firmware: arm_scmi: Use common iterators in the sensor protocol

Make SCMI sensor protocol use the common iterator protocol helpers
for issuing the multi-part commands.

Link: https://lore.kernel.org/r/20220330150551.2573938-15-cristian.marussi@arm.com
Signed-off-by: Cristian Marussi <cristian.marussi@arm.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
This commit is contained in:
Cristian Marussi 2022-03-30 16:05:43 +01:00 committed by Sudeep Holla
parent 36b6ea0fc6
commit 7cab537704
1 changed files with 297 additions and 285 deletions

View File

@ -64,6 +64,10 @@ struct scmi_msg_resp_attrs {
__le32 max_range_high;
};
struct scmi_msg_sensor_description {
__le32 desc_index;
};
struct scmi_msg_resp_sensor_description {
__le16 num_returned;
__le16 num_remaining;
@ -233,344 +237,352 @@ static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph,
}
static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
struct scmi_msg_resp_attrs *in)
const struct scmi_msg_resp_attrs *in)
{
out->min_range = get_unaligned_le64((void *)&in->min_range_low);
out->max_range = get_unaligned_le64((void *)&in->max_range_low);
}
struct scmi_sens_ipriv {
void *priv;
struct device *dev;
};
static void iter_intervals_prepare_message(void *message,
unsigned int desc_index,
const void *p)
{
struct scmi_msg_sensor_list_update_intervals *msg = message;
const struct scmi_sensor_info *s;
s = ((const struct scmi_sens_ipriv *)p)->priv;
/* Set the number of sensors to be skipped/already read */
msg->id = cpu_to_le32(s->id);
msg->index = cpu_to_le32(desc_index);
}
static int iter_intervals_update_state(struct scmi_iterator_state *st,
const void *response, void *p)
{
u32 flags;
struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
struct device *dev = ((struct scmi_sens_ipriv *)p)->dev;
const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
flags = le32_to_cpu(r->num_intervals_flags);
st->num_returned = NUM_INTERVALS_RETURNED(flags);
st->num_remaining = NUM_INTERVALS_REMAINING(flags);
/*
* Max intervals is not declared previously anywhere so we
* assume it's returned+remaining on first call.
*/
if (!st->max_resources) {
s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
s->intervals.count = st->num_returned + st->num_remaining;
/* segmented intervals are reported in one triplet */
if (s->intervals.segmented &&
(st->num_remaining || st->num_returned != 3)) {
dev_err(dev,
"Sensor ID:%d advertises an invalid segmented interval (%d)\n",
s->id, s->intervals.count);
s->intervals.segmented = false;
s->intervals.count = 0;
return -EINVAL;
}
/* Direct allocation when exceeding pre-allocated */
if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
s->intervals.desc =
devm_kcalloc(dev,
s->intervals.count,
sizeof(*s->intervals.desc),
GFP_KERNEL);
if (!s->intervals.desc) {
s->intervals.segmented = false;
s->intervals.count = 0;
return -ENOMEM;
}
}
st->max_resources = s->intervals.count;
}
return 0;
}
static int
iter_intervals_process_response(const struct scmi_protocol_handle *ph,
const void *response,
struct scmi_iterator_state *st, void *p)
{
const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
s->intervals.desc[st->desc_index + st->loop_idx] =
le32_to_cpu(r->intervals[st->loop_idx]);
return 0;
}
static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph,
struct scmi_sensor_info *s)
{
int ret, cnt;
u32 desc_index = 0;
u16 num_returned, num_remaining;
struct scmi_xfer *ti;
struct scmi_msg_resp_sensor_list_update_intervals *buf;
void *iter;
struct scmi_msg_sensor_list_update_intervals *msg;
struct scmi_iterator_ops ops = {
.prepare_message = iter_intervals_prepare_message,
.update_state = iter_intervals_update_state,
.process_response = iter_intervals_process_response,
};
struct scmi_sens_ipriv upriv = {
.priv = s,
.dev = ph->dev,
};
ret = ph->xops->xfer_get_init(ph, SENSOR_LIST_UPDATE_INTERVALS,
sizeof(*msg), 0, &ti);
if (ret)
return ret;
iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count,
