Merge branch kvm-arm64/pkvm-6.10 into kvmarm-master/next

* kvm-arm64/pkvm-6.10: (25 commits)
  : .
  : At last, a bunch of pKVM patches, courtesy of Fuad Tabba.
  : From the cover letter:
  :
  : "This series is a bit of a bombay-mix of patches we've been
  : carrying. There's no one overarching theme, but they do improve
  : the code by fixing existing bugs in pKVM, refactoring code to
  : make it more readable and easier to re-use for pKVM, or adding
  : functionality to the existing pKVM code upstream."
  : .
  KVM: arm64: Force injection of a data abort on NISV MMIO exit
  KVM: arm64: Restrict supported capabilities for protected VMs
  KVM: arm64: Refactor setting the return value in kvm_vm_ioctl_enable_cap()
  KVM: arm64: Document the KVM/arm64-specific calls in hypercalls.rst
  KVM: arm64: Rename firmware pseudo-register documentation file
  KVM: arm64: Reformat/beautify PTP hypercall documentation
  KVM: arm64: Clarify rationale for ZCR_EL1 value restored on guest exit
  KVM: arm64: Introduce and use predicates that check for protected VMs
  KVM: arm64: Add is_pkvm_initialized() helper
  KVM: arm64: Simplify vgic-v3 hypercalls
  KVM: arm64: Move setting the page as dirty out of the critical section
  KVM: arm64: Change kvm_handle_mmio_return() return polarity
  KVM: arm64: Fix comment for __pkvm_vcpu_init_traps()
  KVM: arm64: Prevent kmemleak from accessing .hyp.data
  KVM: arm64: Do not map the host fpsimd state to hyp in pKVM
  KVM: arm64: Rename __tlb_switch_to_{guest,host}() in VHE
  KVM: arm64: Support TLB invalidation in guest context
  KVM: arm64: Avoid BBM when changing only s/w bits in Stage-2 PTE
  KVM: arm64: Check for PTE validity when checking for executable/cacheable
  KVM: arm64: Avoid BUG-ing from the host abort path
  ...

Signed-off-by: Marc Zyngier <maz@kernel.org>
This commit is contained in:
Marc Zyngier 2024-05-03 11:39:52 +01:00
commit 8540bd1b99
33 changed files with 513 additions and 344 deletions

View File

@ -6894,6 +6894,13 @@ Note that KVM does not skip the faulting instruction as it does for
KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state
if it decides to decode and emulate the instruction.
This feature isn't available to protected VMs, as userspace does not
have access to the state that is required to perform the emulation.
Instead, a data abort exception is directly injected in the guest.
Note that although KVM_CAP_ARM_NISV_TO_USER will be reported if
queried outside of a protected VM context, the feature will not be
exposed if queried on a protected VM file descriptor.
::
/* KVM_EXIT_X86_RDMSR / KVM_EXIT_X86_WRMSR */

View File

@ -0,0 +1,138 @@
.. SPDX-License-Identifier: GPL-2.0
=======================================
ARM firmware pseudo-registers interface
=======================================
KVM handles the hypercall services as requested by the guests. New hypercall
services are regularly made available by the ARM specification or by KVM (as
vendor services) if they make sense from a virtualization point of view.
This means that a guest booted on two different versions of KVM can observe
two different "firmware" revisions. This could cause issues if a given guest
is tied to a particular version of a hypercall service, or if a migration
causes a different version to be exposed out of the blue to an unsuspecting
guest.
In order to remedy this situation, KVM exposes a set of "firmware
pseudo-registers" that can be manipulated using the GET/SET_ONE_REG
interface. These registers can be saved/restored by userspace, and set
to a convenient value as required.
The following registers are defined:
* KVM_REG_ARM_PSCI_VERSION:
KVM implements the PSCI (Power State Coordination Interface)
specification in order to provide services such as CPU on/off, reset
and power-off to the guest.
- Only valid if the vcpu has the KVM_ARM_VCPU_PSCI_0_2 feature set
(and thus has already been initialized)
- Returns the current PSCI version on GET_ONE_REG (defaulting to the
highest PSCI version implemented by KVM and compatible with v0.2)
- Allows any PSCI version implemented by KVM and compatible with
v0.2 to be set with SET_ONE_REG
- Affects the whole VM (even if the register view is per-vcpu)
* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
Holds the state of the firmware support to mitigate CVE-2017-5715, as
offered by KVM to the guest via a HVC call. The workaround is described
under SMCCC_ARCH_WORKAROUND_1 in [1].
Accepted values are:
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL:
KVM does not offer
firmware support for the workaround. The mitigation status for the
guest is unknown.
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL:
The workaround HVC call is
available to the guest and required for the mitigation.
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED:
The workaround HVC call
is available to the guest, but it is not needed on this VCPU.
* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
Holds the state of the firmware support to mitigate CVE-2018-3639, as
offered by KVM to the guest via a HVC call. The workaround is described
under SMCCC_ARCH_WORKAROUND_2 in [1]_.
Accepted values are:
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL:
A workaround is not
available. KVM does not offer firmware support for the workaround.
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN:
The workaround state is
unknown. KVM does not offer firmware support for the workaround.
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
The workaround is available,
and can be disabled by a vCPU. If
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED is set, it is active for
this vCPU.
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
The workaround is always active on this vCPU or it is not needed.
Bitmap Feature Firmware Registers
---------------------------------
Contrary to the above registers, the following registers exposes the
hypercall services in the form of a feature-bitmap to the userspace. This
bitmap is translated to the services that are available to the guest.
There is a register defined per service call owner and can be accessed via
GET/SET_ONE_REG interface.
By default, these registers are set with the upper limit of the features
that are supported. This way userspace can discover all the usable
hypercall services via GET_ONE_REG. The user-space can write-back the
desired bitmap back via SET_ONE_REG. The features for the registers that
are untouched, probably because userspace isn't aware of them, will be
exposed as is to the guest.
Note that KVM will not allow the userspace to configure the registers
anymore once any of the vCPUs has run at least once. Instead, it will
return a -EBUSY.
The pseudo-firmware bitmap register are as follows:
* KVM_REG_ARM_STD_BMAP:
Controls the bitmap of the ARM Standard Secure Service Calls.
The following bits are accepted:
Bit-0: KVM_REG_ARM_STD_BIT_TRNG_V1_0:
The bit represents the services offered under v1.0 of ARM True Random
Number Generator (TRNG) specification, ARM DEN0098.
* KVM_REG_ARM_STD_HYP_BMAP:
Controls the bitmap of the ARM Standard Hypervisor Service Calls.
The following bits are accepted:
Bit-0: KVM_REG_ARM_STD_HYP_BIT_PV_TIME:
The bit represents the Paravirtualized Time service as represented by
ARM DEN0057A.
* KVM_REG_ARM_VENDOR_HYP_BMAP:
Controls the bitmap of the Vendor specific Hypervisor Service Calls.
The following bits are accepted:
Bit-0: KVM_REG_ARM_VENDOR_HYP_BIT_FUNC_FEAT
The bit represents the ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID
and ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID function-ids.
Bit-1: KVM_REG_ARM_VENDOR_HYP_BIT_PTP:
The bit represents the Precision Time Protocol KVM service.
Errors:
======= =============================================================
-ENOENT Unknown register accessed.
-EBUSY Attempt a 'write' to the register after the VM has started.
-EINVAL Invalid bitmap written to the register.
======= =============================================================
.. [1] https://developer.arm.com/-/media/developer/pdf/ARM_DEN_0070A_Firmware_interfaces_for_mitigating_CVE-2017-5715.pdf

