HM | RxCRC_ENAB | Rx8, + 5, TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR, 9, 0, /* Disable interrupts */ 6, 0xFF, 7, FLAG, - 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */ + 10, ABUNDER | NRZ | CRCPS, /* MARKIDLE?? */ 11, TCTRxCP, 14, DISDPLL, - 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, - 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, - 9, NV|MIE|NORESET, + 15, DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE, + 1, EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx, + 9, NV | MIE | NORESET, 23, 3, /* Extended mode AUTO TX and EOM*/ - + 255 }; - EXPORT_SYMBOL(z8530_hdlc_kilostream_85230); /** * z8530_flush_fifo - Flush on chip RX FIFO * @c: Channel to flush * - * Flush the receive FIFO. There is no specific option for this, we + * Flush the receive FIFO. There is no specific option for this, we * blindly read bytes and discard them. Reading when there is no data * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes. - * + * * All locking is handled for the caller. On return data may still be * present if it arrived during the flush. */ - + static void z8530_flush_fifo(struct z8530_channel *c) { read_zsreg(c, R1); read_zsreg(c, R1); read_zsreg(c, R1); read_zsreg(c, R1); - if(c->dev->type==Z85230) - { + if (c->dev->type == Z85230) { read_zsreg(c, R1); read_zsreg(c, R1); read_zsreg(c, R1); read_zsreg(c, R1); } -} +} /** * z8530_rtsdtr - Control the outgoing DTS/RTS line @@ -309,7 +289,7 @@ static void z8530_rtsdtr(struct z8530_channel *c, int set) * z8530_rx - Handle a PIO receive event * @c: Z8530 channel to process * - * Receive handler for receiving in PIO mode. This is much like the + * Receive handler for receiving in PIO mode. This is much like the * async one but not quite the same or as complex * * Note: Its intended that this handler can easily be separated from @@ -322,77 +302,63 @@ static void z8530_rtsdtr(struct z8530_channel *c, int set) * other code - this is true in the RT case too. * * We only cover the sync cases for this. If you want 2Mbit async - * do it yourself but consider medical assistance first. This non DMA - * synchronous mode is portable code. The DMA mode assumes PCI like + * do it yourself but consider medical assistance first. This non DMA + * synchronous mode is portable code. The DMA mode assumes PCI like * ISA DMA * * Called with the device lock held */ - + static void z8530_rx(struct z8530_channel *c) { - u8 ch,stat; + u8 ch, stat; - while(1) - { + while (1) { /* FIFO empty ? */ - if(!(read_zsreg(c, R0)&1)) + if (!(read_zsreg(c, R0) & 1)) break; - ch=read_zsdata(c); - stat=read_zsreg(c, R1); - - /* - * Overrun ? + ch = read_zsdata(c); + stat = read_zsreg(c, R1); + + /* Overrun ? */ - if(c->count < c->max) - { - *c->dptr++=ch; + if (c->count < c->max) { + *c->dptr++ = ch; c->count++; } - if(stat&END_FR) - { - - /* - * Error ? + if (stat & END_FR) { + /* Error ? */ - if(stat&(Rx_OVR|CRC_ERR)) - { + if (stat & (Rx_OVR | CRC_ERR)) { /* Rewind the buffer and return */ - if(c->skb) - c->dptr=c->skb->data; - c->count=0; - if(stat&Rx_OVR) - { + if (c->skb) + c->dptr = c->skb->data; + c->count = 0; + if (stat & Rx_OVR) { pr_warn("%s: overrun\n", c->dev->name); c->rx_overrun++; } - if(stat&CRC_ERR) - { + if (stat & CRC_ERR) { c->rx_crc_err++; /* printk("crc error\n"); */ } /* Shove the frame upstream */ - } - else - { - /* - * Drop the lock for RX processing, or - * there are deadlocks - */ + } else { + /* Drop the lock for RX processing, or + * there are deadlocks + */ z8530_rx_done(c); write_zsctrl(c, RES_Rx_CRC); } } } - /* - * Clear irq + /* Clear irq */ write_zsctrl(c, ERR_RES); write_zsctrl(c, RES_H_IUS); } - /** * z8530_tx - Handle a PIO transmit event * @c: Z8530 channel to process @@ -402,35 +368,31 @@ static void z8530_rx(struct z8530_channel *c) * in as possible, its quite possible that we won't keep up with the * data rate otherwise. */ - + static void z8530_tx(struct z8530_channel *c) { - while(c->txcount) { + while (c->txcount) { /* FIFO full ? */ - if(!(read_zsreg(c, R0)&4)) + if (!