slub: Invert locking and avoid slab lock

Locking slabs is no longer necesary if the arch supports cmpxchg operations
and if no debuggin features are used on a slab. If the arch does not support
cmpxchg then we fallback to use the slab lock to do a cmpxchg like operation.

The patch also changes the lock order. Slab locks are subsumed to the node lock
now. With that approach slab_trylocking is no longer necessary.

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This commit is contained in:
Christoph Lameter 2011-06-01 12:25:53 -05:00 committed by Pekka Enberg
parent 2cfb7455d2
commit 881db7fb03
1 changed files with 52 additions and 77 deletions

129
mm/slub.c
View File

@ -2,10 +2,11 @@
* SLUB: A slab allocator that limits cache line use instead of queuing
* objects in per cpu and per node lists.
*
* The allocator synchronizes using per slab locks and only
* uses a centralized lock to manage a pool of partial slabs.
* The allocator synchronizes using per slab locks or atomic operatios
* and only uses a centralized lock to manage a pool of partial slabs.
*
* (C) 2007 SGI, Christoph Lameter
* (C) 2011 Linux Foundation, Christoph Lameter
*/
#include <linux/mm.h>
@ -32,15 +33,27 @@
/*
* Lock order:
* 1. slab_lock(page)
* 2. slab->list_lock
* 1. slub_lock (Global Semaphore)
* 2. node->list_lock
* 3. slab_lock(page) (Only on some arches and for debugging)
*
* The slab_lock protects operations on the object of a particular
* slab and its metadata in the page struct. If the slab lock
* has been taken then no allocations nor frees can be performed
* on the objects in the slab nor can the slab be added or removed
* from the partial or full lists since this would mean modifying
* the page_struct of the slab.
* slub_lock
*
* The role of the slub_lock is to protect the list of all the slabs
* and to synchronize major metadata changes to slab cache structures.
*
* The slab_lock is only used for debugging and on arches that do not
* have the ability to do a cmpxchg_double. It only protects the second
* double word in the page struct. Meaning
* A. page->freelist -> List of object free in a page
* B. page->counters -> Counters of objects
* C. page->frozen -> frozen state
*
* If a slab is frozen then it is exempt from list management. It is not
* on any list. The processor that froze the slab is the one who can
* perform list operations on the page. Other processors may put objects
* onto the freelist but the processor that froze the slab is the only
* one that can retrieve the objects from the page's freelist.
*
* The list_lock protects the partial and full list on each node and
* the partial slab counter. If taken then no new slabs may be added or
@ -53,20 +66,6 @@
* slabs, operations can continue without any centralized lock. F.e.
* allocating a long series of objects that fill up slabs does not require
* the list lock.
*
* The lock order is sometimes inverted when we are trying to get a slab
* off a list. We take the list_lock and then look for a page on the list
* to use. While we do that objects in the slabs may be freed. We can
* only operate on the slab if we have also taken the slab_lock. So we use
* a slab_trylock() on the slab. If trylock was successful then no frees
* can occur anymore and we can use the slab for allocations etc. If the
* slab_trylock() does not succeed then frees are in progress in the slab and
* we must stay away from it for a while since we may cause a bouncing
* cacheline if we try to acquire the lock. So go onto the next slab.
* If all pages are busy then we may allocate a new slab instead of reusing
* a partial slab. A new slab has no one operating on it and thus there is
* no danger of cacheline contention.
*
* Interrupts are disabled during allocation and deallocation in order to
* make the slab allocator safe to use in the context of an irq. In addition
* interrupts are disabled to ensure that the processor does not change
@ -342,6 +341,19 @@ static inline int oo_objects(struct kmem_cache_order_objects x)
return x.x & OO_MASK;
}
/*
* Per slab locking using the pagelock
*/
static __always_inline void slab_lock(struct page *page)
{
bit_spin_lock(PG_locked, &page->flags);
}
static __always_inline void slab_unlock(struct page *page)
{
__bit_spin_unlock(PG_locked, &page->flags);
}
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
void *freelist_old, unsigned long counters_old,
void *freelist_new, unsigned long counters_new,
@ -356,11 +368,14 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
} else
#endif
{
slab_lock(page);
if (page->freelist == freelist_old && page->counters == counters_old) {
page->freelist = freelist_new;
page->counters = counters_new;
slab_unlock(page);
return 1;
}
slab_unlock(page);
}
cpu_relax();
@ -377,7 +392,7 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