View File

@ -1,138 +1,46 @@
.. SPDX-License-Identifier: GPL-2.0
=======================
ARM Hypercall Interface
=======================
===============================================
KVM/arm64-specific hypercalls exposed to guests
===============================================
KVM handles the hypercall services as requested by the guests. New hypercall
services are regularly made available by the ARM specification or by KVM (as
vendor services) if they make sense from a virtualization point of view.
This file documents the KVM/arm64-specific hypercalls which may be
exposed by KVM/arm64 to guest operating systems. These hypercalls are
issued using the HVC instruction according to version 1.1 of the Arm SMC
Calling Convention (DEN0028/C):
This means that a guest booted on two different versions of KVM can observe
two different "firmware" revisions. This could cause issues if a given guest
is tied to a particular version of a hypercall service, or if a migration
causes a different version to be exposed out of the blue to an unsuspecting
guest.
https://developer.arm.com/docs/den0028/c
In order to remedy this situation, KVM exposes a set of "firmware
pseudo-registers" that can be manipulated using the GET/SET_ONE_REG
interface. These registers can be saved/restored by userspace, and set
to a convenient value as required.
All KVM/arm64-specific hypercalls are allocated within the "Vendor
Specific Hypervisor Service Call" range with a UID of
``28b46fb6-2ec5-11e9-a9ca-4b564d003a74``. This UID should be queried by the
guest using the standard "Call UID" function for the service range in
order to determine that the KVM/arm64-specific hypercalls are available.
The following registers are defined:
``ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID``
---------------------------------------------
* KVM_REG_ARM_PSCI_VERSION:
Provides a discovery mechanism for other KVM/arm64 hypercalls.
KVM implements the PSCI (Power State Coordination Interface)
specification in order to provide services such as CPU on/off, reset
and power-off to the guest.
+---------------------+-------------------------------------------------------------+
| Presence: | Mandatory for the KVM/arm64 UID |
+---------------------+-------------------------------------------------------------+
| Calling convention: | HVC32 |
+---------------------+----------+--------------------------------------------------+
| Function ID: | (uint32) | 0x86000000 |
+---------------------+----------+--------------------------------------------------+
| Arguments: | None |
+---------------------+----------+----+---------------------------------------------+
| Return Values: | (uint32) | R0 | Bitmap of available function numbers 0-31 |
| +----------+----+---------------------------------------------+
| | (uint32) | R1 | Bitmap of available function numbers 32-63 |
| +----------+----+---------------------------------------------+
| | (uint32) | R2 | Bitmap of available function numbers 64-95 |
| +----------+----+---------------------------------------------+
| | (uint32) | R3 | Bitmap of available function numbers 96-127 |
+---------------------+----------+----+---------------------------------------------+
- Only valid if the vcpu has the KVM_ARM_VCPU_PSCI_0_2 feature set
(and thus has already been initialized)
- Returns the current PSCI version on GET_ONE_REG (defaulting to the
highest PSCI version implemented by KVM and compatible with v0.2)
- Allows any PSCI version implemented by KVM and compatible with
v0.2 to be set with SET_ONE_REG
- Affects the whole VM (even if the register view is per-vcpu)
``ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID``
----------------------------------------
* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
Holds the state of the firmware support to mitigate CVE-2017-5715, as
offered by KVM to the guest via a HVC call. The workaround is described
under SMCCC_ARCH_WORKAROUND_1 in [1].
Accepted values are:
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL:
KVM does not offer
firmware support for the workaround. The mitigation status for the
guest is unknown.
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL:
The workaround HVC call is
available to the guest and required for the mitigation.
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED:
The workaround HVC call
is available to the guest, but it is not needed on this VCPU.
* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
Holds the state of the firmware support to mitigate CVE-2018-3639, as
offered by KVM to the guest via a HVC call. The workaround is described
under SMCCC_ARCH_WORKAROUND_2 in [1]_.
Accepted values are:
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL:
A workaround is not
available. KVM does not offer firmware support for the workaround.
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN:
The workaround state is
unknown. KVM does not offer firmware support for the workaround.
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
The workaround is available,
and can be disabled by a vCPU. If
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED is set, it is active for
this vCPU.
KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
The workaround is always active on this vCPU or it is not needed.
Bitmap Feature Firmware Registers
---------------------------------
Contrary to the above registers, the following registers exposes the
hypercall services in the form of a feature-bitmap to the userspace. This
bitmap is translated to the services that are available to the guest.
There is a register defined per service call owner and can be accessed via
GET/SET_ONE_REG interface.
By default, these registers are set with the upper limit of the features
that are supported. This way userspace can discover all the usable
hypercall services via GET_ONE_REG. The user-space can write-back the
desired bitmap back via SET_ONE_REG. The features for the registers that
are untouched, probably because userspace isn't aware of them, will be
exposed as is to the guest.
Note that KVM will not allow the userspace to configure the registers
anymore once any of the vCPUs has run at least once. Instead, it will
return a -EBUSY.
The pseudo-firmware bitmap register are as follows:
* KVM_REG_ARM_STD_BMAP:
Controls the bitmap of the ARM Standard Secure Service Calls.
The following bits are accepted:
Bit-0: KVM_REG_ARM_STD_BIT_TRNG_V1_0:
The bit represents the services offered under v1.0 of ARM True Random
Number Generator (TRNG) specification, ARM DEN0098.
* KVM_REG_ARM_STD_HYP_BMAP:
Controls the bitmap of the ARM Standard Hypervisor Service Calls.
The following bits are accepted:
Bit-0: KVM_REG_ARM_STD_HYP_BIT_PV_TIME:
The bit represents the Paravirtualized Time service as represented by
ARM DEN0057A.
* KVM_REG_ARM_VENDOR_HYP_BMAP:
Controls the bitmap of the Vendor specific Hypervisor Service Calls.
The following bits are accepted:
Bit-0: KVM_REG_ARM_VENDOR_HYP_BIT_FUNC_FEAT
The bit represents the ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID
and ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID function-ids.
Bit-1: KVM_REG_ARM_VENDOR_HYP_BIT_PTP:
The bit represents the Precision Time Protocol KVM service.
Errors:
======= =============================================================
-ENOENT Unknown register accessed.
-EBUSY Attempt a 'write' to the register after the VM has started.
-EINVAL Invalid bitmap written to the register.
======= =============================================================
.. [1] https://developer.arm.com/-/media/developer/pdf/ARM_DEN_0070A_Firmware_interfaces_for_mitigating_CVE-2017-5715.pdf
See ptp_kvm.rst

