rtc: tegra: checkpatch and miscellaneous cleanups

This set of changes fixes some checkpatch warnings as well as a number
of punctuation and padding inconsistencies.

Signed-off-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
This commit is contained in:
Thierry Reding 2019-05-27 12:13:57 +02:00 committed by Alexandre Belloni
parent d2bc4cece1
commit a2d29238bc

View file

@ -18,10 +18,10 @@
#include <linux/rtc.h> #include <linux/rtc.h>
#include <linux/slab.h> #include <linux/slab.h>
/* set to 1 = busy every eight 32kHz clocks during copy of sec+msec to AHB */ /* Set to 1 = busy every eight 32 kHz clocks during copy of sec+msec to AHB. */
#define TEGRA_RTC_REG_BUSY 0x004 #define TEGRA_RTC_REG_BUSY 0x004
#define TEGRA_RTC_REG_SECONDS 0x008 #define TEGRA_RTC_REG_SECONDS 0x008
/* when msec is read, the seconds are buffered into shadow seconds. */ /* When msec is read, the seconds are buffered into shadow seconds. */
#define TEGRA_RTC_REG_SHADOW_SECONDS 0x00c #define TEGRA_RTC_REG_SHADOW_SECONDS 0x00c
#define TEGRA_RTC_REG_MILLI_SECONDS 0x010 #define TEGRA_RTC_REG_MILLI_SECONDS 0x010
#define TEGRA_RTC_REG_SECONDS_ALARM0 0x014 #define TEGRA_RTC_REG_SECONDS_ALARM0 0x014
@ -46,44 +46,48 @@
#define TEGRA_RTC_INTR_STATUS_SEC_ALARM0 (1<<0) #define TEGRA_RTC_INTR_STATUS_SEC_ALARM0 (1<<0)
struct tegra_rtc_info { struct tegra_rtc_info {
struct platform_device *pdev; struct platform_device *pdev;
struct rtc_device *rtc_dev; struct rtc_device *rtc_dev;
void __iomem *rtc_base; /* NULL if not initialized. */ void __iomem *rtc_base; /* NULL if not initialized */
struct clk *clk; struct clk *clk;
int tegra_rtc_irq; /* alarm and periodic irq */ int tegra_rtc_irq; /* alarm and periodic IRQ */
spinlock_t tegra_rtc_lock; spinlock_t tegra_rtc_lock;
}; };
/* RTC hardware is busy when it is updating its values over AHB once /*
* every eight 32kHz clocks (~250uS). * RTC hardware is busy when it is updating its values over AHB once every
* outside of these updates the CPU is free to write. * eight 32 kHz clocks (~250 us). Outside of these updates the CPU is free to
* CPU is always free to read. * write. CPU is always free to read.
*/ */
static inline u32 tegra_rtc_check_busy(struct tegra_rtc_info *info) static inline u32 tegra_rtc_check_busy(struct tegra_rtc_info *info)
{ {
return readl(info->rtc_base + TEGRA_RTC_REG_BUSY) & 1; return readl(info->rtc_base + TEGRA_RTC_REG_BUSY) & 1;
} }
/* Wait for hardware to be ready for writing. /*
* This function tries to maximize the amount of time before the next update. * Wait for hardware to be ready for writing. This function tries to maximize
* It does this by waiting for the RTC to become busy with its periodic update, * the amount of time before the next update. It does this by waiting for the
* then returning once the RTC first becomes not busy. * RTC to become busy with its periodic update, then returning once the RTC
* first becomes not busy.
*
* This periodic update (where the seconds and milliseconds are copied to the * This periodic update (where the seconds and milliseconds are copied to the
* AHB side) occurs every eight 32kHz clocks (~250uS). * AHB side) occurs every eight 32 kHz clocks (~250 us). The behavior of this
* The behavior of this function allows us to make some assumptions without * function allows us to make some assumptions without introducing a race,
* introducing a race, because 250uS is plenty of time to read/write a value. * because 250 us is plenty of time to read/write a value.
