[media] cxd2099: Update to latest version

Import latest driver from ddbridge-0.6.1.tar.bz2.

Signed-off-by: Ralph Metzler <rmetzler@digitaldevices.de>
Signed-off-by: Oliver Endriss <o.endriss@gmx.de>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
This commit is contained in:
Ralph Metzler 2011-07-03 14:00:57 -03:00 committed by Mauro Carvalho Chehab
parent a26c1b3e8b
commit 6eb94193fa
2 changed files with 178 additions and 88 deletions

View File

@ -1,7 +1,7 @@
/* /*
* cxd2099.c: Driver for the CXD2099AR Common Interface Controller * cxd2099.c: Driver for the CXD2099AR Common Interface Controller
* *
* Copyright (C) 2010 DigitalDevices UG * Copyright (C) 2010-2011 Digital Devices GmbH
* *
* *
* This program is free software; you can redistribute it and/or * This program is free software; you can redistribute it and/or
@ -42,13 +42,13 @@ struct cxd {
struct dvb_ca_en50221 en; struct dvb_ca_en50221 en;
struct i2c_adapter *i2c; struct i2c_adapter *i2c;
u8 adr; struct cxd2099_cfg cfg;
u8 regs[0x23]; u8 regs[0x23];
u8 lastaddress; u8 lastaddress;
u8 clk_reg_f; u8 clk_reg_f;
u8 clk_reg_b; u8 clk_reg_b;
int mode; int mode;
u32 bitrate;
int ready; int ready;
int dr; int dr;
int slot_stat; int slot_stat;
@ -64,7 +64,7 @@ static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr,
u8 reg, u8 data) u8 reg, u8 data)
{ {
u8 m[2] = {reg, data}; u8 m[2] = {reg, data};
struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2}; struct i2c_msg msg = {.addr=adr, .flags=0, .buf=m, .len=2};
if (i2c_transfer(adapter, &msg, 1) != 1) { if (i2c_transfer(adapter, &msg, 1) != 1) {
printk(KERN_ERR "Failed to write to I2C register %02x@%02x!\n", printk(KERN_ERR "Failed to write to I2C register %02x@%02x!\n",
@ -77,7 +77,7 @@ static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr,
static int i2c_write(struct i2c_adapter *adapter, u8 adr, static int i2c_write(struct i2c_adapter *adapter, u8 adr,
u8 *data, u8 len) u8 *data, u8 len)
{ {
struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len}; struct i2c_msg msg = {.addr=adr, .flags=0, .buf=data, .len=len};
if (i2c_transfer(adapter, &msg, 1) != 1) { if (i2c_transfer(adapter, &msg, 1) != 1) {
printk(KERN_ERR "Failed to write to I2C!\n"); printk(KERN_ERR "Failed to write to I2C!\n");
@ -90,9 +90,9 @@ static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr,
u8 reg, u8 *val) u8 reg, u8 *val)
{ {
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
.buf = &reg, .len = 1 }, .buf = &reg, .len = 1},
{.addr = adr, .flags = I2C_M_RD, {.addr = adr, .flags = I2C_M_RD,
.buf = val, .len = 1 } }; .buf = val, .len = 1}};
if (i2c_transfer(adapter, msgs, 2) != 2) { if (i2c_transfer(adapter, msgs, 2) != 2) {
printk(KERN_ERR "error in i2c_read_reg\n"); printk(KERN_ERR "error in i2c_read_reg\n");
@ -105,9 +105,9 @@ static int i2c_read(struct i2c_adapter *adapter, u8 adr,
u8 reg, u8 *data, u8 n) u8 reg, u8 *data, u8 n)
{ {
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
.buf = &reg, .len = 1 }, .buf = &reg, .len = 1},
{.addr = adr, .flags = I2C_M_RD, {.addr = adr, .flags = I2C_M_RD,
.buf = data, .len = n } }; .buf = data, .len = n}};
if (i2c_transfer(adapter, msgs, 2) != 2) { if (i2c_transfer(adapter, msgs, 2) != 2) {
printk(KERN_ERR "error in i2c_read\n"); printk(KERN_ERR "error in i2c_read\n");
