riscv: Fixed misaligned memory access. Fixed pointer comparison.

Rewrote the RISC-V memmove() assembly implementation.  The
previous implementation did not check memory alignment and it
compared 2 pointers with a signed comparison.  The misaligned
memory access would cause the kernel to crash on systems that
did not emulate it in firmware and did not support it in hardware.
Firmware emulation is slow and may not exist.  The RISC-V spec
does not guarantee that support for misaligned memory accesses
will exist.  It should not be depended on.

This patch now checks for XLEN granularity of co-alignment between
the pointers.  Failing that, copying is done by loading from the 2
contiguous and naturally aligned XLEN memory locations containing
the overlapping XLEN sized data to be copied.  The data is shifted
into the correct place and binary or'ed together on each
iteration.  The result is then stored into the corresponding
naturally aligned XLEN sized location in the destination.  For
unaligned data at the terminations of the regions to be copied
or for copies less than (2 * XLEN) in size, byte copy is used.

This patch also now uses unsigned comparison for the pointers and
migrates to the newer assembler annotations from the now deprecated
ones.

Signed-off-by: Michael T. Kloos <michael@michaelkloos.com>
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This commit is contained in:
Michael T. Kloos 2022-03-07 20:03:21 -05:00 committed by Palmer Dabbelt
parent feeb386855
commit 9d1f0ec9f7
No known key found for this signature in database
GPG Key ID: 2E1319F35FBB1889
1 changed files with 302 additions and 50 deletions