View File

@ -7,6 +7,7 @@ ARM
.. toctree::
:maxdepth: 2
fw-pseudo-registers
hyp-abi
hypercalls
pvtime

View File

@ -7,19 +7,29 @@ PTP_KVM is used for high precision time sync between host and guests.
It relies on transferring the wall clock and counter value from the
host to the guest using a KVM-specific hypercall.
* ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID: 0x86000001
``ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID``
----------------------------------------
This hypercall uses the SMC32/HVC32 calling convention:
Retrieve current time information for the specific counter. There are no
endianness restrictions.
ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID
============== ======== =====================================
Function ID: (uint32) 0x86000001
Arguments: (uint32) KVM_PTP_VIRT_COUNTER(0)
KVM_PTP_PHYS_COUNTER(1)
Return Values: (int32) NOT_SUPPORTED(-1) on error, or
(uint32) Upper 32 bits of wall clock time (r0)
(uint32) Lower 32 bits of wall clock time (r1)
(uint32) Upper 32 bits of counter (r2)
(uint32) Lower 32 bits of counter (r3)
Endianness: No Restrictions.
============== ======== =====================================
+---------------------+-------------------------------------------------------+
| Presence: | Optional |
+---------------------+-------------------------------------------------------+
| Calling convention: | HVC32 |
+---------------------+----------+--------------------------------------------+
| Function ID: | (uint32) | 0x86000001 |
+---------------------+----------+----+---------------------------------------+
| Arguments: | (uint32) | R1 | ``KVM_PTP_VIRT_COUNTER (0)`` |
| | | +---------------------------------------+
| | | | ``KVM_PTP_PHYS_COUNTER (1)`` |
+---------------------+----------+----+---------------------------------------+
| Return Values: | (int32) | R0 | ``NOT_SUPPORTED (-1)`` on error, else |
| | | | upper 32 bits of wall clock time |
| +----------+----+---------------------------------------+
| | (uint32) | R1 | Lower 32 bits of wall clock time |
| +----------+----+---------------------------------------+
| | (uint32) | R2 | Upper 32 bits of counter |
| +----------+----+---------------------------------------+
| | (uint32) | R3 | Lower 32 bits of counter |
+---------------------+----------+----+---------------------------------------+

View File

@ -73,10 +73,8 @@ enum __kvm_host_smccc_func {
__KVM_HOST_SMCCC_FUNC___kvm_tlb_flush_vmid_range,
__KVM_HOST_SMCCC_FUNC___kvm_flush_cpu_context,
__KVM_HOST_SMCCC_FUNC___kvm_timer_set_cntvoff,
__KVM_HOST_SMCCC_FUNC___vgic_v3_read_vmcr,
__KVM_HOST_SMCCC_FUNC___vgic_v3_write_vmcr,
__KVM_HOST_SMCCC_FUNC___vgic_v3_save_aprs,
__KVM_HOST_SMCCC_FUNC___vgic_v3_restore_aprs,
__KVM_HOST_SMCCC_FUNC___vgic_v3_save_vmcr_aprs,
__KVM_HOST_SMCCC_FUNC___vgic_v3_restore_vmcr_aprs,
__KVM_HOST_SMCCC_FUNC___pkvm_vcpu_init_traps,
__KVM_HOST_SMCCC_FUNC___pkvm_init_vm,
__KVM_HOST_SMCCC_FUNC___pkvm_init_vcpu,
@ -241,8 +239,6 @@ extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
extern void __kvm_adjust_pc(struct kvm_vcpu *vcpu);
extern u64 __vgic_v3_get_gic_config(void);
extern u64 __vgic_v3_read_vmcr(void);
extern void __vgic_v3_write_vmcr(u32 vmcr);
extern void __vgic_v3_init_lrs(void);
extern u64 __kvm_get_mdcr_el2(void);

View File

@ -577,16 +577,14 @@ static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu)
} else if (has_hvhe()) {
val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN);
if (!vcpu_has_sve(vcpu) ||
(*host_data_ptr(fp_owner) != FP_STATE_GUEST_OWNED))
if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs())
val |= CPACR_EL1_ZEN_EL1EN | CPACR_EL1_ZEN_EL0EN;
if (cpus_have_final_cap(ARM64_SME))
val |= CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN;
} else {
val = CPTR_NVHE_EL2_RES1;
if (vcpu_has_sve(vcpu) &&
(*host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED))
if (vcpu_has_sve(vcpu) && guest_owns_fp_regs())
val |= CPTR_EL2_TZ;
if (cpus_have_final_cap(ARM64_SME))
val &= ~CPTR_EL2_TSM;

View File

@ -211,6 +211,7 @@ typedef unsigned int pkvm_handle_t;
struct kvm_protected_vm {
pkvm_handle_t handle;
struct kvm_hyp_memcache teardown_mc;
bool enabled;
};
struct kvm_mpidr_data {
@ -663,8 +664,6 @@ struct kvm_vcpu_arch {
struct kvm_guest_debug_arch vcpu_debug_state;
struct kvm_guest_debug_arch external_debug_state;
struct task_struct *parent_task;
/* VGIC state */
struct vgic_cpu vgic_cpu;
struct arch_timer_cpu timer_cpu;
@ -1212,6 +1211,18 @@ DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
&this_cpu_ptr_hyp_sym(kvm_host_data)->f)
#endif
/* Check whether the FP regs are owned by the guest */
static inline bool guest_owns_fp_regs(void)
{
return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
}
/* Check whether the FP regs are owned by the host */
static inline bool host_owns_fp_regs(void)
{
return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
}
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
{
/* The host's MPIDR is immutable, so let's set it up at boot time */
@ -1255,7 +1266,6 @@ void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
{
@ -1291,10 +1301,9 @@ struct kvm *kvm_arch_alloc_vm(void);
#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
static inline bool kvm_vm_is_protected(struct kvm *kvm)
{
return false;
}
#define kvm_vm_is_protected(kvm) (is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
#define vcpu_is_protected(vcpu) kvm_vm_is_protected((vcpu)->kvm)
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);