(read_zsreg(c, R0) & 4)) return; c->txcount--; - /* - * Shovel out the byte + /* Shovel out the byte */ write_zsreg(c, R8, *c->tx_ptr++); write_zsctrl(c, RES_H_IUS); /* We are about to underflow */ - if(c->txcount==0) - { + if (c->txcount == 0) { write_zsctrl(c, RES_EOM_L); - write_zsreg(c, R10, c->regs[10]&~ABUNDER); + write_zsreg(c, R10, c->regs[10] & ~ABUNDER); } } - - /* - * End of frame TX - fire another one + /* End of frame TX - fire another one */ - + write_zsctrl(c, RES_Tx_P); - z8530_tx_done(c); + z8530_tx_done(c); write_zsctrl(c, RES_H_IUS); } @@ -460,8 +422,7 @@ static void z8530_status(struct z8530_channel *chan) z8530_tx_done(chan); } - if (altered & chan->dcdcheck) - { + if (altered & chan->dcdcheck) { if (status & chan->dcdcheck) { pr_info("%s: DCD raised\n", chan->dev->name); write_zsreg(chan, R3, chan->regs[3] | RxENABLE); @@ -474,7 +435,6 @@ static void z8530_status(struct z8530_channel *chan) if (chan->netdevice) netif_carrier_off(chan->netdevice); } - } write_zsctrl(chan, RES_EXT_INT); write_zsctrl(chan, RES_H_IUS); @@ -485,7 +445,6 @@ struct z8530_irqhandler z8530_sync = { .tx = z8530_tx, .status = z8530_status, }; - EXPORT_SYMBOL(z8530_sync); /** @@ -497,31 +456,27 @@ EXPORT_SYMBOL(z8530_sync); * events are handled by the DMA hardware. We get a kick here only if * a frame ended. */ - + static void z8530_dma_rx(struct z8530_channel *chan) { - if(chan->rxdma_on) - { + if (chan->rxdma_on) { /* Special condition check only */ u8 status; - + read_zsreg(chan, R7); read_zsreg(chan, R6); - - status=read_zsreg(chan, R1); - - if(status&END_FR) - { + + status = read_zsreg(chan, R1); + + if (status & END_FR) z8530_rx_done(chan); /* Fire up the next one */ - } + write_zsctrl(chan, ERR_RES); write_zsctrl(chan, RES_H_IUS); - } - else - { + } else { /* DMA is off right now, drain the slow way */ z8530_rx(chan); - } + } } /** @@ -531,11 +486,9 @@ static void z8530_dma_rx(struct z8530_channel *chan) * We have received an interrupt while doing DMA transmissions. It * shouldn't happen. Scream loudly if it does. */ - static void z8530_dma_tx(struct z8530_channel *chan) { - if(!chan->dma_tx) - { + if (!chan->dma_tx) { pr_warn("Hey who turned the DMA off?\n"); z8530_tx(chan); return; @@ -548,40 +501,35 @@ static void z8530_dma_tx(struct z8530_channel *chan) /** * z8530_dma_status - Handle a DMA status exception * @chan: Z8530 channel to process - * + * * A status event occurred on the Z8530. We receive these for two reasons * when in DMA mode. Firstly if we finished a packet transfer we get one * and kick the next packet out. Secondly we may see a DCD change. * */ - static void z8530_dma_status(struct z8530_channel *chan) { u8 status, altered; - status=read_zsreg(chan, R0); - altered=chan->status^status; - - chan->status=status; + status = read_zsreg(chan, R0); + altered = chan->status ^ status; + chan->status = status; - if(chan->dma_tx) - { - if(status&TxEOM) - { + if (chan->dma_tx) { + if (status & TxEOM) { unsigned long flags; - - flags=claim_dma_lock(); + + flags = claim_dma_lock(); disable_dma(chan->txdma); - clear_dma_ff(chan->txdma); - chan->txdma_on=0; + clear_dma_ff(chan->txdma); + chan->txdma_on = 0; release_dma_lock(flags); z8530_tx_done(chan); } } - if (altered & chan->dcdcheck) - { + if (altered & chan->dcdcheck) { if (status & chan->dcdcheck) { pr_info("%s: DCD raised\n", chan->dev->name); write_zsreg(chan, R3, chan->regs[3] | RxENABLE); @@ -621,21 +569,18 @@ static struct z8530_irqhandler z8530_txdma_sync = { * (eg the MacII) we must clear the interrupt cause or die. */ - static void z8530_rx_clear(struct z8530_channel *c) { - /* - * Data and status bytes + /* Data and status bytes */ u8 stat; read_zsdata(c); - stat=read_zsreg(c, R1); - - if(stat&END_FR) + stat = read_zsreg(c, R1); + + if (stat & END_FR) write_zsctrl(c, RES_Rx_CRC); - /* - * Clear irq + /* Clear irq */ write_zsctrl(c, ERR_RES); write_zsctrl(c, RES_H_IUS); @@ -667,8 +612,9 @@ static void z8530_tx_clear(struct z8530_channel *c) static void z8530_status_clear(struct z8530_channel *chan) { - u8 status=read_zsreg(chan, R0); - if(status&TxEOM) + u8 status = read_zsreg(chan, R0); + + if (status & TxEOM) write_zsctrl(chan, ERR_RES); write_zsctrl(chan, RES_EXT_INT); write_zsctrl(chan, RES_H_IUS); @@ -679,13 +625,11 @@ struct z8530_irqhandler z8530_nop = { .tx = z8530_tx_clear, .status = z8530_status_clear, }; - - EXPORT_SYMBOL(z8530_nop); /** * z8530_interrupt - Handle an interrupt from a Z8530 - * @irq: Interrupt number + * @irq: Interrupt number * @dev_id: The Z8530 device that is interrupting. * * A Z85[2]30 device has stuck its hand in the air for attention. @@ -701,78 +645,73 @@ EXPORT_SYMBOL(z8530_nop); irqreturn_t z8530_interrupt(int irq, void *dev_id) { - struct z8530_dev *dev=dev_id; + struct z8530_dev *dev = dev_id; u8 intr; static volatile int locker=0; - int work=0; + int work = 0; struct z8530_irqhandler *irqs; - - if(locker) - { + + if (locker) { pr_err("IRQ re-enter\n"); return IRQ_NONE; } - locker=1; + locker = 1; spin_lock(&dev->lock); - while(++work<5000) - { - + while (++work < 5000) { intr = read_zsreg(&dev->chanA, R3); - if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT))) + if (!