SENSOR_LIST_UPDATE_INTERVALS,
sizeof(*msg), &upriv);
if (IS_ERR(iter))
return PTR_ERR(iter);
buf = ti->rx.buf;
do {
u32 flags;
return ph->hops->iter_response_run(iter);
}
msg = ti->tx.buf;
/* Set the number of sensors to be skipped/already read */
msg->id = cpu_to_le32(s->id);
msg->index = cpu_to_le32(desc_index);
static void iter_axes_desc_prepare_message(void *message,
const unsigned int desc_index,
const void *priv)
{
struct scmi_msg_sensor_axis_description_get *msg = message;
const struct scmi_sensor_info *s = priv;
ret = ph->xops->do_xfer(ph, ti);
if (ret)
break;
/* Set the number of sensors to be skipped/already read */
msg->id = cpu_to_le32(s->id);
msg->axis_desc_index = cpu_to_le32(desc_index);
}
flags = le32_to_cpu(buf->num_intervals_flags);
num_returned = NUM_INTERVALS_RETURNED(flags);
num_remaining = NUM_INTERVALS_REMAINING(flags);
static int
iter_axes_desc_update_state(struct scmi_iterator_state *st,
const void *response, void *priv)
{
u32 flags;
const struct scmi_msg_resp_sensor_axis_description *r = response;
/*
* Max intervals is not declared previously anywhere so we
* assume it's returned+remaining.
*/
if (!s->intervals.count) {
s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
s->intervals.count = num_returned + num_remaining;
/* segmented intervals are reported in one triplet */
if (s->intervals.segmented &&
(num_remaining || num_returned != 3)) {
dev_err(ph->dev,
"Sensor ID:%d advertises an invalid segmented interval (%d)\n",
s->id, s->intervals.count);
s->intervals.segmented = false;
s->intervals.count = 0;
ret = -EINVAL;
break;
}
/* Direct allocation when exceeding pre-allocated */
if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
s->intervals.desc =
devm_kcalloc(ph->dev,
s->intervals.count,
sizeof(*s->intervals.desc),
GFP_KERNEL);
if (!s->intervals.desc) {
s->intervals.segmented = false;
s->intervals.count = 0;
ret = -ENOMEM;
break;
}
}
} else if (desc_index + num_returned > s->intervals.count) {
dev_err(ph->dev,
"No. of update intervals can't exceed %d\n",
s->intervals.count);
ret = -EINVAL;
break;
}
flags = le32_to_cpu(r->num_axis_flags);
st->num_returned = NUM_AXIS_RETURNED(flags);
st->num_remaining = NUM_AXIS_REMAINING(flags);
st->priv = (void *)&r->desc[0];
for (cnt = 0; cnt < num_returned; cnt++)
s->intervals.desc[desc_index + cnt] =
le32_to_cpu(buf->intervals[cnt]);
return 0;
}
desc_index += num_returned;
static int
iter_axes_desc_process_response(const struct scmi_protocol_handle *ph,
const void *response,
struct scmi_iterator_state *st, void *priv)
{
u32 attrh, attrl;
struct scmi_sensor_axis_info *a;
size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
struct scmi_sensor_info *s = priv;
const struct scmi_axis_descriptor *adesc = st->priv;
ph->xops->reset_rx_to_maxsz(ph, ti);
/*
* check for both returned and remaining to avoid infinite
* loop due to buggy firmware
*/
} while (num_returned && num_remaining);
attrl = le32_to_cpu(adesc->attributes_low);
ph->xops->xfer_put(ph, ti);
return ret;
a = &s->axis[st->desc_index + st->loop_idx];
a->id = le32_to_cpu(adesc->id);
a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
attrh = le32_to_cpu(adesc->attributes_high);
a->scale = S32_EXT(SENSOR_SCALE(attrh));
a->type = SENSOR_TYPE(attrh);
strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
if (a->extended_attrs) {
unsigned int ares = le32_to_cpu(adesc->resolution);
a->resolution = SENSOR_RES(ares);
a->exponent = S32_EXT(SENSOR_RES_EXP(ares));
dsize += sizeof(adesc->resolution);
scmi_parse_range_attrs(&a->attrs, &adesc->attrs);
dsize += sizeof(adesc->attrs);
}
st->priv = ((u8 *)adesc + dsize);
return 0;
}
static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph,
struct scmi_sensor_info *s)
{
int ret, cnt;
u32 desc_index = 0;
u16 num_returned, num_remaining;
struct scmi_xfer *te;
struct scmi_msg_resp_sensor_axis_description *buf;
void *iter;
struct scmi_msg_sensor_axis_description_get *msg;
