bpf, docs: s/eBPF/BPF in standards documents

There isn't really anything other than just "BPF" at this point,
so referring to it as "eBPF" in our standards document just causes
unnecessary confusion. Let's just be consistent and use "BPF".

Suggested-by: Will Hawkins <hawkinsw@obs.cr>
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230828155948.123405-4-void@manifault.com
This commit is contained in:
David Vernet 2023-08-28 10:59:48 -05:00 committed by Daniel Borkmann
parent deb8840725
commit 7d35eb1a18
1 changed files with 11 additions and 11 deletions

View File

@ -1,11 +1,11 @@
.. contents::
.. sectnum::
========================================
eBPF Instruction Set Specification, v1.0
========================================
=======================================
BPF Instruction Set Specification, v1.0
=======================================
This document specifies version 1.0 of the eBPF instruction set.
This document specifies version 1.0 of the BPF instruction set.
Documentation conventions
=========================
@ -100,7 +100,7 @@ Definitions
Instruction encoding
====================
eBPF has two instruction encodings:
BPF has two instruction encodings:
* the basic instruction encoding, which uses 64 bits to encode an instruction
* the wide instruction encoding, which appends a second 64-bit immediate (i.e.,
@ -244,7 +244,7 @@ BPF_END 0xd0 0 byte swap operations (see `Byte swap instructions`_ b
========= ===== ======= ==========================================================
Underflow and overflow are allowed during arithmetic operations, meaning
the 64-bit or 32-bit value will wrap. If eBPF program execution would
the 64-bit or 32-bit value will wrap. If BPF program execution would
result in division by zero, the destination register is instead set to zero.
If execution would result in modulo by zero, for ``BPF_ALU64`` the value of
the destination register is unchanged whereas for ``BPF_ALU`` the upper
@ -366,7 +366,7 @@ BPF_JSLT 0xc any PC += offset if dst < src signed
BPF_JSLE 0xd any PC += offset if dst <= src signed
======== ===== === =========================================== =========================================
The eBPF program needs to store the return value into register R0 before doing a
The BPF program needs to store the return value into register R0 before doing a
``BPF_EXIT``.
Example:
@ -486,9 +486,9 @@ Atomic operations
Atomic operations are operations that operate on memory and can not be
interrupted or corrupted by other access to the same memory region
by other eBPF programs or means outside of this specification.
by other BPF programs or means outside of this specification.
All atomic operations supported by eBPF are encoded as store operations
All atomic operations supported by BPF are encoded as store operations
that use the ``BPF_ATOMIC`` mode modifier as follows:
* ``BPF_ATOMIC | BPF_W | BPF_STX`` for 32-bit operations
@ -578,7 +578,7 @@ where
Maps
~~~~
Maps are shared memory regions accessible by eBPF programs on some platforms.
Maps are shared memory regions accessible by BPF programs on some platforms.
A map can have various semantics as defined in a separate document, and may or
may not have a single contiguous memory region, but the 'map_val(map)' is
currently only defined for maps that do have a single contiguous memory region.
@ -600,6 +600,6 @@ identified by the given id.
Legacy BPF Packet access instructions
-------------------------------------
eBPF previously introduced special instructions for access to packet data that were
BPF previously introduced special instructions for access to packet data that were
carried over from classic BPF. However, these instructions are
deprecated and should no longer be used.