@ -120,10 +120,10 @@ static int read_block(struct cxd *ci, u8 adr, u8 *data, u8 n)
{ {
int status; int status;
status = i2c_write_reg(ci->i2c, ci->adr, 0, adr); status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
if (!status) { if (!status) {
ci->lastaddress = adr; ci->lastaddress = adr;
status = i2c_read(ci->i2c, ci->adr, 1, data, n); status = i2c_read(ci->i2c, ci->cfg.adr, 1, data, n);
} }
return status; return status;
} }
@ -137,24 +137,24 @@ static int read_reg(struct cxd *ci, u8 reg, u8 *val)
static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
{ {
int status; int status;
u8 addr[3] = { 2, address&0xff, address>>8 }; u8 addr[3] = {2, address & 0xff, address >> 8};
status = i2c_write(ci->i2c, ci->adr, addr, 3); status=i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status) if (!status)
status = i2c_read(ci->i2c, ci->adr, 3, data, n); status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
return status; return status;
} }
static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
{ {
int status; int status;
u8 addr[3] = { 2, address&0xff, address>>8 }; u8 addr[3] = {2, address & 0xff, address >> 8};
status = i2c_write(ci->i2c, ci->adr, addr, 3); status=i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status) { if (!status) {
u8 buf[256] = {3}; u8 buf[256] = {3};
memcpy(buf+1, data, n); memcpy(buf+1, data, n);
status = i2c_write(ci->i2c, ci->adr, buf, n+1); status = i2c_write(ci->i2c, ci->cfg.adr, buf, n+1);
} }
return status; return status;
} }
@ -162,39 +162,64 @@ static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
static int read_io(struct cxd *ci, u16 address, u8 *val) static int read_io(struct cxd *ci, u16 address, u8 *val)
{ {
int status; int status;
u8 addr[3] = { 2, address&0xff, address>>8 }; u8 addr[3] = {2, address & 0xff, address >> 8};
status = i2c_write(ci->i2c, ci->adr, addr, 3); status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status) if (!status)
status = i2c_read(ci->i2c, ci->adr, 3, val, 1); status = i2c_read(ci->i2c, ci->cfg.adr, 3, val, 1);
return status; return status;
} }
static int write_io(struct cxd *ci, u16 address, u8 val) static int write_io(struct cxd *ci, u16 address, u8 val)
{ {
int status; int status;
u8 addr[3] = { 2, address&0xff, address>>8 }; u8 addr[3] = {2, address & 0xff, address >> 8};
u8 buf[2] = { 3, val }; u8 buf[2] = {3, val};
status = i2c_write(ci->i2c, ci->adr, addr, 3); status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status) if (!status)
status = i2c_write(ci->i2c, ci->adr, buf, 2); status = i2c_write(ci->i2c, ci->cfg.adr, buf, 2);
return status; return status;
} }
#if 0
static int read_io_data(struct cxd *ci, u8 *data, u8 n)
{
int status;
u8 addr[3] = { 2, 0, 0 };
status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status)
status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
return 0;
}
static int write_io_data(struct cxd *ci, u8 *data, u8 n)
{
int status;
u8 addr[3] = {2, 0, 0};
status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status) {
u8 buf[256] = {3};
memcpy(buf+1, data, n);
status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
}
return 0;
}
#endif
static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask) static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
{ {
int status; int status;