View File

@ -80,8 +80,8 @@ void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if);
int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu);
#ifdef __KVM_NVHE_HYPERVISOR__

View File

@ -82,6 +82,12 @@ bool is_kvm_arm_initialised(void);
DECLARE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
static inline bool is_pkvm_initialized(void)
{
return IS_ENABLED(CONFIG_KVM) &&
static_branch_likely(&kvm_protected_mode_initialized);
}
/* Reports the availability of HYP mode */
static inline bool is_hyp_mode_available(void)
{
@ -89,8 +95,7 @@ static inline bool is_hyp_mode_available(void)
* If KVM protected mode is initialized, all CPUs must have been booted
* in EL2. Avoid checking __boot_cpu_mode as CPUs now come up in EL1.
*/
if (IS_ENABLED(CONFIG_KVM) &&
static_branch_likely(&kvm_protected_mode_initialized))
if (is_pkvm_initialized())
return true;
return (__boot_cpu_mode[0] == BOOT_CPU_MODE_EL2 &&
@ -104,8 +109,7 @@ static inline bool is_hyp_mode_mismatched(void)
* If KVM protected mode is initialized, all CPUs must have been booted
* in EL2. Avoid checking __boot_cpu_mode as CPUs now come up in EL1.
*/
if (IS_ENABLED(CONFIG_KVM) &&
static_branch_likely(&kvm_protected_mode_initialized))
if (is_pkvm_initialized())
return false;
return __boot_cpu_mode[0] != __boot_cpu_mode[1];

View File

@ -70,15 +70,42 @@ int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}
/*
* This functions as an allow-list of protected VM capabilities.
* Features not explicitly allowed by this function are denied.
*/
static bool pkvm_ext_allowed(struct kvm *kvm, long ext)
{
switch (ext) {
case KVM_CAP_IRQCHIP:
case KVM_CAP_ARM_PSCI:
case KVM_CAP_ARM_PSCI_0_2:
case KVM_CAP_NR_VCPUS:
case KVM_CAP_MAX_VCPUS:
case KVM_CAP_MAX_VCPU_ID:
case KVM_CAP_MSI_DEVID:
case KVM_CAP_ARM_VM_IPA_SIZE:
case KVM_CAP_ARM_PMU_V3:
case KVM_CAP_ARM_SVE:
case KVM_CAP_ARM_PTRAUTH_ADDRESS:
case KVM_CAP_ARM_PTRAUTH_GENERIC:
return true;
default:
return false;
}
}
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
struct kvm_enable_cap *cap)
{
int r;
u64 new_cap;
int r = -EINVAL;
if (cap->flags)
return -EINVAL;
if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap))
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_ARM_NISV_TO_USER:
r = 0;
@ -87,9 +114,7 @@ int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
break;
case KVM_CAP_ARM_MTE:
mutex_lock(&kvm->lock);
if (!system_supports_mte() || kvm->created_vcpus) {
r = -EINVAL;
} else {
if (system_supports_mte() && !kvm->created_vcpus) {
r = 0;
set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
}
@ -100,25 +125,22 @@ int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
break;
case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
new_cap = cap->args[0];
mutex_lock(&kvm->slots_lock);
/*
* To keep things simple, allow changing the chunk
* size only when no memory slots have been created.
*/
if (!kvm_are_all_memslots_empty(kvm)) {
r = -EINVAL;
} else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
r = -EINVAL;
} else {
r = 0;
kvm->arch.mmu.split_page_chunk_size = new_cap;
if (kvm_are_all_memslots_empty(kvm)) {
u64 new_cap = cap->args[0];
if (!new_cap || kvm_is_block_size_supported(new_cap)) {
r = 0;
kvm->arch.mmu.split_page_chunk_size = new_cap;
}
}
mutex_unlock(&kvm->slots_lock);
break;
default:
r = -EINVAL;
break;
}
@ -256,6 +278,10 @@ static bool kvm_has_full_ptr_auth(void)
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
int r;
if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext))
return 0;
switch (ext) {
case KVM_CAP_IRQCHIP:
r = vgic_present;
@ -857,9 +883,8 @@ void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
* doorbells to be signalled, should an interrupt become pending.
*/
preempt_disable();
kvm_vgic_vmcr_sync(vcpu);
vcpu_set_flag(vcpu, IN_WFI);
vgic_v4_put(vcpu);
kvm_vgic_put(vcpu);
preempt_enable();
kvm_vcpu_halt(vcpu);
@ -867,7 +892,7 @@ void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
preempt_disable();
vcpu_clear_flag(vcpu, IN_WFI);
vgic_v4_load(vcpu);
kvm_vgic_load(vcpu);
preempt_enable();
}
@ -1047,7 +1072,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
if (run->exit_reason == KVM_EXIT_MMIO) {
ret = kvm_handle_mmio_return(vcpu);
if (ret)
if (ret <= 0)
return ret;
}