(intr & + (CHARxIP | CHATxIP | CHAEXT | CHBRxIP | CHBTxIP | CHBEXT))) break; - - /* This holds the IRQ status. On the 8530 you must read it from chan - A even though it applies to the whole chip */ - - /* Now walk the chip and see what it is wanting - it may be - an IRQ for someone else remember */ - - irqs=dev->chanA.irqs; - if(intr & (CHARxIP|CHATxIP|CHAEXT)) - { - if(intr&CHARxIP) + /* This holds the IRQ status. On the 8530 you must read it + * from chan A even though it applies to the whole chip + */ + + /* Now walk the chip and see what it is wanting - it may be + * an IRQ for someone else remember + */ + + irqs = dev->chanA.irqs; + + if (intr & (CHARxIP | CHATxIP | CHAEXT)) { + if (intr & CHARxIP) irqs->rx(&dev->chanA); - if(intr&CHATxIP) + if (intr & CHATxIP) irqs->tx(&dev->chanA); - if(intr&CHAEXT) + if (intr & CHAEXT) irqs->status(&dev->chanA); } - irqs=dev->chanB.irqs; + irqs = dev->chanB.irqs; - if(intr & (CHBRxIP|CHBTxIP|CHBEXT)) - { - if(intr&CHBRxIP) + if (intr & (CHBRxIP | CHBTxIP | CHBEXT)) { + if (intr & CHBRxIP) irqs->rx(&dev->chanB); - if(intr&CHBTxIP) + if (intr & CHBTxIP) irqs->tx(&dev->chanB); - if(intr&CHBEXT) + if (intr & CHBEXT) irqs->status(&dev->chanB); } } spin_unlock(&dev->lock); - if(work==5000) + if (work == 5000) pr_err("%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr); /* Ok all done */ - locker=0; + locker = 0; return IRQ_HANDLED; } - EXPORT_SYMBOL(z8530_interrupt); -static const u8 reg_init[16]= -{ - 0,0,0,0, - 0,0,0,0, - 0,0,0,0, - 0x55,0,0,0 +static const u8 reg_init[16] = { + 0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + 0x55, 0, 0, 0 }; - /** * z8530_sync_open - Open a Z8530 channel for PIO * @dev: The network interface we are using @@ -781,7 +720,6 @@ static const u8 reg_init[16]= * Switch a Z8530 into synchronous mode without DMA assist. We * raise the RTS/DTR and commence network operation. */ - int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) { unsigned long flags; @@ -789,7 +727,7 @@ int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) spin_lock_irqsave(c->lock, flags); c->sync = 1; - c->mtu = dev->mtu+64; + c->mtu = dev->mtu + 64; c->count = 0; c->skb = NULL; c->skb2 = NULL; @@ -798,17 +736,15 @@ int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) /* This loads the double buffer up */ z8530_rx_done(c); /* Load the frame ring */ z8530_rx_done(c); /* Load the backup frame */ - z8530_rtsdtr(c,1); + z8530_rtsdtr(c, 1); c->dma_tx = 0; - c->regs[R1]|=TxINT_ENAB; + c->regs[R1] |= TxINT_ENAB; write_zsreg(c, R1, c->regs[R1]); - write_zsreg(c, R3, c->regs[R3]|RxENABLE); + write_zsreg(c, R3, c->regs[R3] | RxENABLE); spin_unlock_irqrestore(c->lock, flags); return 0; } - - EXPORT_SYMBOL(z8530_sync_open); /** @@ -819,25 +755,23 @@ EXPORT_SYMBOL(z8530_sync_open); * Close down a Z8530 interface and switch its interrupt handlers * to discard future events. */ - int z8530_sync_close(struct net_device *dev, struct z8530_channel *c) { u8 chk; unsigned long flags; - + spin_lock_irqsave(c->lock, flags); c->irqs = &z8530_nop; c->max = 0; c->sync = 0; - - chk=read_zsreg(c,R0); + + chk = read_zsreg(c, R0); write_zsreg(c, R3, c->regs[R3]); - z8530_rtsdtr(c,0); + z8530_rtsdtr(c, 0); spin_unlock_irqrestore(c->lock, flags); return 0; } - EXPORT_SYMBOL(z8530_sync_close); /** @@ -849,91 +783,83 @@ EXPORT_SYMBOL(z8530_sync_close); * ISA DMA channels must be available for this to work. We assume ISA * DMA driven I/O and PC limits on access. */ - int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) { unsigned long cflags, dflags; - + c->sync = 1; - c->mtu = dev->mtu+64; + c->mtu = dev->mtu + 64; c->count = 0; c->skb = NULL; c->skb2 = NULL; - /* - * Load the DMA interfaces up + + /* Load the DMA interfaces up */ c->rxdma_on = 0; c->txdma_on = 0; - - /* - * Allocate the DMA flip buffers. Limit by page size. + + /* Allocate the DMA flip buffers. Limit by page size. * Everyone runs 1500 mtu or less on wan links so this * should be fine. */ - - if(c->mtu > PAGE_SIZE/2) + + if (c->mtu > PAGE_SIZE / 2) return -EMSGSIZE; - - c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); - if(c->rx_buf[0]==NULL) + + c->rx_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA); + if (!c->rx_buf[0]) return -ENOBUFS; - c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2; - - c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); - if(c->tx_dma_buf[0]==NULL) - { + c->rx_buf[1] = c->rx_buf[0] + PAGE_SIZE / 2; + + c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA); + if (!c->tx_dma_buf[0]) { free_page((unsigned long)c->rx_buf[0]); - c->rx_buf[0]=NULL; + c->rx_buf[0] = NULL; return -ENOBUFS; } - c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2; + c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2; - c->tx_dma_used=0; + c->tx_dma_used = 0; c->dma_tx = 1; - c->dma_num=0; - c->dma_ready=1; - - /* - * Enable DMA control mode + c->dma_num = 0; + c->dma_ready = 1; + + /* Enable DMA control mode */ spin_lock_irqsave(c->lock, cflags); - - /* - * TX DMA via DIR/REQ - */ - - c->regs[R14]|= DTRREQ; - write_zsreg(c, R14, c->regs[R14]); - c->regs[R1]&= ~TxINT_ENAB; - write_zsreg(c, R1, c->regs[R1]); - - /* - * RX DMA via W/Req - */ - - c->regs[R1]|= WT_FN_RDYFN; - c->regs[R1]|= WT_RDY_RT; - c->regs[R1]|= INT_ERR_Rx; - c->regs[R1]&= ~TxINT_ENAB; - write_zsreg(c, R1, c->regs[R1]); - c->regs[R1]|= WT_RDY_ENAB; - write_zsreg(c, R1, c->regs[R1]); - - /* - * DMA interrupts + /* TX DMA via DIR/REQ */ - - /* - * Set up the DMA configuration - */ - - dflags=claim_dma_lock(); - + + c->regs[R14] |= DTRREQ; + write_zsreg(c, R14, c->regs[R14]); + + c->regs[R1] &= ~TxINT_ENAB; + write_zsreg(c, R1, c->regs[R1]); + + /* RX DMA via W/Req + */ + + c->regs[R1] |= WT_FN_RDYFN; + c->regs[R1] |= WT_RDY_RT; + c->regs[R1] |= INT_ERR_Rx; + c->regs[R1] &= ~TxINT_ENAB; + write_zsreg(c, R1, c->regs[R1]); + c->regs[R1] |= WT_RDY_ENAB; + write_zsreg(c, R1, c->regs[R1]); + + /* DMA interrupts + */ + + /* Set up the DMA configuration + */ + + dflags = claim_dma_lock(); + disable_dma(c->rxdma); clear_dma_ff(c->rxdma); - set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); + set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10); set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0])); set_dma_count(c->rxdma, c->mtu); enable_dma(c->rxdma); @@ -942,26 +868,24 @@ int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) clear_dma_ff(c->txdma); set_dma_mode(c->txdma, DMA_MODE_WRITE); disable_dma(c->txdma); - + release_dma_lock(dflags); - - /* - * Select the DMA interrupt handlers + + /* Select the DMA interrupt handlers */ c->rxdma_on = 1; c->txdma_on = 1; c->tx_dma_used = 1; - + c->irqs = &z8530_dma_sync; - z8530_rtsdtr(c,1); - write_zsreg(c, R3, c->regs[R3]|RxENABLE); + z8530_rtsdtr(c, 1); + write_zsreg(c, R3, c->regs[R3] | RxENABLE); spin_unlock_irqrestore(c->lock, cflags); - + return 0; } - EXPORT_SYMBOL(z8530_sync_dma_open); /** @@ -972,66 +896,60 @@ EXPORT_SYMBOL(z8530_sync_dma_open); * Shut down a DMA mode synchronous interface. Halt the DMA, and * free the buffers. */ - int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c) { u8 chk; unsigned long flags; - + c->irqs = &z8530_nop; c->max = 0; c->sync = 0; - - /* - * Disable the PC DMA channels + + /* Disable the PC DMA channels */ - - flags=claim_dma_lock(); + + flags = claim_dma_lock(); disable_dma(c->rxdma); clear_dma_ff(c->rxdma); - + c->rxdma_on = 0; - + disable_dma(c->txdma); clear_dma_ff(c->txdma); release_dma_lock(flags); - + c->txdma_on = 0; c->tx_dma_used = 0; spin_lock_irqsave(c->lock, flags); - /* - * Disable DMA control mode + /* Disable DMA control mode */ - - c->regs[R1]&= ~WT_RDY_ENAB; - write_zsreg(c, R1, c->regs[R1]); - c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); - c->regs[R1]|= INT_ALL_Rx; + + c->regs[R1] &= ~WT_RDY_ENAB; write_zsreg(c, R1, c->regs[R1]); - c->regs[R14]&= ~DTRREQ; - write_zsreg(c, R14, c->regs[R14]); - - if(c->rx_buf[0]) - { + c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx); + c->regs[R1] |= INT_ALL_Rx; + write_zsreg(c, R1, c->regs[R1]); + c->regs[R14] &= ~DTRREQ; + write_zsreg(c, R14, c->regs[R14]); + + if (c->rx_buf[0]) { free_page((unsigned long)c->rx_buf[0]); - c->rx_buf[0]=NULL; + c->rx_buf[0] = NULL; } - if(c->tx_dma_buf[0]) - { + if (c->tx_dma_buf[0]) { free_page((unsigned long)c->tx_dma_buf[0]); - c->tx_dma_buf[0]=NULL; + c->tx_dma_buf[0] = NULL; } - chk=read_zsreg(c,R0); + chk = read_zsreg(c, R0); write_zsreg(c, R3, c->regs[R3]); - z8530_rtsdtr(c,0); + z8530_rtsdtr(c, 0); spin_unlock_irqrestore(c->lock, flags); return 0; } - EXPORT_SYMBOL(z8530_sync_dma_close); /** @@ -1050,65 +968,58 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) printk("Opening sync interface for TX-DMA\n"); c->sync = 1; - c->mtu = dev->mtu+64; + c->mtu = dev->mtu + 64; c->count = 0; c->skb = NULL; c->skb2 = NULL; - - /* - * Allocate the DMA flip buffers. Limit by page size. + + /* Allocate the DMA flip buffers. Limit by page size. * Everyone runs 1500 mtu or less on wan links so this * should be fine. */ - - if(c->mtu > PAGE_SIZE/2) + + if (c->mtu > PAGE_SIZE / 2) return -EMSGSIZE; - - c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); - if(c->tx_dma_buf[0]==NULL) + + c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA); + if (!c->tx_dma_buf[0]) return -ENOBUFS; - c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2; - + c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2; spin_lock_irqsave(c->lock, cflags); - /* - * Load the PIO receive ring + /* Load the PIO receive ring */ z8530_rx_done(c); z8530_rx_done(c); - /* - * Load the DMA interfaces up + /* Load the DMA interfaces up */ c->rxdma_on = 0; c->txdma_on = 0; - - c->tx_dma_used=0; - c->dma_num=0; - c->dma_ready=1; + + c->tx_dma_used = 0; + c->dma_num = 0; + c->dma_ready = 1; c->dma_tx = 1; - /* - * Enable DMA control mode + /* Enable DMA control mode */ - /* - * TX DMA via DIR/REQ + /* TX DMA via DIR/REQ */ - c->regs[R14]|= DTRREQ; - write_zsreg(c, R14, c->regs[R14]); - - c->regs[R1]&= ~TxINT_ENAB; + c->regs[R14] |= DTRREQ; + write_zsreg(c, R14, c->regs[R14]); + + c->regs[R1] &= ~TxINT_ENAB; write_zsreg(c, R1, c->regs[R1]); - - /* - * Set up the DMA configuration - */ - + + /* Set up the DMA configuration + */ + dflags = claim_dma_lock(); disable_dma(c->txdma); @@ -1117,23 +1028,21 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) disable_dma(c->txdma); release_dma_lock(dflags); - - /* - * Select the DMA interrupt handlers + + /* Select the DMA interrupt handlers */ c->rxdma_on = 0; c->txdma_on = 1; c->tx_dma_used = 1; - + c->irqs = &z8530_txdma_sync; - z8530_rtsdtr(c,1); - write_zsreg(c, R3, c->regs[R3]|RxENABLE); + z8530_rtsdtr(c, 1); + write_zsreg(c, R3, c->regs[R3] | RxENABLE); spin_unlock_irqrestore(c->lock, cflags); - + return 0; } - EXPORT_SYMBOL(z8530_sync_txdma_open); /** @@ -1141,7 +1050,7 @@ EXPORT_SYMBOL(z8530_sync_txdma_open); * @dev: Network device to detach * @c: Z8530 channel to move into discard mode * - * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, + * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, * and free the buffers. */ @@ -1150,17 +1059,15 @@ int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c) unsigned long dflags, cflags; u8 chk; - spin_lock_irqsave(c->lock, cflags); - + c->irqs = &z8530_nop; c->max = 0; c->sync = 0; - - /* - * Disable the PC DMA channels + + /* Disable the PC DMA channels */ - + dflags = claim_dma_lock(); disable_dma(c->txdma); @@ -1170,41 +1077,34 @@ int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c) release_dma_lock(dflags); - /* - * Disable DMA control mode + /* Disable DMA control mode */ - - c->regs[R1]&= ~WT_RDY_ENAB; - write_zsreg(c, R1, c->regs[R1]); - c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); - c->regs[R1]|= INT_ALL_Rx; + + c->regs[R1] &= ~WT_RDY_ENAB; write_zsreg(c, R1, c->regs[R1]); - c->regs[R14]&= ~DTRREQ; - write_zsreg(c, R14, c->regs[R14]); - - if(c->tx_dma_buf[0]) - { + c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx); + c->regs[R1] |= INT_ALL_Rx; + write_zsreg(c, R1, c->regs[R1]); + c->regs[R14] &= ~DTRREQ; + write_zsreg(c, R14, c->regs[R14]); + + if (c->tx_dma_buf[0]) { free_page((unsigned long)c->tx_dma_buf[0]); - c->tx_dma_buf[0]=NULL; + c->tx_dma_buf[0] = NULL; } - chk=read_zsreg(c,R0); + chk = read_zsreg(c, R0); write_zsreg(c, R3, c->regs[R3]); - z8530_rtsdtr(c,0); + z8530_rtsdtr(c, 0); spin_unlock_irqrestore(c->lock, cflags); return 0; } - - EXPORT_SYMBOL(z8530_sync_txdma_close); - -/* - * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny +/* Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny * it exists... */ - -static const char *z8530_type_name[]={ +static const char * const z8530_type_name[] = { "Z8530", "Z85C30", "Z85230" @@ -1224,78 +1124,71 @@ static const char *z8530_type_name[]={ void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io) { pr_info("%s: %s found at %s 0x%lX, IRQ %d\n", - dev->name, + dev->name, z8530_type_name[dev->type], mapping, Z8530_PORT_OF(io), dev->irq); } - EXPORT_SYMBOL(z8530_describe); -/* - * Locked operation part of the z8530 init code +/* Locked operation part of the z8530 init code */ - static inline int do_z8530_init(struct z8530_dev *dev) { /* NOP the interrupt handlers first - we might get a - floating IRQ transition when we reset the chip */ - dev->chanA.irqs=&z8530_nop; - dev->chanB.irqs=&z8530_nop; - dev->chanA.dcdcheck=DCD; - dev->chanB.dcdcheck=DCD; + * floating IRQ transition when we reset the chip + */ + dev->chanA.irqs = &z8530_nop; + dev->chanB.irqs = &z8530_nop; + dev->chanA.dcdcheck = DCD; + dev->chanB.dcdcheck = DCD; /* Reset the chip */ write_zsreg(&dev->chanA, R9, 0xC0); udelay(200); /* Now check its valid */ write_zsreg(&dev->chanA, R12, 0xAA); - if(read_zsreg(&dev->chanA, R12)!