status = i2c_write_reg(ci->i2c, ci->adr, 0, reg); status=i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg);
if (!status && reg >= 6 && reg <= 8 && mask != 0xff) if (!status && reg >= 6 && reg <=8 && mask != 0xff)
status = i2c_read_reg(ci->i2c, ci->adr, 1, &ci->regs[reg]); status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]);
ci->regs[reg] = (ci->regs[reg]&(~mask))|val; ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
if (!status) { if (!status) {
ci->lastaddress = reg; ci->lastaddress = reg;
status = i2c_write_reg(ci->i2c, ci->adr, 1, ci->regs[reg]); status = i2c_write_reg(ci->i2c, ci->cfg.adr, 1, ci->regs[reg]);
} }
if (reg == 0x20) if (reg == 0x20)
ci->regs[reg] &= 0x7f; ci->regs[reg] &= 0x7f;
@ -212,11 +237,11 @@ static int write_block(struct cxd *ci, u8 adr, u8 *data, int n)
int status; int status;
u8 buf[256] = {1}; u8 buf[256] = {1};
status = i2c_write_reg(ci->i2c, ci->adr, 0, adr); status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
if (!status) { if (!status) {
ci->lastaddress = adr; ci->lastaddress = adr;
memcpy(buf+1, data, n); memcpy(buf + 1, data, n);
status = i2c_write(ci->i2c, ci->adr, buf, n+1); status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
} }
return status; return status;
} }
@ -250,12 +275,16 @@ static void cam_mode(struct cxd *ci, int mode)
write_regm(ci, 0x20, 0x80, 0x80); write_regm(ci, 0x20, 0x80, 0x80);
break; break;
case 0x01: case 0x01:
#ifdef BUFFER_MODE
if (!ci->en.read_data)
return;
printk(KERN_INFO "enable cam buffer mode\n"); printk(KERN_INFO "enable cam buffer mode\n");
/* write_reg(ci, 0x0d, 0x00); */ /* write_reg(ci, 0x0d, 0x00); */
/* write_reg(ci, 0x0e, 0x01); */ /* write_reg(ci, 0x0e, 0x01); */
write_regm(ci, 0x08, 0x40, 0x40); write_regm(ci, 0x08, 0x40, 0x40);
/* read_reg(ci, 0x12, &dummy); */ /* read_reg(ci, 0x12, &dummy); */
write_regm(ci, 0x08, 0x80, 0x80); write_regm(ci, 0x08, 0x80, 0x80);
#endif
break; break;
default: default:
break; break;
@ -265,14 +294,14 @@ static void cam_mode(struct cxd *ci, int mode)
#define CHK_ERROR(s) if ((status = s)) break #define CHK_ERROR(s) if( (status = s) ) break
static int init(struct cxd *ci) static int init(struct cxd *ci)
{ {
int status; int status;
mutex_lock(&ci->lock); mutex_lock(&ci->lock);
ci->mode = -1; ci->mode=-1;
do { do {
CHK_ERROR(write_reg(ci, 0x00, 0x00)); CHK_ERROR(write_reg(ci, 0x00, 0x00));
CHK_ERROR(write_reg(ci, 0x01, 0x00)); CHK_ERROR(write_reg(ci, 0x01, 0x00));
@ -284,53 +313,84 @@ static int init(struct cxd *ci)
CHK_ERROR(write_reg(ci, 0x08, 0x28)); CHK_ERROR(write_reg(ci, 0x08, 0x28));
CHK_ERROR(write_reg(ci, 0x14, 0x20)); CHK_ERROR(write_reg(ci, 0x14, 0x20));
CHK_ERROR(write_reg(ci, 0x09, 0x4D)); /* Input Mode C, BYPass Serial, TIVAL = low, MSB */ /* CHK_ERROR(write_reg(ci, 0x09, 0x4D));*/ /* Input Mode C, BYPass Serial, TIVAL = low, MSB */
CHK_ERROR(write_reg(ci, 0x0A, 0xA7)); /* TOSTRT = 8, Mode B (gated clock), falling Edge, Serial, POL=HIGH, MSB */ CHK_ERROR(write_reg(ci, 0x0A, 0xA7)); /* TOSTRT = 8, Mode B (gated clock), falling Edge, Serial, POL=HIGH, MSB */
/* Sync detector */
CHK_ERROR(write_reg(ci, 0x0B, 0x33)); CHK_ERROR(write_reg(ci, 0x0B, 0x33));
CHK_ERROR(write_reg(ci, 0x0C, 0x33)); CHK_ERROR(write_reg(ci, 0x0C, 0x33));
CHK_ERROR(write_regm(ci, 0x14, 0x00, 0x0F)); CHK_ERROR(write_regm(ci, 0x14, 0x00, 0x0F));