*/ */
static int tegra_rtc_wait_while_busy(struct device *dev) static int tegra_rtc_wait_while_busy(struct device *dev)
{ {
struct tegra_rtc_info *info = dev_get_drvdata(dev); struct tegra_rtc_info *info = dev_get_drvdata(dev);
int retries = 500; /* ~490 us is the worst case, ~250 us is best */
int retries = 500; /* ~490 us is the worst case, ~250 us is best. */ /*
* First wait for the RTC to become busy. This is when it posts its
/* first wait for the RTC to become busy. this is when it * updated seconds+msec registers to AHB side.
* posts its updated seconds+msec registers to AHB side. */ */
while (tegra_rtc_check_busy(info)) { while (tegra_rtc_check_busy(info)) {
if (!retries--) if (!retries--)
goto retry_failed; goto retry_failed;
udelay(1); udelay(1);
} }
@ -91,7 +95,7 @@ static int tegra_rtc_wait_while_busy(struct device *dev)
return 0; return 0;
retry_failed: retry_failed:
dev_err(dev, "write failed:retry count exceeded.\n"); dev_err(dev, "write failed: retry count exceeded\n");
return -ETIMEDOUT; return -ETIMEDOUT;
} }
@ -101,8 +105,10 @@ static int tegra_rtc_read_time(struct device *dev, struct rtc_time *tm)
unsigned long sec, msec; unsigned long sec, msec;
unsigned long sl_irq_flags; unsigned long sl_irq_flags;
/* RTC hardware copies seconds to shadow seconds when a read /*
* of milliseconds occurs. use a lock to keep other threads out. */ * RTC hardware copies seconds to shadow seconds when a read of
* milliseconds occurs. use a lock to keep other threads out.
*/
spin_lock_irqsave(&info->tegra_rtc_lock, sl_irq_flags); spin_lock_irqsave(&info->tegra_rtc_lock, sl_irq_flags);
msec = readl(info->rtc_base + TEGRA_RTC_REG_MILLI_SECONDS); msec = readl(info->rtc_base + TEGRA_RTC_REG_MILLI_SECONDS);
@ -112,7 +118,7 @@ static int tegra_rtc_read_time(struct device *dev, struct rtc_time *tm)
rtc_time64_to_tm(sec, tm); rtc_time64_to_tm(sec, tm);
dev_vdbg(dev, "time read as %lu. %ptR\n", sec, tm); dev_vdbg(dev, "time read as %u, %ptR\n", sec, tm);
return 0; return 0;
} }
@ -123,18 +129,18 @@ static int tegra_rtc_set_time(struct device *dev, struct rtc_time *tm)
unsigned long sec; unsigned long sec;
int ret; int ret;
/* convert tm to seconds. */ /* convert tm to seconds */
sec = rtc_tm_to_time64(tm); sec = rtc_tm_to_time64(tm);
dev_vdbg(dev, "time set to %lu. %ptR\n", sec, tm); dev_vdbg(dev, "time set to %u, %ptR\n", sec, tm);
/* seconds only written if wait succeeded. */ /* seconds only written if wait succeeded */
ret = tegra_rtc_wait_while_busy(dev); ret = tegra_rtc_wait_while_busy(dev);
if (!ret) if (!ret)
writel(sec, info->rtc_base + TEGRA_RTC_REG_SECONDS); writel(sec, info->rtc_base + TEGRA_RTC_REG_SECONDS);
dev_vdbg(dev, "time read back as %d\n", dev_vdbg(dev, "time read back as %d\n",
readl(info->rtc_base + TEGRA_RTC_REG_SECONDS)); readl(info->rtc_base + TEGRA_RTC_REG_SECONDS));
return ret; return ret;
} }
@ -143,15 +149,15 @@ static int tegra_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{ {
struct tegra_rtc_info *info = dev_get_drvdata(dev); struct tegra_rtc_info *info = dev_get_drvdata(dev);
unsigned long sec; unsigned long sec;