/*
* Determine a map of object in use on a page.
*
* Slab lock or node listlock must be held to guarantee that the page does
* Node listlock must be held to guarantee that the page does
* not vanish from under us.
*/
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
@ -808,10 +823,11 @@ static int check_slab(struct kmem_cache *s, struct page *page)
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
int nr = 0;
void *fp = page->freelist;
void *fp;
void *object = NULL;
unsigned long max_objects;
fp = page->freelist;
while (fp && nr <= page->objects) {
if (fp == search)
return 1;
@ -1024,6 +1040,8 @@ bad:
static noinline int free_debug_processing(struct kmem_cache *s,
struct page *page, void *object, unsigned long addr)
{
slab_lock(page);
if (!check_slab(s, page))
goto fail;
@ -1059,10 +1077,12 @@ static noinline int free_debug_processing(struct kmem_cache *s,
set_track(s, object, TRACK_FREE, addr);
trace(s, page, object, 0);
init_object(s, object, SLUB_RED_INACTIVE);
slab_unlock(page);
return 1;
fail:
slab_fix(s, "Object at 0x%p not freed", object);
slab_unlock(page);
return 0;
}
@ -1393,27 +1413,6 @@ static void discard_slab(struct kmem_cache *s, struct page *page)
free_slab(s, page);
}
/*
* Per slab locking using the pagelock
*/
static __always_inline void slab_lock(struct page *page)
{
bit_spin_lock(PG_locked, &page->flags);
}
static __always_inline void slab_unlock(struct page *page)
{
__bit_spin_unlock(PG_locked, &page->flags);
}
static __always_inline int slab_trylock(struct page *page)
{
int rc = 1;
rc = bit_spin_trylock(PG_locked, &page->flags);
return rc;
}
/*
* Management of partially allocated slabs.
*
@ -1445,17 +1444,13 @@ static inline void remove_partial(struct kmem_cache_node *n,
*
* Must hold list_lock.
*/
static inline int lock_and_freeze_slab(struct kmem_cache *s,
static inline int acquire_slab(struct kmem_cache *s,
struct kmem_cache_node *n, struct page *page)
{
void *freelist;
unsigned long counters;
struct page new;
if (!slab_trylock(page))
return 0;
/*
* Zap the freelist and set the frozen bit.
* The old freelist is the list of objects for the
@ -1491,7 +1486,6 @@ static inline int lock_and_freeze_slab(struct kmem_cache *s,
*/
printk(KERN_ERR "SLUB: %s : Page without available objects on"
" partial list\n", s->name);
slab_unlock(page);
return 0;
}
}
@ -1515,7 +1509,7 @@ static struct page *get_partial_node(struct kmem_cache *s,
spin_lock(&n->list_lock);
list_for_each_entry(page, &n->partial, lru)
if (lock_and_freeze_slab(s, n, page))
if (acquire_slab(s, n, page))
goto out;
page = NULL;
out:
@ -1804,8 +1798,6 @@ redo:
"unfreezing slab"))
goto redo;
slab_unlock(page);
if (lock)
spin_unlock(&n->list_lock);
@ -1819,7 +1811,6 @@ redo:
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
stat(s, CPUSLAB_FLUSH);
slab_lock(c->page);
deactivate_slab(s, c);
}
@ -1968,7 +1959,6 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
if (!page)
goto new_slab;
slab_lock(page);
if (unlikely(!node_match(c, node)))
goto another_slab;
@ -1994,8 +1984,6 @@ load_freelist:
stat(s, ALLOC_REFILL);
slab_unlock(page);
c->freelist = get_freepointer(s, object);
c->tid = next_tid(c->tid);
local_irq_restore(flags);
@ -2031,7 +2019,6 @@ new_slab:
page->inuse = page->objects;
stat(s, ALLOC_SLAB);
slab_lock(page);
c->node = page_to_nid(page);
c->page = page;
goto load_freelist;
@ -2205,7 +2192,6 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
unsigned long uninitialized_var(flags);
local_irq_save(flags);
slab_lock(page);
stat(s, FREE_SLOWPATH);
if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
@ -2271,7 +2257,6 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
spin_unlock(&n->list_lock);
out_unlock:
slab_unlock(page);
local_irq_restore(flags);
return;
@ -2285,7 +2270,6 @@ slab_empty:
}
spin_unlock(&n->list_lock);
slab_unlock(page);
local_irq_restore(flags);
stat(s, FREE_SLAB);
discard_slab(s, page);
@ -3202,14 +3186,8 @@ int kmem_cache_shrink(struct kmem_cache *s)
* list_lock. page->inuse here is the upper limit.
*/
list_for_each_entry_safe(page, t, &n->partial, lru) {
if (!page->inuse && slab_trylock(page)) {
/*
* Must hold slab lock here because slab_free
* may have freed the last object and be
* waiting to release the slab.
*/
if (!page->inuse) {
remove_partial(n, page);
slab_unlock(page);
discard_slab(s, page);
} else {
list_move(&page->lru,
@ -3797,12 +3775,9 @@ static int validate_slab(struct kmem_cache *s, struct page *page,
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
unsigned long *map)
{
if (slab_trylock(page)) {
validate_slab(s, page, map);
slab_unlock(page);
} else
printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
s->name, page);
slab_lock(page);
validate_slab(s, page, map);
slab_unlock(page);
}
static int validate_slab_node(struct kmem_cache *s,