CHK_ERROR(write_reg(ci, 0x15, ci->clk_reg_b)); CHK_ERROR(write_reg(ci, 0x15, ci->clk_reg_b));
CHK_ERROR(write_regm(ci, 0x16, 0x00, 0x0F)); CHK_ERROR(write_regm(ci, 0x16, 0x00, 0x0F));
CHK_ERROR(write_reg(ci, 0x17, ci->clk_reg_f)); CHK_ERROR(write_reg(ci, 0x17,ci->clk_reg_f));
CHK_ERROR(write_reg(ci, 0x20, 0x28)); /* Integer Divider, Falling Edge, Internal Sync, */ if (ci->cfg.clock_mode) {
CHK_ERROR(write_reg(ci, 0x21, 0x00)); /* MCLKI = TICLK/8 */ if (ci->cfg.polarity) {
CHK_ERROR(write_reg(ci, 0x22, 0x07)); /* MCLKI = TICLK/8 */ CHK_ERROR(write_reg(ci, 0x09, 0x6f));
} else {
CHK_ERROR(write_reg(ci, 0x09, 0x6d));
}
CHK_ERROR(write_reg(ci, 0x20, 0x68));
CHK_ERROR(write_reg(ci, 0x21, 0x00));
CHK_ERROR(write_reg(ci, 0x22, 0x02));
} else {
if (ci->cfg.polarity) {
CHK_ERROR(write_reg(ci, 0x09, 0x4f));
} else {
CHK_ERROR(write_reg(ci, 0x09, 0x4d));
}
CHK_ERROR(write_reg(ci, 0x20, 0x28));
CHK_ERROR(write_reg(ci, 0x21, 0x00));
CHK_ERROR(write_reg(ci, 0x22, 0x07));
}
CHK_ERROR(write_regm(ci, 0x20, 0x80, 0x80)); /* Reset CAM state machine */ CHK_ERROR(write_regm(ci, 0x20, 0x80, 0x80));
CHK_ERROR(write_regm(ci, 0x03, 0x02, 0x02));
CHK_ERROR(write_reg(ci, 0x01, 0x04));
CHK_ERROR(write_reg(ci, 0x00, 0x31));
CHK_ERROR(write_regm(ci, 0x03, 0x02, 02)); /* Enable IREQA Interrupt */ /* Put TS in bypass */
CHK_ERROR(write_reg(ci, 0x01, 0x04)); /* Enable CD Interrupt */ CHK_ERROR(write_regm(ci, 0x09, 0x08, 0x08));
CHK_ERROR(write_reg(ci, 0x00, 0x31)); /* Enable TS1,Hot Swap,Slot A */ ci->cammode=-1;
CHK_ERROR(write_regm(ci, 0x09, 0x08, 0x08)); /* Put TS in bypass */
ci->cammode = -1;
#ifdef BUFFER_MODE
cam_mode(ci, 0); cam_mode(ci, 0);
#endif } while(0);
} while (0);
mutex_unlock(&ci->lock); mutex_unlock(&ci->lock);
return 0; return 0;
} }
static int read_attribute_mem(struct dvb_ca_en50221 *ca, static int read_attribute_mem(struct dvb_ca_en50221 *ca,
int slot, int address) int slot, int address)
{ {
struct cxd *ci = ca->data; struct cxd *ci = ca->data;
#if 0
if (ci->amem_read) {
if (address <=0 || address>1024)
return -EIO;
return ci->amem[address];
}
mutex_lock(&ci->lock);
write_regm(ci, 0x06, 0x00, 0x05);
read_pccard(ci, 0, &ci->amem[0], 128);
read_pccard(ci, 128, &ci->amem[0], 128);
read_pccard(ci, 256, &ci->amem[0], 128);
read_pccard(ci, 384, &ci->amem[0], 128);
write_regm(ci, 0x06, 0x05, 0x05);
mutex_unlock(&ci->lock);
return ci->amem[address];
#else
u8 val; u8 val;
mutex_lock(&ci->lock); mutex_lock(&ci->lock);
set_mode(ci, 1); set_mode(ci, 1);
read_pccard(ci, address, &val, 1); read_pccard(ci, address, &val, 1);
mutex_unlock(&ci->lock); mutex_unlock(&ci->lock);
//printk("%02x:%02x\n", address,val);
return val; return val;
#endif
} }
static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot, static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
int address, u8 value) int address, u8 value)
{ {
@ -373,20 +433,41 @@ static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
struct cxd *ci = ca->data; struct cxd *ci = ca->data;
mutex_lock(&ci->lock); mutex_lock(&ci->lock);
#if 0
write_reg(ci, 0x00, 0x21);
write_reg(ci, 0x06, 0x1F);
write_reg(ci, 0x00, 0x31);
#else
#if 0
write_reg(ci, 0x06, 0x1F);
write_reg(ci, 0x06, 0x2F);
#else
cam_mode(ci, 0); cam_mode(ci, 0);
write_reg(ci, 0x00, 0x21); write_reg(ci, 0x00, 0x21);