View File

@ -14,19 +14,6 @@
#include <asm/kvm_mmu.h>
#include <asm/sysreg.h>
void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu)
{
struct task_struct *p = vcpu->arch.parent_task;
struct user_fpsimd_state *fpsimd;
if (!is_protected_kvm_enabled() || !p)
return;
fpsimd = &p->thread.uw.fpsimd_state;
kvm_unshare_hyp(fpsimd, fpsimd + 1);
put_task_struct(p);
}
/*
* Called on entry to KVM_RUN unless this vcpu previously ran at least
* once and the most recent prior KVM_RUN for this vcpu was called from
@ -38,28 +25,18 @@ void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu)
*/
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu)
{
struct user_fpsimd_state *fpsimd = &current->thread.uw.fpsimd_state;
int ret;
struct user_fpsimd_state *fpsimd = &current->thread.uw.fpsimd_state;
kvm_vcpu_unshare_task_fp(vcpu);
/* pKVM has its own tracking of the host fpsimd state. */
if (is_protected_kvm_enabled())
return 0;
/* Make sure the host task fpsimd state is visible to hyp: */
ret = kvm_share_hyp(fpsimd, fpsimd + 1);
if (ret)
return ret;
/*
* We need to keep current's task_struct pinned until its data has been
* unshared with the hypervisor to make sure it is not re-used by the
* kernel and donated to someone else while already shared -- see
* kvm_vcpu_unshare_task_fp() for the matching put_task_struct().
*/
if (is_protected_kvm_enabled()) {
get_task_struct(current);
vcpu->arch.parent_task = current;
}
return 0;
}
@ -141,8 +118,7 @@ void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
WARN_ON_ONCE(!irqs_disabled());
if (*host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED) {
if (guest_owns_fp_regs()) {
/*
* Currently we do not support SME guests so SVCR is
* always 0 and we just need a variable to point to.
@ -195,16 +171,38 @@ void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
isb();
}
if (*host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED) {
if (guest_owns_fp_regs()) {
if (vcpu_has_sve(vcpu)) {
__vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR);
/* Restore the VL that was saved when bound to the CPU */
/*
* Restore the VL that was saved when bound to the CPU,
* which is the maximum VL for the guest. Because the
* layout of the data when saving the sve state depends
* on the VL, we need to use a consistent (i.e., the
* maximum) VL.
* Note that this means that at guest exit ZCR_EL1 is
* not necessarily the same as on guest entry.
*
* Restoring the VL isn't needed in VHE mode since
* ZCR_EL2 (accessed via ZCR_EL1) would fulfill the same
* role when doing the save from EL2.
*/
if (!has_vhe())
sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1,
SYS_ZCR_EL1);
}
/*
* Flush (save and invalidate) the fpsimd/sve state so that if
* the host tries to use fpsimd/sve, it's not using stale data
* from the guest.
*
* Flushing the state sets the TIF_FOREIGN_FPSTATE bit for the
* context unconditionally, in both nVHE and VHE. This allows
* the kernel to restore the fpsimd/sve state, including ZCR_EL1
* when needed.
*/
fpsimd_save_and_flush_cpu_state();
} else if (has_vhe() && system_supports_sve()) {
/*

View File

@ -40,12 +40,6 @@ struct kvm_exception_table_entry {
extern struct kvm_exception_table_entry __start___kvm_ex_table;
extern struct kvm_exception_table_entry __stop___kvm_ex_table;
/* Check whether the FP regs are owned by the guest */
static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
{
return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
}
/* Save the 32-bit only FPSIMD system register state */
static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
@ -375,7 +369,7 @@ static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
isb();
/* Write out the host state if it's in the registers */
if (*host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED)
if (host_owns_fp_regs())
__fpsimd_save_state(*host_data_ptr(fpsimd_state));
/* Restore the guest state */

View File

@ -53,7 +53,13 @@ pkvm_hyp_vcpu_to_hyp_vm(struct pkvm_hyp_vcpu *hyp_vcpu)
return container_of(hyp_vcpu->vcpu.kvm, struct pkvm_hyp_vm, kvm);
}
static inline bool pkvm_hyp_vcpu_is_protected(struct pkvm_hyp_vcpu *hyp_vcpu)
{
return vcpu_is_protected(&hyp_vcpu->vcpu);
}
void pkvm_hyp_vm_table_init(void *tbl);
void pkvm_host_fpsimd_state_init(void);
int __pkvm_init_vm(struct kvm *host_kvm, unsigned long vm_hva,
unsigned long pgd_hva);

View File

@ -175,16 +175,6 @@ static void handle___vgic_v3_get_gic_config(struct kvm_cpu_context *host_ctxt)
cpu_reg(host_ctxt, 1) = __vgic_v3_get_gic_config();
}
static void handle___vgic_v3_read_vmcr(struct kvm_cpu_context *host_ctxt)
{
cpu_reg(host_ctxt, 1) = __vgic_v3_read_vmcr();
}
static void handle___vgic_v3_write_vmcr(struct kvm_cpu_context *host_ctxt)
{
__vgic_v3_write_vmcr(cpu_reg(host_ctxt, 1));
}
static void handle___vgic_v3_init_lrs(struct kvm_cpu_context *host_ctxt)
{
__vgic_v3_init_lrs();
@ -195,18 +185,18 @@ static void handle___kvm_get_mdcr_el2(struct kvm_cpu_context *host_ctxt)
cpu_reg(host_ctxt, 1) = __kvm_get_mdcr_el2();
}
static void handle___vgic_v3_save_aprs(struct kvm_cpu_context *host_ctxt)
static void handle___vgic_v3_save_vmcr_aprs(struct kvm_cpu_context *host_ctxt)
{
DECLARE_REG(struct vgic_v3_cpu_if *, cpu_if, host_ctxt, 1);
__vgic_v3_save_aprs(kern_hyp_va(cpu_if));
__vgic_v3_save_vmcr_aprs(kern_hyp_va(cpu_if));
}
static void handle___vgic_v3_restore_aprs(struct kvm_cpu_context *host_ctxt)
static void handle___vgic_v3_restore_vmcr_aprs(struct kvm_cpu_context *host_ctxt)
{
DECLARE_REG(struct vgic_v3_cpu_if *, cpu_if, host_ctxt, 1);
__vgic_v3_restore_aprs(kern_hyp_va(cpu_if));
__vgic_v3_restore_vmcr_aprs(kern_hyp_va(cpu_if));
}
static void handle___pkvm_init(struct kvm_cpu_context *host_ctxt)
@ -337,10 +327,8 @@ static const hcall_t host_hcall[] = {
HANDLE_FUNC(__kvm_tlb_flush_vmid_range),
HANDLE_FUNC(__kvm_flush_cpu_context),
HANDLE_FUNC(__kvm_timer_set_cntvoff),
HANDLE_FUNC(__vgic_v3_read_vmcr),
HANDLE_FUNC(__vgic_v3_write_vmcr),
HANDLE_FUNC(__vgic_v3_save_aprs),
HANDLE_FUNC(__vgic_v3_restore_aprs),
HANDLE_FUNC(__vgic_v3_save_vmcr_aprs),
HANDLE_FUNC(__vgic_v3_restore_vmcr_aprs),
HANDLE_FUNC(__pkvm_vcpu_init_traps),
HANDLE_FUNC(__pkvm_init_vm),
HANDLE_FUNC(__pkvm_init_vcpu),