=0xAA) + if (read_zsreg(&dev->chanA, R12) != 0xAA) return -ENODEV; write_zsreg(&dev->chanA, R12, 0x55); - if(read_zsreg(&dev->chanA, R12)!=0x55) + if (read_zsreg(&dev->chanA, R12) != 0x55) return -ENODEV; - - dev->type=Z8530; - - /* - * See the application note. + + dev->type = Z8530; + + /* See the application note. */ - + write_zsreg(&dev->chanA, R15, 0x01); - - /* - * If we can set the low bit of R15 then + + /* If we can set the low bit of R15 then * the chip is enhanced. */ - - if(read_zsreg(&dev->chanA, R15)==0x01) - { + + if (read_zsreg(&dev->chanA, R15) == 0x01) { /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */ /* Put a char in the fifo */ write_zsreg(&dev->chanA, R8, 0); - if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP) + if (read_zsreg(&dev->chanA, R0) & Tx_BUF_EMP) dev->type = Z85230; /* Has a FIFO */ else dev->type = Z85C30; /* Z85C30, 1 byte FIFO */ } - - /* - * The code assumes R7' and friends are + + /* The code assumes R7' and friends are * off. Use write_zsext() for these and keep * this bit clear. */ - + write_zsreg(&dev->chanA, R15, 0); - - /* - * At this point it looks like the chip is behaving + + /* At this point it looks like the chip is behaving */ - + memcpy(dev->chanA.regs, reg_init, 16); - memcpy(dev->chanB.regs, reg_init ,16); - + memcpy(dev->chanB.regs, reg_init, 16); + return 0; } @@ -1332,36 +1225,32 @@ int z8530_init(struct z8530_dev *dev) return ret; } - - EXPORT_SYMBOL(z8530_init); /** * z8530_shutdown - Shutdown a Z8530 device * @dev: The Z8530 chip to shutdown * - * We set the interrupt handlers to silence any interrupts. We then + * We set the interrupt handlers to silence any interrupts. We then * reset the chip and wait 100uS to be sure the reset completed. Just * in case the caller then tries to do stuff. * * This is called without the lock held */ - int z8530_shutdown(struct z8530_dev *dev) { unsigned long flags; /* Reset the chip */ spin_lock_irqsave(&dev->lock, flags); - dev->chanA.irqs=&z8530_nop; - dev->chanB.irqs=&z8530_nop; + dev->chanA.irqs = &z8530_nop; + dev->chanB.irqs = &z8530_nop; write_zsreg(&dev->chanA, R9, 0xC0); /* We must lock the udelay, the chip is offlimits here */ udelay(100); spin_unlock_irqrestore(&dev->lock, flags); return 0; } - EXPORT_SYMBOL(z8530_shutdown); /** @@ -1370,7 +1259,7 @@ EXPORT_SYMBOL(z8530_shutdown); * @rtable: table of register, value pairs * FIXME: ioctl to allow user uploaded tables * - * Load a Z8530 channel up from the system data. We use +16 to + * Load a Z8530 channel up from the system data. We use +16 to * indicate the "prime" registers. The value 255 terminates the * table. */ @@ -1381,41 +1270,39 @@ int z8530_channel_load(struct z8530_channel *c, u8 *rtable) spin_lock_irqsave(c->lock, flags); - while(*rtable!=255) - { - int reg=*rtable++; - if(reg>0x0F) - write_zsreg(c, R15, c->regs[15]|1); - write_zsreg(c, reg&0x0F, *rtable); - if(reg>0x0F) - write_zsreg(c, R15, c->regs[15]&~1); - c->regs[reg]=*rtable++; + while (*rtable != 255) { + int reg = *rtable++; + + if (reg > 0x0F) + write_zsreg(c, R15, c->regs[15] | 1); + write_zsreg(c, reg & 0x0F, *rtable); + if (reg > 0x0F) + write_zsreg(c, R15, c->regs[15] & ~1); + c->regs[reg] = *rtable++; } - c->rx_function=z8530_null_rx; - c->skb=NULL; - c->tx_skb=NULL; - c->tx_next_skb=NULL; - c->mtu=1500; - c->max=0; - c->count=0; - c->status=read_zsreg(c, R0); - c->sync=1; - write_zsreg(c, R3, c->regs[R3]|RxENABLE); + c->rx_function = z8530_null_rx; + c->skb = NULL; + c->tx_skb = NULL; + c->tx_next_skb = NULL; + c->mtu = 1500; + c->max = 0; + c->count = 0; + c->status = read_zsreg(c, R0); + c->sync = 1; + write_zsreg(c, R3, c->regs[R3] | RxENABLE); spin_unlock_irqrestore(c->lock, flags); return 0; } - EXPORT_SYMBOL(z8530_channel_load); - /** * z8530_tx_begin - Begin packet transmission * @c: The Z8530 channel to kick * * This is the speed sensitive side of transmission. If we are called * and no buffer is being transmitted we commence the next buffer. If - * nothing