write_reg(ci, 0x06, 0x1F); write_reg(ci, 0x06, 0x1F);
write_reg(ci, 0x00, 0x31); write_reg(ci, 0x00, 0x31);
write_regm(ci, 0x20, 0x80, 0x80); write_regm(ci, 0x20, 0x80, 0x80);
write_reg(ci, 0x03, 0x02); write_reg(ci, 0x03, 0x02);
ci->ready = 0; ci->ready=0;
ci->mode = -1; #endif
#endif
ci->mode=-1;
{ {
int i; int i;
for (i = 0; i < 100; i++) { #if 0
u8 val;
#endif
for (i=0; i<100;i++) {
msleep(10); msleep(10);
#if 0
read_reg(ci, 0x06,&val);
printk(KERN_INFO "%d:%02x\n", i, val);
if (!(val&0x10))
break;
#else
if (ci->ready) if (ci->ready)
break; break;
#endif
} }
} }
mutex_unlock(&ci->lock); mutex_unlock(&ci->lock);
@ -400,12 +481,12 @@ static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
printk(KERN_INFO "slot_shutdown\n"); printk(KERN_INFO "slot_shutdown\n");
mutex_lock(&ci->lock); mutex_lock(&ci->lock);
/* write_regm(ci, 0x09, 0x08, 0x08); */ write_regm(ci, 0x09, 0x08, 0x08);
write_regm(ci, 0x20, 0x80, 0x80); write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
write_regm(ci, 0x06, 0x07, 0x07); write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
ci->mode = -1; ci->mode = -1;
mutex_unlock(&ci->lock); mutex_unlock(&ci->lock);
return 0; /* shutdown(ci); */ return 0;
} }
static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot) static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
@ -433,7 +514,7 @@ static int campoll(struct cxd *ci)
write_reg(ci, 0x05, istat); write_reg(ci, 0x05, istat);
if (istat&0x40) { if (istat&0x40) {
ci->dr = 1; ci->dr=1;
printk(KERN_INFO "DR\n"); printk(KERN_INFO "DR\n");
} }
if (istat&0x20) if (istat&0x20)
@ -445,22 +526,21 @@ static int campoll(struct cxd *ci)
read_reg(ci, 0x01, &slotstat); read_reg(ci, 0x01, &slotstat);
if (!(2&slotstat)) { if (!(2&slotstat)) {
if (!ci->slot_stat) { if (!ci->slot_stat) {
ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_PRESENT; ci->slot_stat|=DVB_CA_EN50221_POLL_CAM_PRESENT;
write_regm(ci, 0x03, 0x08, 0x08); write_regm(ci, 0x03, 0x08, 0x08);
} }
} else { } else {
if (ci->slot_stat) { if (ci->slot_stat) {
ci->slot_stat = 0; ci->slot_stat=0;
write_regm(ci, 0x03, 0x00, 0x08); write_regm(ci, 0x03, 0x00, 0x08);
printk(KERN_INFO "NO CAM\n"); printk(KERN_INFO "NO CAM\n");
ci->ready = 0; ci->ready=0;
} }
} }
if (istat&8 && ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) { if (istat&8 && ci->slot_stat==DVB_CA_EN50221_POLL_CAM_PRESENT) {
ci->ready = 1; ci->ready=1;
ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY; ci->slot_stat|=DVB_CA_EN50221_POLL_CAM_READY;
printk(KERN_INFO "READY\n");
} }
} }
return 0; return 0;
@ -481,7 +561,7 @@ static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
} }
#ifdef BUFFER_MODE #ifdef BUFFER_MODE
static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) static int read_data(struct dvb_ca_en50221* ca, int slot, u8 *ebuf, int ecount)
{ {
struct cxd *ci = ca->data; struct cxd *ci = ca->data;
u8 msb, lsb; u8 msb, lsb;
@ -498,20 +578,20 @@ static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
mutex_lock(&ci->lock); mutex_lock(&ci->lock);
read_reg(ci, 0x0f, &msb); read_reg(ci, 0x0f, &msb);
read_reg(ci, 0x10, &lsb); read_reg(ci, 0x10, &lsb);
len = (msb<<8)|lsb; len=(msb<<8)|lsb;
read_block(ci, 0x12, ebuf, len); read_block(ci, 0x12, ebuf, len);
ci->dr = 0; ci->dr=0;
mutex_unlock(&ci->lock); mutex_unlock(&ci->lock);