View File

@ -533,7 +533,13 @@ void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
int ret = 0;
esr = read_sysreg_el2(SYS_ESR);
BUG_ON(!__get_fault_info(esr, &fault));
if (!__get_fault_info(esr, &fault)) {
/*
* We've presumably raced with a page-table change which caused
* AT to fail, try again.
*/
return;
}
addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
ret = host_stage2_idmap(addr);

View File

@ -200,7 +200,7 @@ static void pvm_init_trap_regs(struct kvm_vcpu *vcpu)
}
/*
* Initialize trap register values for protected VMs.
* Initialize trap register values in protected mode.
*/
void __pkvm_vcpu_init_traps(struct kvm_vcpu *vcpu)
{
@ -247,6 +247,17 @@ void pkvm_hyp_vm_table_init(void *tbl)
vm_table = tbl;
}
void pkvm_host_fpsimd_state_init(void)
{
unsigned long i;
for (i = 0; i < hyp_nr_cpus; i++) {
struct kvm_host_data *host_data = per_cpu_ptr(&kvm_host_data, i);
host_data->fpsimd_state = &host_data->host_ctxt.fp_regs;
}
}
/*
* Return the hyp vm structure corresponding to the handle.
*/
@ -430,6 +441,7 @@ static void *map_donated_memory(unsigned long host_va, size_t size)
static void __unmap_donated_memory(void *va, size_t size)
{
kvm_flush_dcache_to_poc(va, size);
WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(va),
PAGE_ALIGN(size) >> PAGE_SHIFT));
}

View File

@ -300,6 +300,7 @@ void __noreturn __pkvm_init_finalise(void)
goto out;
pkvm_hyp_vm_table_init(vm_table_base);
pkvm_host_fpsimd_state_init();
out:
/*
* We tail-called to here from handle___pkvm_init() and will not return,

View File

@ -53,7 +53,7 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
val |= CPTR_EL2_TSM;
}
if (!guest_owns_fp_regs(vcpu)) {
if (!guest_owns_fp_regs()) {
if (has_hvhe())
val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |
CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN);
@ -207,7 +207,7 @@ static const exit_handler_fn pvm_exit_handlers[] = {
static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
{
if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm))))
if (unlikely(vcpu_is_protected(vcpu)))
return pvm_exit_handlers;
return hyp_exit_handlers;
@ -226,9 +226,7 @@ static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
*/
static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
{
struct kvm *kvm = kern_hyp_va(vcpu->kvm);
if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) {
if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) {
/*
* As we have caught the guest red-handed, decide that it isn't
* fit for purpose anymore by making the vcpu invalid. The VMM
@ -335,7 +333,7 @@ int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
__sysreg_restore_state_nvhe(host_ctxt);
if (*host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED)
if (guest_owns_fp_regs())
__fpsimd_save_fpexc32(vcpu);
__debug_switch_to_host(vcpu);

View File

@ -11,13 +11,23 @@
#include <nvhe/mem_protect.h>
struct tlb_inv_context {
u64 tcr;
struct kvm_s2_mmu *mmu;
u64 tcr;
u64 sctlr;
};
static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
struct tlb_inv_context *cxt,
bool nsh)
static void enter_vmid_context(struct kvm_s2_mmu *mmu,
struct tlb_inv_context *cxt,
bool nsh)
{
struct kvm_s2_mmu *host_s2_mmu = &host_mmu.arch.mmu;
struct kvm_cpu_context *host_ctxt;
struct kvm_vcpu *vcpu;
host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
vcpu = host_ctxt->__hyp_running_vcpu;
cxt->mmu = NULL;
/*
* We have two requirements:
*
@ -40,20 +50,55 @@ static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
else
dsb(ish);
/*
* If we're already in the desired context, then there's nothing to do.
*/
if (vcpu) {
/*
* We're in guest context. However, for this to work, this needs
* to be called from within __kvm_vcpu_run(), which ensures that
* __hyp_running_vcpu is set to the current guest vcpu.
*/
if (mmu == vcpu->arch.hw_mmu || WARN_ON(mmu != host_s2_mmu))
return;
cxt->mmu = vcpu->arch.hw_mmu;
} else {
/* We're in host context. */
if (mmu == host_s2_mmu)
return;
cxt->mmu = host_s2_mmu;
}
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
u64 val;
/*
* For CPUs that are affected by ARM 1319367, we need to
* avoid a host Stage-1 walk while we have the guest's
* VMID set in the VTTBR in order to invalidate TLBs.
* We're guaranteed that the S1 MMU is enabled, so we can
* simply set the EPD bits to avoid any further TLB fill.
* avoid a Stage-1 walk with the old VMID while we have
* the new VMID set in the VTTBR in order to invalidate TLBs.
* We're guaranteed that the host S1 MMU is enabled, so
* we can simply set the EPD bits to avoid any further
* TLB fill. For guests, we ensure that the S1 MMU is
* temporarily enabled in the next context.
*/
val = cxt->tcr = read_sysreg_el1(SYS_TCR);
val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
write_sysreg_el1(val, SYS_TCR);
isb();
if (vcpu) {
val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR);
if (!(val & SCTLR_ELx_M)) {
val |= SCTLR_ELx_M;
write_sysreg_el1(val, SYS_SCTLR);
isb();
}
} else {
/* The host S1 MMU is always enabled. */
cxt->sctlr = SCTLR_ELx_M;
}
}
/*
@ -62,18 +107,40 @@ static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
* ensuring that we always have an ISB, but not two ISBs back
* to back.
*/
__load_stage2(mmu, kern_hyp_va(mmu->arch));
if (vcpu)
__load_host_stage2();
else
__load_stage2(mmu, kern_hyp_va(mmu->arch));
asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
}
static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
static void exit_vmid_context(struct tlb_inv_context *cxt)
{
__load_host_stage2();
struct kvm_s2_mmu *mmu = cxt->mmu;
struct kvm_cpu_context *host_ctxt;
struct kvm_vcpu *vcpu;
host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
vcpu = host_ctxt->__hyp_running_vcpu;
if (!mmu)
return;
if (vcpu)
__load_stage2(mmu, kern_hyp_va(mmu->arch));
else
__load_host_stage2();
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
/* Ensure write of the host VMID */
/* Ensure write of the old VMID */
isb();
/* Restore the host's TCR_EL1 */
if (!(cxt->sctlr & SCTLR_ELx_M)) {
write_sysreg_el1(cxt->sctlr, SYS_SCTLR);
isb();
}
write_sysreg_el1(cxt->tcr, SYS_TCR);
}
}
@ -84,7 +151,7 @@ void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
struct tlb_inv_context cxt;
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt, false);
enter_vmid_context(mmu, &cxt, false);
/*
* We could do so much better if we had the VA as well.
@ -105,7 +172,7 @@ void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
dsb(ish);
isb();
__tlb_switch_to_host(&cxt);
exit_vmid_context(&cxt);
}
void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
@ -114,7 +181,7 @@ void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
struct tlb_inv_context cxt;
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt, true);
enter_vmid_context(mmu, &cxt, true);
/*
* We could do so much better if we had the VA as well.
@ -135,7 +202,7 @@ void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
dsb(nsh);
isb();
__tlb_switch_to_host(&cxt);
exit_vmid_context(&cxt);
}
void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
@ -152,7 +219,7 @@ void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
start = round_down(start, stride);
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt, false);
enter_vmid_context(mmu, &cxt, false);
__flush_s2_tlb_range_op(ipas2e1is, start, pages, stride,
TLBI_TTL_UNKNOWN);
@ -162,7 +229,7 @@ void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
dsb(ish);
isb();
__tlb_switch_to_host(&cxt);
exit_vmid_context(&cxt);
}
void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
@ -170,13 +237,13 @@ void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
struct tlb_inv_context cxt;
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt, false);
enter_vmid_context(mmu, &cxt, false);
__tlbi(vmalls12e1is);
dsb(ish);
isb();
__tlb_switch_to_host(&cxt);
exit_vmid_context(&cxt);
}
void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
@ -184,19 +251,19 @@ void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
struct tlb_inv_context cxt;
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt, false);
enter_vmid_context(mmu, &cxt, false);
__tlbi(vmalle1);
asm volatile("ic iallu");
dsb(nsh);
isb();
__tlb_switch_to_host(&cxt);
exit_vmid_context(&cxt);
}
void __kvm_flush_vm_context(void)
{
/* Same remark as in __tlb_switch_to_guest() */
/* Same remark as in enter_vmid_context() */
dsb(ish);
__tlbi(alle1is);
dsb(ish);