struct scmi_iterator_ops ops = {
.prepare_message = iter_axes_desc_prepare_message,
.update_state = iter_axes_desc_update_state,
.process_response = iter_axes_desc_process_response,
};
s->axis = devm_kcalloc(ph->dev, s->num_axis,
sizeof(*s->axis), GFP_KERNEL);
if (!s->axis)
return -ENOMEM;
ret = ph->xops->xfer_get_init(ph, SENSOR_AXIS_DESCRIPTION_GET,
sizeof(*msg), 0, &te);
if (ret)
return ret;
iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
SENSOR_AXIS_DESCRIPTION_GET,
sizeof(*msg), s);
if (IS_ERR(iter))
return PTR_ERR(iter);
buf = te->rx.buf;
do {
u32 flags;
struct scmi_axis_descriptor *adesc;
return ph->hops->iter_response_run(iter);
}
msg = te->tx.buf;
/* Set the number of sensors to be skipped/already read */
msg->id = cpu_to_le32(s->id);
msg->axis_desc_index = cpu_to_le32(desc_index);
static void iter_sens_descr_prepare_message(void *message,
unsigned int desc_index,
const void *priv)
{
struct scmi_msg_sensor_description *msg = message;
ret = ph->xops->do_xfer(ph, te);
if (ret)
break;
msg->desc_index = cpu_to_le32(desc_index);
}
flags = le32_to_cpu(buf->num_axis_flags);
num_returned = NUM_AXIS_RETURNED(flags);
num_remaining = NUM_AXIS_REMAINING(flags);
static int iter_sens_descr_update_state(struct scmi_iterator_state *st,
const void *response, void *priv)
{
const struct scmi_msg_resp_sensor_description *r = response;
if (desc_index + num_returned > s->num_axis) {
dev_err(ph->dev, "No. of axis can't exceed %d\n",
s->num_axis);
break;
}
st->num_returned = le16_to_cpu(r->num_returned);
st->num_remaining = le16_to_cpu(r->num_remaining);
st->priv = (void *)&r->desc[0];
adesc = &buf->desc[0];
for (cnt = 0; cnt < num_returned; cnt++) {
u32 attrh, attrl;
struct scmi_sensor_axis_info *a;
size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
return 0;
}
attrl = le32_to_cpu(adesc->attributes_low);
static int
iter_sens_descr_process_response(const struct scmi_protocol_handle *ph,
const void *response,
struct scmi_iterator_state *st, void *priv)
a = &s->axis[desc_index + cnt];
{
int ret = 0;
u32 attrh, attrl;
size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
struct scmi_sensor_info *s;
struct sensors_info *si = priv;
const struct scmi_sensor_descriptor *sdesc = st->priv;
a->id = le32_to_cpu(adesc->id);
a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
s = &si->sensors[st->desc_index + st->loop_idx];
s->id = le32_to_cpu(sdesc->id);
attrh = le32_to_cpu(adesc->attributes_high);
a->scale = S32_EXT(SENSOR_SCALE(attrh));
a->type = SENSOR_TYPE(attrh);
strlcpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
attrl = le32_to_cpu(sdesc->attributes_low);
/* common bitfields parsing */
s->async = SUPPORTS_ASYNC_READ(attrl);
s->num_trip_points = NUM_TRIP_POINTS(attrl);
/**
* only SCMIv3.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
s->timestamped = SUPPORTS_TIMESTAMP(attrl);
if (s->timestamped)
s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl));
s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
if (a->extended_attrs) {
unsigned int ares =
le32_to_cpu(adesc->resolution);
a->resolution = SENSOR_RES(ares);
a->exponent =
S32_EXT(SENSOR_RES_EXP(ares));
dsize += sizeof(adesc->resolution);
scmi_parse_range_attrs(&a->attrs,
&adesc->attrs);
dsize += sizeof(adesc->attrs);
}
adesc = (typeof(adesc))((u8 *)adesc + dsize);
}
desc_index += num_returned;
ph->xops->reset_rx_to_maxsz(ph, te);
attrh = le32_to_cpu(sdesc->attributes_high);
/* common bitfields parsing */
s->scale = S32_EXT(SENSOR_SCALE(attrh));
s->type = SENSOR_TYPE(attrh);
/* Use pre-allocated pool wherever possible */
s->intervals.desc = s->intervals.prealloc_pool;
if (si->version == SCMIv2_SENSOR_PROTOCOL) {
s->intervals.segmented = false;
s->intervals.count = 1;
/*
* check for both returned and remaining to avoid infinite
* loop due to buggy firmware
* Convert SCMIv2.0 update interval format to
* SCMIv3.0 to be used as the common exposed
* descriptor, accessible via common macros.