View File

@ -1,64 +1,316 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2022 Michael T. Kloos <michael@michaelkloos.com>
*/
#include <linux/linkage.h>
#include <asm/asm.h>
ENTRY(__memmove)
WEAK(memmove)
move t0, a0
move t1, a1
SYM_FUNC_START(__memmove)
SYM_FUNC_START_WEAK(memmove)
/*
* Returns
* a0 - dest
*
* Parameters
* a0 - Inclusive first byte of dest
* a1 - Inclusive first byte of src
* a2 - Length of copy n
*
* Because the return matches the parameter register a0,
* we will not clobber or modify that register.
*
* Note: This currently only works on little-endian.
* To port to big-endian, reverse the direction of shifts
* in the 2 misaligned fixup copy loops.
*/
beq a0, a1, exit_memcpy
beqz a2, exit_memcpy
srli t2, a2, 0x2
/* Return if nothing to do */
beq a0, a1, return_from_memmove
beqz a2, return_from_memmove
slt t3, a0, a1
beqz t3, do_reverse
/*
* Register Uses
* Forward Copy: a1 - Index counter of src
* Reverse Copy: a4 - Index counter of src
* Forward Copy: t3 - Index counter of dest
* Reverse Copy: t4 - Index counter of dest
* Both Copy Modes: t5 - Inclusive first multibyte/aligned of dest
* Both Copy Modes: t6 - Non-Inclusive last multibyte/aligned of dest
* Both Copy Modes: t0 - Link / Temporary for load-store
* Both Copy Modes: t1 - Temporary for load-store
* Both Copy Modes: t2 - Temporary for load-store
* Both Copy Modes: a5 - dest to src alignment offset
* Both Copy Modes: a6 - Shift ammount
* Both Copy Modes: a7 - Inverse Shift ammount
* Both Copy Modes: a2 - Alternate breakpoint for unrolled loops
*/
andi a2, a2, 0x3
li t4, 1
beqz t2, byte_copy
/*
* Solve for some register values now.
* Byte copy does not need t5 or t6.
*/
mv t3, a0
add t4, a0, a2
add a4, a1, a2
word_copy:
lw t3, 0(a1)
addi t2, t2, -1
addi a1, a1, 4
sw t3, 0(a0)
addi a0, a0, 4
bnez t2, word_copy
beqz a2, exit_memcpy
j byte_copy
/*
* Byte copy if copying less than (2 * SZREG) bytes. This can
* cause problems with the bulk copy implementation and is
* small enough not to bother.
*/
andi t0, a2, -(2 * SZREG)
beqz t0, byte_copy
do_reverse:
add a0, a0, a2
add a1, a1, a2
andi a2, a2, 0x3
li t4, -1
beqz t2, reverse_byte_copy
/*
* Now solve for t5 and t6.
*/
andi t5, t3, -SZREG
andi t6, t4, -SZREG
/*
* If dest(Register t3) rounded down to the nearest naturally
* aligned SZREG address, does not equal dest, then add SZREG
* to find the low-bound of SZREG alignment in the dest memory
* region. Note that this could overshoot the dest memory
* region if n is less than SZREG. This is one reason why
* we always byte copy if n is less than SZREG.
* Otherwise, dest is already naturally aligned to SZREG.
*/
beq t5, t3, 1f
addi t5, t5, SZREG
1:
reverse_word_copy:
addi a1, a1, -4
addi t2, t2, -1
lw t3, 0(a1)
addi a0, a0, -4
sw t3, 0(a0)
bnez t2, reverse_word_copy
beqz a2, exit_memcpy
/*
* If the dest and src are co-aligned to SZREG, then there is
* no need for the full rigmarole of a full misaligned fixup copy.
* Instead, do a simpler co-aligned copy.
*/
xor t0, a0, a1
andi t1, t0, (SZREG - 1)
beqz t1, coaligned_copy
/* Fall through to misaligned fixup copy */
reverse_byte_copy:
addi a0, a0, -1
addi a1, a1, -1
misaligned_fixup_copy:
bltu a1, a0, misaligned_fixup_copy_reverse
misaligned_fixup_copy_forward:
jal t0, byte_copy_until_aligned_forward
andi a5, a1, (SZREG - 1) /* Find the alignment offset of src (a1) */
slli a6, a5, 3 /* Multiply by 8 to convert that to bits to shift */
sub a5, a1, t3 /* Find the difference between src and dest */
andi a1, a1, -SZREG /* Align the src pointer */
addi a2, t6, SZREG /* The other breakpoint for the unrolled loop*/
/*
* Compute The Inverse Shift
* a7 = XLEN - a6 = XLEN + -a6
* 2s complement negation to find the negative: -a6 = ~a6 + 1
* Add that to XLEN. XLEN = SZREG * 8.
*/
not a7, a6
addi a7, a7, (SZREG * 8 + 1)
/*
* Fix Misalignment Copy Loop - Forward
* load_val0 = load_ptr[0];
* do {
* load_val1 = load_ptr[1];
* store_ptr += 2;
* store_ptr[0 - 2] = (load_val0 >> {a6}) | (load_val1 << {a7});
*
* if (store_ptr == {a2})
* break;
*
* load_val0 = load_ptr[2];
* load_ptr += 2;
* store_ptr[1 - 2] = (load_val1 >> {a6}) | (load_val0 << {a7});