View File

@ -914,12 +914,12 @@ static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
{
u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
}
static bool stage2_pte_executable(kvm_pte_t pte)
{
return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
}
static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
@ -979,6 +979,21 @@ static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
if (!stage2_pte_needs_update(ctx->old, new))
return -EAGAIN;
/* If we're only changing software bits, then store them and go! */
if (!kvm_pgtable_walk_shared(ctx) &&
!((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
bool old_is_counted = stage2_pte_is_counted(ctx->old);
if (old_is_counted != stage2_pte_is_counted(new)) {
if (old_is_counted)
mm_ops->put_page(ctx->ptep);
else
mm_ops->get_page(ctx->ptep);
}
WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
return 0;
}
if (!stage2_try_break_pte(ctx, data->mmu))
return -EAGAIN;
@ -1370,7 +1385,7 @@ static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
struct kvm_pgtable *pgt = ctx->arg;
struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
if (!stage2_pte_cacheable(pgt, ctx->old))
return 0;
if (mm_ops->dcache_clean_inval_poc)

View File

@ -330,7 +330,7 @@ void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
write_gicreg(0, ICH_HCR_EL2);
}
void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
static void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
{
u64 val;
u32 nr_pre_bits;
@ -363,7 +363,7 @@ void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
}
}
void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
static void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
{
u64 val;
u32 nr_pre_bits;
@ -455,16 +455,35 @@ u64 __vgic_v3_get_gic_config(void)
return val;
}
u64 __vgic_v3_read_vmcr(void)
static u64 __vgic_v3_read_vmcr(void)
{
return read_gicreg(ICH_VMCR_EL2);
}
void __vgic_v3_write_vmcr(u32 vmcr)
static void __vgic_v3_write_vmcr(u32 vmcr)
{
write_gicreg(vmcr, ICH_VMCR_EL2);
}
void __vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
{
__vgic_v3_save_aprs(cpu_if);
if (cpu_if->vgic_sre)
cpu_if->vgic_vmcr = __vgic_v3_read_vmcr();
}
void __vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
{
/*
* If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
* is dependent on ICC_SRE_EL1.SRE, and we have to perform the
* VMCR_EL2 save/restore in the world switch.
*/
if (cpu_if->vgic_sre)
__vgic_v3_write_vmcr(cpu_if->vgic_vmcr);
__vgic_v3_restore_aprs(cpu_if);
}
static int __vgic_v3_bpr_min(void)
{
/* See Pseudocode for VPriorityGroup */

View File

@ -107,7 +107,7 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
val |= CPTR_EL2_TAM;
if (guest_owns_fp_regs(vcpu)) {
if (guest_owns_fp_regs()) {
if (vcpu_has_sve(vcpu))
val |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
} else {
@ -341,7 +341,7 @@ static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
sysreg_restore_host_state_vhe(host_ctxt);
if (*host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED)
if (guest_owns_fp_regs())
__fpsimd_save_fpexc32(vcpu);
__debug_switch_to_host(vcpu);

View File

@ -17,8 +17,8 @@ struct tlb_inv_context {
u64 sctlr;
};
static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
struct tlb_inv_context *cxt)
static void enter_vmid_context(struct kvm_s2_mmu *mmu,
struct tlb_inv_context *cxt)
{
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
u64 val;
@ -67,7 +67,7 @@ static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
isb();
}
static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
static void exit_vmid_context(struct tlb_inv_context *cxt)
{
/*
* We're done with the TLB operation, let's restore the host's
@ -97,7 +97,7 @@ void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
dsb(ishst);
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt);
enter_vmid_context(mmu, &cxt);
/*
* We could do so much better if we had the VA as well.
@ -118,7 +118,7 @@ void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
dsb(ish);
isb();
__tlb_switch_to_host(&cxt);
exit_vmid_context(&cxt);
}
void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
@ -129,7 +129,7 @@ void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
dsb(nshst);
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt);
enter_vmid_context(mmu, &cxt);
/*
* We could do so much better if we had the VA as well.
@ -150,7 +150,7 @@ void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
dsb(nsh);
isb();
__tlb_switch_to_host(&cxt);
exit_vmid_context(&cxt);
}
void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
@ -169,7 +169,7 @@ void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
dsb(ishst);
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt);
enter_vmid_context(mmu, &cxt);
__flush_s2_tlb_range_op(ipas2e1is, start, pages, stride,
TLBI_TTL_UNKNOWN);
@ -179,7 +179,7 @@ void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
dsb(ish);
isb();
__tlb_switch_to_host(&cxt);
exit_vmid_context(&cxt);
}
void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
@ -189,13 +189,13 @@ void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
dsb(ishst);
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt);
enter_vmid_context(mmu, &cxt);
__tlbi(vmalls12e1is);
dsb(ish);
isb();
__tlb_switch_to_host(&cxt);
exit_vmid_context(&cxt);
}
void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
@ -203,14 +203,14 @@ void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
struct tlb_inv_context cxt;
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt);
enter_vmid_context(mmu, &cxt);
__tlbi(vmalle1);
asm volatile("ic iallu");
dsb(nsh);
isb();
__tlb_switch_to_host(&cxt);
exit_vmid_context(&cxt);
}
void __kvm_flush_vm_context(void)