is queued we idle the sync. + * nothing is queued we idle the sync. * * Note: We are handling this code path in the interrupt path, keep it * fast or bad things will happen. @@ -1426,85 +1313,68 @@ EXPORT_SYMBOL(z8530_channel_load); static void z8530_tx_begin(struct z8530_channel *c) { unsigned long flags; - if(c->tx_skb) + + if (c->tx_skb) return; - - c->tx_skb=c->tx_next_skb; - c->tx_next_skb=NULL; - c->tx_ptr=c->tx_next_ptr; - - if(c->tx_skb==NULL) - { + + c->tx_skb = c->tx_next_skb; + c->tx_next_skb = NULL; + c->tx_ptr = c->tx_next_ptr; + + if (!c->tx_skb) { /* Idle on */ - if(c->dma_tx) - { - flags=claim_dma_lock(); + if (c->dma_tx) { + flags = claim_dma_lock(); disable_dma(c->txdma); - /* - * Check if we crapped out. + /* Check if we crapped out. */ - if (get_dma_residue(c->txdma)) - { + if (get_dma_residue(c->txdma)) { c->netdevice->stats.tx_dropped++; c->netdevice->stats.tx_fifo_errors++; } release_dma_lock(flags); } - c->txcount=0; - } - else - { - c->txcount=c->tx_skb->len; - - - if(c->dma_tx) - { - /* - * FIXME. DMA is broken for the original 8530, + c->txcount = 0; + } else { + c->txcount = c->tx_skb->len; + + if (c->dma_tx) { + /* FIXME. DMA is broken for the original 8530, * on the older parts we need to set a flag and * wait for a further TX interrupt to fire this - * stage off + * stage off */ - - flags=claim_dma_lock(); + + flags = claim_dma_lock(); disable_dma(c->txdma); - /* - * These two are needed by the 8530/85C30 + /* These two are needed by the 8530/85C30 * and must be issued when idling. */ - - if(c->dev->type!=Z85230) - { + if (c->dev->type != Z85230) { write_zsctrl(c, RES_Tx_CRC); write_zsctrl(c, RES_EOM_L); - } - write_zsreg(c, R10, c->regs[10]&~ABUNDER); + } + write_zsreg(c, R10, c->regs[10] & ~ABUNDER); clear_dma_ff(c->txdma); set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr)); set_dma_count(c->txdma, c->txcount); enable_dma(c->txdma); release_dma_lock(flags); write_zsctrl(c, RES_EOM_L); - write_zsreg(c, R5, c->regs[R5]|TxENAB); - } - else - { - + write_zsreg(c, R5, c->regs[R5] | TxENAB); + } else { /* ABUNDER off */ write_zsreg(c, R10, c->regs[10]); write_zsctrl(c, RES_Tx_CRC); - - while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP)) - { + + while (c->txcount && (read_zsreg(c, R0) & Tx_BUF_EMP)) { write_zsreg(c, R8, *c->tx_ptr++); c->txcount--; } - } } - /* - * Since we emptied tx_skb we can ask for more + /* Since we emptied tx_skb we can ask for more */ netif_wake_queue(c->netdevice); } @@ -1525,7 +1395,7 @@ static void z8530_tx_done(struct z8530_channel *c) struct sk_buff *skb; /* Actually this can happen.*/ - if (c->tx_skb == NULL) + if (!c->tx_skb) return; skb = c->tx_skb; @@ -1544,12 +1414,10 @@ static void z8530_tx_done(struct z8530_channel *c) * We point the receive handler at this function when idle. Instead * of processing the frames we get to throw them away. */ - void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb) { dev_kfree_skb_any(skb); } - EXPORT_SYMBOL(z8530_null_rx); /** @@ -1564,67 +1432,58 @@ EXPORT_SYMBOL(z8530_null_rx); * * Called with the lock held */ - static void z8530_rx_done(struct z8530_channel *c) { struct sk_buff *skb; int ct; - - /* - * Is our receive engine in DMA mode + + /* Is our receive engine in DMA mode */ - - if(c->rxdma_on) - { - /* - * Save the ready state and the buffer currently + if (c->rxdma_on) { + /* Save the ready state and the buffer currently * being used as the DMA target */ - - int ready=c->dma_ready; - unsigned char *rxb=c->rx_buf[c->dma_num]; + int ready = c->dma_ready; + unsigned char *rxb = c->rx_buf[c->dma_num]; unsigned long flags; - - /* - * Complete this DMA. Necessary to find the length - */ - - flags=claim_dma_lock(); - + + /* Complete this DMA. Necessary to find the length + */ + flags = claim_dma_lock(); + disable_dma(c->rxdma); clear_dma_ff(c->rxdma); - c->rxdma_on=0; - ct=c->mtu-get_dma_residue(c->rxdma); - if(ct<0) - ct=2; /* Shit happens.. */ - c->dma_ready=0; - - /* - * Normal case: the other slot is free, start the next DMA + c->rxdma_on = 0; + ct = c->mtu - get_dma_residue(c->rxdma); + if (ct < 0) + ct = 2; /* Shit happens.. */ + c->dma_ready = 0; + + /* Normal case: the other slot is free, start the next DMA * into it immediately. */ - - if(ready) - { - c->dma_num^=1; - set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); + + if (ready) { + c->dma_num ^= 1; + set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10); set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num])); set_dma_count(c->rxdma, c->mtu); c->rxdma_on = 1; enable_dma(c->rxdma); - /* Stop any frames that we missed the head of - from passing */ + /* Stop any frames that we missed the head of + * from passing + */ write_zsreg(c, R0, RES_Rx_CRC); - } - else + } else { /* Can't occur as we dont reenable the DMA irq until - after the flip is done */ + * after the flip is done + */ netdev_warn(c->netdevice, "DMA flip overrun!