*
* } while (store_ptr != store_ptr_end);
* store_ptr = store_ptr_end;
*/
REG_L t0, (0 * SZREG)(a1)
1:
REG_L t1, (1 * SZREG)(a1)
addi t3, t3, (2 * SZREG)
srl t0, t0, a6
sll t2, t1, a7
or t2, t0, t2
REG_S t2, ((0 * SZREG) - (2 * SZREG))(t3)
beq t3, a2, 2f
REG_L t0, (2 * SZREG)(a1)
addi a1, a1, (2 * SZREG)
srl t1, t1, a6
sll t2, t0, a7
or t2, t1, t2
REG_S t2, ((1 * SZREG) - (2 * SZREG))(t3)
bne t3, t6, 1b
2:
mv t3, t6 /* Fix the dest pointer in case the loop was broken */
add a1, t3, a5 /* Restore the src pointer */
j byte_copy_forward /* Copy any remaining bytes */
misaligned_fixup_copy_reverse:
jal t0, byte_copy_until_aligned_reverse
andi a5, a4, (SZREG - 1) /* Find the alignment offset of src (a4) */
slli a6, a5, 3 /* Multiply by 8 to convert that to bits to shift */
sub a5, a4, t4 /* Find the difference between src and dest */
andi a4, a4, -SZREG /* Align the src pointer */
addi a2, t5, -SZREG /* The other breakpoint for the unrolled loop*/
/*
* Compute The Inverse Shift
* a7 = XLEN - a6 = XLEN + -a6
* 2s complement negation to find the negative: -a6 = ~a6 + 1
* Add that to XLEN. XLEN = SZREG * 8.
*/
not a7, a6
addi a7, a7, (SZREG * 8 + 1)
/*
* Fix Misalignment Copy Loop - Reverse
* load_val1 = load_ptr[0];
* do {
* load_val0 = load_ptr[-1];
* store_ptr -= 2;
* store_ptr[1] = (load_val0 >> {a6}) | (load_val1 << {a7});
*
* if (store_ptr == {a2})
* break;
*
* load_val1 = load_ptr[-2];
* load_ptr -= 2;
* store_ptr[0] = (load_val1 >> {a6}) | (load_val0 << {a7});
*
* } while (store_ptr != store_ptr_end);
* store_ptr = store_ptr_end;
*/
REG_L t1, ( 0 * SZREG)(a4)
1:
REG_L t0, (-1 * SZREG)(a4)
addi t4, t4, (-2 * SZREG)
sll t1, t1, a7
srl t2, t0, a6
or t2, t1, t2
REG_S t2, ( 1 * SZREG)(t4)
beq t4, a2, 2f
REG_L t1, (-2 * SZREG)(a4)
addi a4, a4, (-2 * SZREG)
sll t0, t0, a7
srl t2, t1, a6
or t2, t0, t2
REG_S t2, ( 0 * SZREG)(t4)
bne t4, t5, 1b
2:
mv t4, t5 /* Fix the dest pointer in case the loop was broken */
add a4, t4, a5 /* Restore the src pointer */
j byte_copy_reverse /* Copy any remaining bytes */
/*
* Simple copy loops for SZREG co-aligned memory locations.
* These also make calls to do byte copies for any unaligned
* data at their terminations.
*/
coaligned_copy:
bltu a1, a0, coaligned_copy_reverse
coaligned_copy_forward:
jal t0, byte_copy_until_aligned_forward
1:
REG_L t1, ( 0 * SZREG)(a1)
addi a1, a1, SZREG
addi t3, t3, SZREG
REG_S t1, (-1 * SZREG)(t3)
bne t3, t6, 1b
j byte_copy_forward /* Copy any remaining bytes */
coaligned_copy_reverse:
jal t0, byte_copy_until_aligned_reverse
1:
REG_L t1, (-1 * SZREG)(a4)
addi a4, a4, -SZREG
addi t4, t4, -SZREG
REG_S t1, ( 0 * SZREG)(t4)
bne t4, t5, 1b
j byte_copy_reverse /* Copy any remaining bytes */
/*
* These are basically sub-functions within the function. They
* are used to byte copy until the dest pointer is in alignment.
* At which point, a bulk copy method can be used by the
* calling code. These work on the same registers as the bulk
* copy loops. Therefore, the register values can be picked
* up from where they were left and we avoid code duplication
* without any overhead except the call in and return jumps.
*/
byte_copy_until_aligned_forward:
beq t3, t5, 2f
1:
lb t1, 0(a1)
addi a1, a1, 1
addi t3, t3, 1
sb t1, -1(t3)
bne t3, t5, 1b
2:
jalr zero, 0x0(t0) /* Return to multibyte copy loop */
byte_copy_until_aligned_reverse:
beq t4, t6, 2f
1:
lb t1, -1(a4)
addi a4, a4, -1
addi t4, t4, -1
sb t1, 0(t4)
bne t4, t6, 1b
2:
jalr zero, 0x0(t0) /* Return to multibyte copy loop */
/*
* Simple byte copy loops.
* These will byte copy until they reach the end of data to copy.
* At that point, they will call to return from memmove.
*/
byte_copy:
lb t3, 0(a1)
addi a2, a2, -1
sb t3, 0(a0)
add a1, a1, t4
add a0, a0, t4
bnez a2, byte_copy
bltu a1, a0, byte_copy_reverse
exit_memcpy:
move a0, t0
move a1, t1
ret
END(__memmove)
byte_copy_forward:
beq t3, t4, 2f
1:
lb t1, 0(a1)
addi a1, a1, 1
addi t3, t3, 1
sb t1, -1(t3)
bne t3, t4, 1b
2:
ret
byte_copy_reverse:
beq t4, t3, 2f
1:
lb t1, -1(a4)
addi a4, a4, -1
addi t4, t4, -1
sb t1, 0(t4)
bne t4, t3, 1b
2:
return_from_memmove:
ret
SYM_FUNC_END(memmove)
SYM_FUNC_END(__memmove)