View File

@ -86,7 +86,7 @@ int kvm_handle_mmio_return(struct kvm_vcpu *vcpu)
/* Detect an already handled MMIO return */
if (unlikely(!vcpu->mmio_needed))
return 0;
return 1;
vcpu->mmio_needed = 0;
@ -117,7 +117,7 @@ int kvm_handle_mmio_return(struct kvm_vcpu *vcpu)
*/
kvm_incr_pc(vcpu);
return 0;
return 1;
}
int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
@ -133,11 +133,19 @@ int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
/*
* No valid syndrome? Ask userspace for help if it has
* volunteered to do so, and bail out otherwise.
*
* In the protected VM case, there isn't much userspace can do
* though, so directly deliver an exception to the guest.
*/
if (!kvm_vcpu_dabt_isvalid(vcpu)) {
trace_kvm_mmio_nisv(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
kvm_vcpu_get_hfar(vcpu), fault_ipa);
if (vcpu_is_protected(vcpu)) {
kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
return 1;
}
if (test_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
&vcpu->kvm->arch.flags)) {
run->exit_reason = KVM_EXIT_ARM_NISV;

View File

@ -1522,8 +1522,10 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
read_lock(&kvm->mmu_lock);
pgt = vcpu->arch.hw_mmu->pgt;
if (mmu_invalidate_retry(kvm, mmu_seq))
if (mmu_invalidate_retry(kvm, mmu_seq)) {
ret = -EAGAIN;
goto out_unlock;
}
/*
* If we are not forced to use page mapping, check if we are
@ -1581,6 +1583,8 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
memcache,
KVM_PGTABLE_WALK_HANDLE_FAULT |
KVM_PGTABLE_WALK_SHARED);
out_unlock:
read_unlock(&kvm->mmu_lock);
/* Mark the page dirty only if the fault is handled successfully */
if (writable && !ret) {
@ -1588,8 +1592,6 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
mark_page_dirty_in_slot(kvm, memslot, gfn);
}
out_unlock:
read_unlock(&kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
return ret != -EAGAIN ? ret : 0;
}

View File

@ -222,7 +222,6 @@ void pkvm_destroy_hyp_vm(struct kvm *host_kvm)
int pkvm_init_host_vm(struct kvm *host_kvm)
{
mutex_init(&host_kvm->lock);
return 0;
}
@ -259,6 +258,7 @@ static int __init finalize_pkvm(void)
* at, which would end badly once inaccessible.
*/
kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
kmemleak_free_part(__hyp_rodata_start, __hyp_rodata_end - __hyp_rodata_start);
kmemleak_free_part_phys(hyp_mem_base, hyp_mem_size);
ret = pkvm_drop_host_privileges();

View File

@ -151,7 +151,6 @@ void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
{
void *sve_state = vcpu->arch.sve_state;
kvm_vcpu_unshare_task_fp(vcpu);
kvm_unshare_hyp(vcpu, vcpu + 1);
if (sve_state)
kvm_unshare_hyp(sve_state, sve_state + vcpu_sve_state_size(vcpu));

View File

@ -464,17 +464,10 @@ void vgic_v2_load(struct kvm_vcpu *vcpu)
kvm_vgic_global_state.vctrl_base + GICH_APR);
}
void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR);
}
void vgic_v2_put(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
vgic_v2_vmcr_sync(vcpu);
cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR);
cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR);
}

View File

@ -722,15 +722,7 @@ void vgic_v3_load(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
* is dependent on ICC_SRE_EL1.SRE, and we have to perform the
* VMCR_EL2 save/restore in the world switch.
*/
if (likely(cpu_if->vgic_sre))
kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if);
kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, cpu_if);
if (has_vhe())
__vgic_v3_activate_traps(cpu_if);
@ -738,24 +730,13 @@ void vgic_v3_load(struct kvm_vcpu *vcpu)
WARN_ON(vgic_v4_load(vcpu));
}
void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
if (likely(cpu_if->vgic_sre))
cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
}
void vgic_v3_put(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
kvm_call_hyp(__vgic_v3_save_vmcr_aprs, cpu_if);
WARN_ON(vgic_v4_put(vcpu));
vgic_v3_vmcr_sync(vcpu);
kvm_call_hyp(__vgic_v3_save_aprs, cpu_if);
if (has_vhe())
__vgic_v3_deactivate_traps(cpu_if);
}

View File

@ -937,17 +937,6 @@ void kvm_vgic_put(struct kvm_vcpu *vcpu)
vgic_v3_put(vcpu);
}
void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
{
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
return;
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_vmcr_sync(vcpu);
else
vgic_v3_vmcr_sync(vcpu);
}
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

View File

@ -215,7 +215,6 @@ int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
void vgic_v2_init_lrs(void);
void vgic_v2_load(struct kvm_vcpu *vcpu);
void vgic_v2_put(struct kvm_vcpu *vcpu);
void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu);
void vgic_v2_save_state(struct kvm_vcpu *vcpu);
void vgic_v2_restore_state(struct kvm_vcpu *vcpu);
@ -254,7 +253,6 @@ bool vgic_v3_check_base(struct kvm *kvm);
void vgic_v3_load(struct kvm_vcpu *vcpu);
void vgic_v3_put(struct kvm_vcpu *vcpu);
void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu);
bool vgic_has_its(struct kvm *kvm);
int kvm_vgic_register_its_device(void);

View File

@ -389,7 +389,6 @@ int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu);
void kvm_vgic_load(struct kvm_vcpu *vcpu);
void kvm_vgic_put(struct kvm_vcpu *vcpu);
void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu);
#define irqchip_in_kernel(k) (!!((k)->arch.vgic.in_kernel))
#define vgic_initialized(k) ((k)->arch.vgic.initialized)