\n"); + } release_dma_lock(flags); - /* - * Shove the old buffer into an sk_buff. We can't DMA + /* Shove the old buffer into an sk_buff. We can't DMA * directly into one on a PC - it might be above the 16Mb * boundary. Optimisation - we could check to see if we * can avoid the copy. Optimisation 2 - make the memcpy @@ -1632,7 +1491,7 @@ static void z8530_rx_done(struct z8530_channel *c) */ skb = dev_alloc_skb(ct); - if (skb == NULL) { + if (!skb) { c->netdevice->stats.rx_dropped++; netdev_warn(c->netdevice, "Memory squeeze\n"); } else { @@ -1646,8 +1505,7 @@ static void z8530_rx_done(struct z8530_channel *c) RT_LOCK; skb = c->skb; - /* - * The game we play for non DMA is similar. We want to + /* The game we play for non DMA is similar. We want to * get the controller set up for the next packet as fast * as possible. We potentially only have one byte + the * fifo length for this. Thus we want to flip to the new @@ -1658,7 +1516,7 @@ static void z8530_rx_done(struct z8530_channel *c) * sync IRQ for the RT_LOCK area. * */ - ct=c->count; + ct = c->count; c->skb = c->skb2; c->count = 0; @@ -1673,15 +1531,13 @@ static void z8530_rx_done(struct z8530_channel *c) RT_UNLOCK; c->skb2 = dev_alloc_skb(c->mtu); - if (c->skb2 == NULL) - netdev_warn(c->netdevice, "memory squeeze\n"); - else + if (c->skb2) skb_put(c->skb2, c->mtu); + c->netdevice->stats.rx_packets++; c->netdevice->stats.rx_bytes += ct; } - /* - * If we received a frame we must now process it. + /* If we received a frame we must now process it. */ if (skb) { skb_trim(skb, ct); @@ -1702,9 +1558,10 @@ static void z8530_rx_done(struct z8530_channel *c) static inline int spans_boundary(struct sk_buff *skb) { - unsigned long a=(unsigned long)skb->data; - a^=(a+skb->len); - if(a&0x00010000) /* If the 64K bit is different.. */ + unsigned long a = (unsigned long)skb->data; + + a ^= (a + skb->len); + if (a & 0x00010000) /* If the 64K bit is different.. */ return 1; return 0; } @@ -1715,60 +1572,54 @@ static inline int spans_boundary(struct sk_buff *skb) * @skb: The packet to kick down the channel * * Queue a packet for transmission. Because we have rather - * hard to hit interrupt latencies for the Z85230 per packet + * hard to hit interrupt latencies for the Z85230 per packet * even in DMA mode we do the flip to DMA buffer if needed here * not in the IRQ. * - * Called from the network code. The lock is not held at this + * Called from the network code. The lock is not held at this * point. */ - netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb) { unsigned long flags; - + netif_stop_queue(c->netdevice); - if(c->tx_next_skb) + if (c->tx_next_skb) return NETDEV_TX_BUSY; - /* PC SPECIFIC - DMA limits */ - - /* - * If we will DMA the transmit and its gone over the ISA bus + /* If we will DMA the transmit and its gone over the ISA bus * limit, then copy to the flip buffer */ - - if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb))) - { - /* - * Send the flip buffer, and flip the flippy bit. + + if (c->dma_tx && + ((unsigned long)(virt_to_bus(skb->data + skb->len)) >= + 16 * 1024 * 1024 || spans_boundary(skb))) { + /* Send the flip buffer, and flip the flippy bit. * We don't care which is used when just so long as * we never use the same buffer twice in a row. Since * only one buffer can be going out at a time the other * has to be safe. */ - c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used]; - c->tx_dma_used^=1; /* Flip temp buffer */ + c->tx_next_ptr = c->tx_dma_buf[c->tx_dma_used]; + c->tx_dma_used ^= 1; /* Flip temp buffer */ skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len); + } else { + c->tx_next_ptr = skb->data; } - else - c->tx_next_ptr=skb->data; RT_LOCK; - c->tx_next_skb=skb; + c->tx_next_skb = skb; RT_UNLOCK; - + spin_lock_irqsave(c->lock, flags); z8530_tx_begin(c); spin_unlock_irqrestore(c->lock, flags); - + return NETDEV_TX_OK; } - EXPORT_SYMBOL(z8530_queue_xmit); -/* - * Module support +/* Module support */ static const char banner[] __initconst = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";