docs: deprecated.rst: Add zero-length and one-element arrays

Add zero-length and one-element arrays to the list.

While I continue replacing zero-length and one-element arrays with
flexible-array members, I need a reference to point people to, so
they don't introduce more instances of such arrays. And while here,
add a note to the "open-coded arithmetic in allocator arguments"
section, on the use of struct_size() and the arrays-to-deprecate
mentioned here.

Co-developed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Acked-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20200608213711.GA22271@embeddedor
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
Gustavo A. R. Silva 2020-06-08 16:37:11 -05:00 committed by Jonathan Corbet
parent 67ee6940ae
commit 68e4cd17e2
1 changed files with 118 additions and 0 deletions

View File

@ -85,6 +85,11 @@ Instead, use the helper::
header = kzalloc(struct_size(header, item, count), GFP_KERNEL);
.. note:: If you are using struct_size() on a structure containing a zero-length
or a one-element array as a trailing array member, please refactor such
array usage and switch to a `flexible array member
<#zero-length-and-one-element-arrays>`_ instead.
See array_size(), array3_size(), and struct_size(),
for more details as well as the related check_add_overflow() and
check_mul_overflow() family of functions.
@ -200,3 +205,116 @@ All switch/case blocks must end in one of:
* continue;
* goto <label>;
* return [expression];
Zero-length and one-element arrays
----------------------------------
There is a regular need in the kernel to provide a way to declare having
a dynamically sized set of trailing elements in a structure. Kernel code
should always use `"flexible array members" <https://en.wikipedia.org/wiki/Flexible_array_member>`_
for these cases. The older style of one-element or zero-length arrays should
no longer be used.
In older C code, dynamically sized trailing elements were done by specifying
a one-element array at the end of a structure::
struct something {
size_t count;
struct foo items[1];
};
This led to fragile size calculations via sizeof() (which would need to
remove the size of the single trailing element to get a correct size of
the "header"). A `GNU C extension <https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html>`_
was introduced to allow for zero-length arrays, to avoid these kinds of
size problems::
struct something {
size_t count;
struct foo items[0];
};
But this led to other problems, and didn't solve some problems shared by
both styles, like not being able to detect when such an array is accidentally
being used _not_ at the end of a structure (which could happen directly, or
when such a struct was in unions, structs of structs, etc).
C99 introduced "flexible array members", which lacks a numeric size for
the array declaration entirely::
struct something {
size_t count;
struct foo items[];
};
This is the way the kernel expects dynamically sized trailing elements
to be declared. It allows the compiler to generate errors when the
flexible array does not occur last in the structure, which helps to prevent
some kind of `undefined behavior
<https://git.kernel.org/linus/76497732932f15e7323dc805e8ea8dc11bb587cf>`_
bugs from being inadvertently introduced to the codebase. It also allows
the compiler to correctly analyze array sizes (via sizeof(),
`CONFIG_FORTIFY_SOURCE`, and `CONFIG_UBSAN_BOUNDS`). For instance,
there is no mechanism that warns us that the following application of the
sizeof() operator to a zero-length array always results in zero::
struct something {
size_t count;
struct foo items[0];
};
struct something *instance;
instance = kmalloc(struct_size(instance, items, count), GFP_KERNEL);
instance->count = count;
size = sizeof(instance->items) * instance->count;
memcpy(instance->items, source, size);
At the last line of code above, ``size`` turns out to be ``zero``, when one might
have thought it represents the total size in bytes of the dynamic memory recently
allocated for the trailing array ``items``. Here are a couple examples of this
issue: `link 1
<https://git.kernel.org/linus/f2cd32a443da694ac4e28fbf4ac6f9d5cc63a539>`_,
`link 2
<https://git.kernel.org/linus/ab91c2a89f86be2898cee208d492816ec238b2cf>`_.
Instead, `flexible array members have incomplete type, and so the sizeof()
operator may not be applied <https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html>`_,
so any misuse of such operators will be immediately noticed at build time.
With respect to one-element arrays, one has to be acutely aware that `such arrays
occupy at least as much space as a single object of the type
<https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html>`_,
hence they contribute to the size of the enclosing structure. This is prone
to error every time people want to calculate the total size of dynamic memory
to allocate for a structure containing an array of this kind as a member::
struct something {
size_t count;
struct foo items[1];
};
struct something *instance;
instance = kmalloc(struct_size(instance, items, count - 1), GFP_KERNEL);
instance->count = count;
size = sizeof(instance->items) * instance->count;
memcpy(instance->items, source, size);
In the example above, we had to remember to calculate ``count - 1`` when using
the struct_size() helper, otherwise we would have --unintentionally-- allocated
memory for one too many ``items`` objects. The cleanest and least error-prone way
to implement this is through the use of a `flexible array member`::
struct something {
size_t count;
struct foo items[];
};
struct something *instance;
instance = kmalloc(struct_size(instance, items, count), GFP_KERNEL);
instance->count = count;
size = sizeof(instance->items[0]) * instance->count;
memcpy(instance->items, source, size);