s390/cio: introduce bitwise dma types and helper functions

Introduce dma32_t and dma64_t bitwise types, which are supposed to be used
for 31 and 64 bit DMA capable addresses. This allows to use sparse (make
C=1) for type checking, so that incorrect usages can be easily found.

Also add a couple of helper functions which
- convert virtual to DMA addresses and vice versa
- allow for simple logical and arithmetic operations on DMA addresses
- convert DMA addresses to plain u32 and u64 values

All helper functions exist to avoid excessive casting in C code.

Signed-off-by: Halil Pasic <pasic@linux.ibm.com>
Co-developed-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
This commit is contained in:
Halil Pasic 2024-03-07 13:28:05 +01:00 committed by Heiko Carstens
parent 1c2be70e65
commit 8b19e145e8
1 changed files with 103 additions and 0 deletions

View File

@ -0,0 +1,103 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_S390_DMA_TYPES_H_
#define _ASM_S390_DMA_TYPES_H_
#include <linux/types.h>
#include <linux/io.h>
/*
* typedef dma32_t
* Contains a 31 bit absolute address to a DMA capable piece of storage.
*
* For CIO, DMA addresses are always absolute addresses. These addresses tend
* to be used in architectured memory blocks (like ORB, IDAW, MIDAW). Under
* certain circumstances 31 bit wide addresses must be used because the
* address must fit in 31 bits.
*
* This type is to be used when such fields can be modelled as 32 bit wide.
*/
typedef u32 __bitwise dma32_t;
/*
* typedef dma64_t
* Contains a 64 bit absolute address to a DMA capable piece of storage.
*
* For CIO, DMA addresses are always absolute addresses. These addresses tend
* to be used in architectured memory blocks (like ORB, IDAW, MIDAW).
*
* This type is to be used to model such 64 bit wide fields.
*/
typedef u64 __bitwise dma64_t;
/*
* Although DMA addresses should be obtained using the DMA API, in cases when
* it is known that the first argument holds a virtual address that points to
* DMA-able 31 bit addressable storage, then this function can be safely used.
*/
static inline dma32_t virt_to_dma32(void *ptr)
{
return (__force dma32_t)__pa(ptr);
}
static inline void *dma32_to_virt(dma32_t addr)
{
return __va((__force unsigned long)addr);
}
static inline dma32_t u32_to_dma32(u32 addr)
{
return (__force dma32_t)addr;
}
static inline u32 dma32_to_u32(dma32_t addr)
{
return (__force u32)addr;
}
static inline dma32_t dma32_add(dma32_t a, u32 b)
{
return (__force dma32_t)((__force u32)a + b);
}
static inline dma32_t dma32_and(dma32_t a, u32 b)
{
return (__force dma32_t)((__force u32)a & b);
}
/*
* Although DMA addresses should be obtained using the DMA API, in cases when
* it is known that the first argument holds a virtual address that points to
* DMA-able storage, then this function can be safely used.
*/
static inline dma64_t virt_to_dma64(void *ptr)
{
return (__force dma64_t)__pa(ptr);
}
static inline void *dma64_to_virt(dma64_t addr)
{
return __va((__force unsigned long)addr);
}
static inline dma64_t u64_to_dma64(u64 addr)
{
return (__force dma64_t)addr;
}
static inline u64 dma64_to_u64(dma64_t addr)
{
return (__force u64)addr;
}
static inline dma64_t dma64_add(dma64_t a, u64 b)
{
return (__force dma64_t)((__force u64)a + b);
}
static inline dma64_t dma64_and(dma64_t a, u64 b)
{
return (__force dma64_t)((__force u64)a & b);
}
#endif /* _ASM_S390_DMA_TYPES_H_ */