*/
} while (num_returned && num_remaining);
s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) |
SENSOR_UPDATE_SCALE(attrh);
} else {
/*
* From SCMIv3.0 update intervals are retrieved
* via a dedicated (optional) command.
* Since the command is optional, on error carry
* on without any update interval.
*/
if (scmi_sensor_update_intervals(ph, s))
dev_dbg(ph->dev,
"Update Intervals not available for sensor ID:%d\n",
s->id);
}
/**
* only > SCMIv2.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->num_axis = min_t(unsigned int,
SUPPORTS_AXIS(attrh) ?
SENSOR_AXIS_NUMBER(attrh) : 0,
SCMI_MAX_NUM_SENSOR_AXIS);
strscpy(s->name, sdesc->name, SCMI_MAX_STR_SIZE);
/*
* If supported overwrite short name with the extended
* one; on error just carry on and use already provided
* short name.
*/
if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
SUPPORTS_EXTENDED_NAMES(attrl))
ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id,
s->name, SCMI_MAX_STR_SIZE);
if (s->extended_scalar_attrs) {
s->sensor_power = le32_to_cpu(sdesc->power);
dsize += sizeof(sdesc->power);
/* Only for sensors reporting scalar values */
if (s->num_axis == 0) {
unsigned int sres = le32_to_cpu(sdesc->resolution);
s->resolution = SENSOR_RES(sres);
s->exponent = S32_EXT(SENSOR_RES_EXP(sres));
dsize += sizeof(sdesc->resolution);
scmi_parse_range_attrs(&s->scalar_attrs,
&sdesc->scalar_attrs);
dsize += sizeof(sdesc->scalar_attrs);
}
}
if (s->num_axis > 0)
ret = scmi_sensor_axis_description(ph, s);
st->priv = ((u8 *)sdesc + dsize);
ph->xops->xfer_put(ph, te);
return ret;
}
static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph,
struct sensors_info *si)
{
int ret, cnt;
u32 desc_index = 0;
u16 num_returned, num_remaining;
struct scmi_xfer *t;
struct scmi_msg_resp_sensor_description *buf;
void *iter;
struct scmi_iterator_ops ops = {
.prepare_message = iter_sens_descr_prepare_message,
.update_state = iter_sens_descr_update_state,
.process_response = iter_sens_descr_process_response,
};
ret = ph->xops->xfer_get_init(ph, SENSOR_DESCRIPTION_GET,
sizeof(__le32), 0, &t);
if (ret)
return ret;
iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors,
SENSOR_DESCRIPTION_GET,
sizeof(__le32), si);
if (IS_ERR(iter))
return PTR_ERR(iter);
buf = t->rx.buf;
do {
struct scmi_sensor_descriptor *sdesc;
/* Set the number of sensors to be skipped/already read */
put_unaligned_le32(desc_index, t->tx.buf);
ret = ph->xops->do_xfer(ph, t);
if (ret)
break;
num_returned = le16_to_cpu(buf->num_returned);
num_remaining = le16_to_cpu(buf->num_remaining);
if (desc_index + num_returned > si->num_sensors) {
dev_err(ph->dev, "No. of sensors can't exceed %d",
si->num_sensors);
break;
}
sdesc = &buf->desc[0];
for (cnt = 0; cnt < num_returned; cnt++) {
u32 attrh, attrl;
struct scmi_sensor_info *s;
