mm: page_alloc: fix CMA and HIGHATOMIC landing on the wrong buddy list

Commit 4b23a68f95 ("mm/page_alloc: protect PCP lists with a spinlock")
bypasses the pcplist on lock contention and returns the page directly to
the buddy list of the page's migratetype.

For pages that don't have their own pcplist, such as CMA and HIGHATOMIC,
the migratetype is temporarily updated such that the page can hitch a ride
on the MOVABLE pcplist.  Their true type is later reassessed when flushing
in free_pcppages_bulk().  However, when lock contention is detected after
the type was already overridden, the bypass will then put the page on the
wrong buddy list.

Once on the MOVABLE buddy list, the page becomes eligible for fallbacks
and even stealing.  In the case of HIGHATOMIC, otherwise ineligible
allocations can dip into the highatomic reserves.  In the case of CMA, the
page can be lost from the CMA region permanently.

Use a separate pcpmigratetype variable for the pcplist override.  Use the
original migratetype when going directly to the buddy.  This fixes the bug
and should make the intentions more obvious in the code.

Originally sent here to address the HIGHATOMIC case:
https://lore.kernel.org/lkml/20230821183733.106619-4-hannes@cmpxchg.org/

Changelog updated in response to the CMA-specific bug report.

[mgorman@techsingularity.net: updated changelog]
Link: https://lkml.kernel.org/r/20230911181108.GA104295@cmpxchg.org
Fixes: 4b23a68f95 ("mm/page_alloc: protect PCP lists with a spinlock")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Joe Liu <joe.liu@mediatek.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This commit is contained in:
Johannes Weiner 2023-09-11 14:11:08 -04:00 committed by Andrew Morton
parent e72590fa56
commit 7b086755fb
1 changed files with 6 additions and 6 deletions

View File

@ -2400,7 +2400,7 @@ void free_unref_page(struct page *page, unsigned int order)
struct per_cpu_pages *pcp;
struct zone *zone;
unsigned long pfn = page_to_pfn(page);
int migratetype;
int migratetype, pcpmigratetype;
if (!free_unref_page_prepare(page, pfn, order))
return;
@ -2408,24 +2408,24 @@ void free_unref_page(struct page *page, unsigned int order)
/*
* We only track unmovable, reclaimable and movable on pcp lists.
* Place ISOLATE pages on the isolated list because they are being
* offlined but treat HIGHATOMIC as movable pages so we can get those
* areas back if necessary. Otherwise, we may have to free
* offlined but treat HIGHATOMIC and CMA as movable pages so we can
* get those areas back if necessary. Otherwise, we may have to free
* excessively into the page allocator
*/
migratetype = get_pcppage_migratetype(page);
migratetype = pcpmigratetype = get_pcppage_migratetype(page);
if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
if (unlikely(is_migrate_isolate(migratetype))) {
free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
return;
}
migratetype = MIGRATE_MOVABLE;
pcpmigratetype = MIGRATE_MOVABLE;
}
zone = page_zone(page);
pcp_trylock_prepare(UP_flags);
pcp = pcp_spin_trylock(zone->per_cpu_pageset);
if (pcp) {
free_unref_page_commit(zone, pcp, page, migratetype, order);
free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
pcp_spin_unlock(pcp);
} else {
free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);