return len; return len;
} }
static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) static int write_data(struct dvb_ca_en50221* ca, int slot, u8 * ebuf, int ecount)
{ {
struct cxd *ci = ca->data; struct cxd *ci = ca->data;
mutex_lock(&ci->lock); mutex_lock(&ci->lock);
printk(KERN_INFO "write_data %d\n", ecount); printk("write_data %d\n", ecount);
write_reg(ci, 0x0d, ecount>>8); write_reg(ci, 0x0d, ecount>>8);
write_reg(ci, 0x0e, ecount&0xff); write_reg(ci, 0x0e, ecount&0xff);
write_block(ci, 0x11, ebuf, ecount); write_block(ci, 0x11, ebuf, ecount);
@ -536,15 +616,15 @@ static struct dvb_ca_en50221 en_templ = {
}; };
struct dvb_ca_en50221 *cxd2099_attach(u8 adr, void *priv, struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg,
void *priv,
struct i2c_adapter *i2c) struct i2c_adapter *i2c)
{ {
struct cxd *ci = 0; struct cxd *ci = 0;
u32 bitrate = 62000000;
u8 val; u8 val;
if (i2c_read_reg(i2c, adr, 0, &val) < 0) { if (i2c_read_reg(i2c, cfg->adr, 0, &val)<0) {
printk(KERN_ERR "No CXD2099 detected at %02x\n", adr); printk("No CXD2099 detected at %02x\n", cfg->adr);
return 0; return 0;
} }
@ -554,21 +634,21 @@ struct dvb_ca_en50221 *cxd2099_attach(u8 adr, void *priv,
memset(ci, 0, sizeof(*ci)); memset(ci, 0, sizeof(*ci));
mutex_init(&ci->lock); mutex_init(&ci->lock);
memcpy(&ci->cfg, cfg, sizeof(struct cxd2099_cfg));
ci->i2c = i2c; ci->i2c = i2c;
ci->adr = adr; ci->lastaddress=0xff;
ci->lastaddress = 0xff; ci->clk_reg_b=0x4a;
ci->clk_reg_b = 0x4a; ci->clk_reg_f=0x1b;
ci->clk_reg_f = 0x1b;
ci->bitrate = bitrate;
memcpy(&ci->en, &en_templ, sizeof(en_templ)); memcpy(&ci->en, &en_templ, sizeof(en_templ));
ci->en.data = ci; ci->en.data=ci;
init(ci); init(ci);
printk(KERN_INFO "Attached CXD2099AR at %02x\n", ci->adr); printk(KERN_INFO "Attached CXD2099AR at %02x\n", ci->cfg.adr);
return &ci->en; return &ci->en;
} }
EXPORT_SYMBOL(cxd2099_attach); EXPORT_SYMBOL(cxd2099_attach);
MODULE_DESCRIPTION("cxd2099"); MODULE_DESCRIPTION("cxd2099");
MODULE_AUTHOR("Ralph Metzler <rjkm@metzlerbros.de>"); MODULE_AUTHOR("Ralph Metzler");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -1,7 +1,7 @@
/* /*
* cxd2099.h: Driver for the CXD2099AR Common Interface Controller * cxd2099.h: Driver for the CXD2099AR Common Interface Controller
* *
* Copyright (C) 2010 DigitalDevices UG * Copyright (C) 2010-2011 Digital Devices GmbH
* *
* *
* This program is free software; you can redistribute it and/or * This program is free software; you can redistribute it and/or
@ -27,11 +27,21 @@
#include <dvb_ca_en50221.h> #include <dvb_ca_en50221.h>
struct cxd2099_cfg {
u32 bitrate;
u8 adr;
u8 polarity : 1;
u8 clock_mode : 1;
};
#if defined(CONFIG_DVB_CXD2099) || \ #if defined(CONFIG_DVB_CXD2099) || \
(defined(CONFIG_DVB_CXD2099_MODULE) && defined(MODULE)) (defined(CONFIG_DVB_CXD2099_MODULE) && defined(MODULE))
struct dvb_ca_en50221 *cxd2099_attach(u8 adr, void *priv, struct i2c_adapter *i2c); struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg,
void *priv, struct i2c_adapter *i2c);
#else #else
static inline struct dvb_ca_en50221 *cxd2099_attach(u8 adr, void *priv, struct i2c_adapter *i2c)
static inline struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg,
void *priv, struct i2c_adapter *i2c);
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return NULL; return NULL;