size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
s = &si->sensors[desc_index + cnt];
s->id = le32_to_cpu(sdesc->id);
attrl = le32_to_cpu(sdesc->attributes_low);
/* common bitfields parsing */
s->async = SUPPORTS_ASYNC_READ(attrl);
s->num_trip_points = NUM_TRIP_POINTS(attrl);
/**
* only SCMIv3.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
s->timestamped = SUPPORTS_TIMESTAMP(attrl);
if (s->timestamped)
s->tstamp_scale =
S32_EXT(SENSOR_TSTAMP_EXP(attrl));
s->extended_scalar_attrs =
SUPPORTS_EXTEND_ATTRS(attrl);
attrh = le32_to_cpu(sdesc->attributes_high);
/* common bitfields parsing */
s->scale = S32_EXT(SENSOR_SCALE(attrh));
s->type = SENSOR_TYPE(attrh);
/* Use pre-allocated pool wherever possible */
s->intervals.desc = s->intervals.prealloc_pool;
if (si->version == SCMIv2_SENSOR_PROTOCOL) {
s->intervals.segmented = false;
s->intervals.count = 1;
/*
* Convert SCMIv2.0 update interval format to
* SCMIv3.0 to be used as the common exposed
* descriptor, accessible via common macros.
*/
s->intervals.desc[0] =
(SENSOR_UPDATE_BASE(attrh) << 5) |
SENSOR_UPDATE_SCALE(attrh);
} else {
/*
* From SCMIv3.0 update intervals are retrieved
* via a dedicated (optional) command.
* Since the command is optional, on error carry
* on without any update interval.
*/
if (scmi_sensor_update_intervals(ph, s))
dev_dbg(ph->dev,
"Update Intervals not available for sensor ID:%d\n",
s->id);
}
/**
* only > SCMIv2.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->num_axis = min_t(unsigned int,
SUPPORTS_AXIS(attrh) ?
SENSOR_AXIS_NUMBER(attrh) : 0,
SCMI_MAX_NUM_SENSOR_AXIS);
strlcpy(s->name, sdesc->name, SCMI_MAX_STR_SIZE);
/*
* If supported overwrite short name with the extended
* one; on error just carry on and use already provided
* short name.
*/
if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
SUPPORTS_EXTENDED_NAMES(attrl))
ph->hops->extended_name_get(ph, SENSOR_NAME_GET,
s->id, s->name,
SCMI_MAX_STR_SIZE);
if (s->extended_scalar_attrs) {
s->sensor_power = le32_to_cpu(sdesc->power);
dsize += sizeof(sdesc->power);
/* Only for sensors reporting scalar values */
if (s->num_axis == 0) {
unsigned int sres =
le32_to_cpu(sdesc->resolution);
s->resolution = SENSOR_RES(sres);
s->exponent =
S32_EXT(SENSOR_RES_EXP(sres));
dsize += sizeof(sdesc->resolution);
scmi_parse_range_attrs(&s->scalar_attrs,
&sdesc->scalar_attrs);
dsize += sizeof(sdesc->scalar_attrs);
}
}
if (s->num_axis > 0) {
ret = scmi_sensor_axis_description(ph, s);
if (ret)
goto out;
}
sdesc = (typeof(sdesc))((u8 *)sdesc + dsize);
}
desc_index += num_returned;
ph->xops->reset_rx_to_maxsz(ph, t);
/*
* check for both returned and remaining to avoid infinite
* loop due to buggy firmware
*/
} while (num_returned && num_remaining);
out:
ph->xops->xfer_put(ph, t);
return ret;
return ph->hops->iter_response_run(iter);
}
static inline int