unsigned tmp; unsigned int tmp;
sec = readl(info->rtc_base + TEGRA_RTC_REG_SECONDS_ALARM0); sec = readl(info->rtc_base + TEGRA_RTC_REG_SECONDS_ALARM0);
if (sec == 0) { if (sec == 0) {
/* alarm is disabled. */ /* alarm is disabled */
alarm->enabled = 0; alarm->enabled = 0;
} else { } else {
/* alarm is enabled. */ /* alarm is enabled */
alarm->enabled = 1; alarm->enabled = 1;
rtc_time64_to_tm(sec, &alarm->time); rtc_time64_to_tm(sec, &alarm->time);
} }
@ -165,13 +171,13 @@ static int tegra_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
static int tegra_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) static int tegra_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{ {
struct tegra_rtc_info *info = dev_get_drvdata(dev); struct tegra_rtc_info *info = dev_get_drvdata(dev);
unsigned status;
unsigned long sl_irq_flags; unsigned long sl_irq_flags;
unsigned int status;
tegra_rtc_wait_while_busy(dev); tegra_rtc_wait_while_busy(dev);
spin_lock_irqsave(&info->tegra_rtc_lock, sl_irq_flags); spin_lock_irqsave(&info->tegra_rtc_lock, sl_irq_flags);
/* read the original value, and OR in the flag. */ /* read the original value, and OR in the flag */
status = readl(info->rtc_base + TEGRA_RTC_REG_INTR_MASK); status = readl(info->rtc_base + TEGRA_RTC_REG_INTR_MASK);
if (enabled) if (enabled)
status |= TEGRA_RTC_INTR_MASK_SEC_ALARM0; /* set it */ status |= TEGRA_RTC_INTR_MASK_SEC_ALARM0; /* set it */
@ -198,14 +204,14 @@ static int tegra_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
tegra_rtc_wait_while_busy(dev); tegra_rtc_wait_while_busy(dev);
writel(sec, info->rtc_base + TEGRA_RTC_REG_SECONDS_ALARM0); writel(sec, info->rtc_base + TEGRA_RTC_REG_SECONDS_ALARM0);
dev_vdbg(dev, "alarm read back as %d\n", dev_vdbg(dev, "alarm read back as %d\n",
readl(info->rtc_base + TEGRA_RTC_REG_SECONDS_ALARM0)); readl(info->rtc_base + TEGRA_RTC_REG_SECONDS_ALARM0));
/* if successfully written and alarm is enabled ... */ /* if successfully written and alarm is enabled ... */
if (sec) { if (sec) {
tegra_rtc_alarm_irq_enable(dev, 1); tegra_rtc_alarm_irq_enable(dev, 1);
dev_vdbg(dev, "alarm set as %lu. %ptR\n", sec, &alarm->time); dev_vdbg(dev, "alarm set as %u, %ptR\n", sec, &alarm->time);
} else { } else {
/* disable alarm if 0 or write error. */ /* disable alarm if 0 or write error */
dev_vdbg(dev, "alarm disabled\n"); dev_vdbg(dev, "alarm disabled\n");
tegra_rtc_alarm_irq_enable(dev, 0); tegra_rtc_alarm_irq_enable(dev, 0);
} }
@ -228,25 +234,26 @@ static irqreturn_t tegra_rtc_irq_handler(int irq, void *data)
struct device *dev = data; struct device *dev = data;
struct tegra_rtc_info *info = dev_get_drvdata(dev); struct tegra_rtc_info *info = dev_get_drvdata(dev);
unsigned long events = 0; unsigned long events = 0;
unsigned status;
unsigned long sl_irq_flags; unsigned long sl_irq_flags;
unsigned int status;
status = readl(info->rtc_base + TEGRA_RTC_REG_INTR_STATUS); status = readl(info->rtc_base + TEGRA_RTC_REG_INTR_STATUS);
if (status) { if (status) {
/* clear the interrupt masks and status on any irq. */ /* clear the interrupt masks and status on any IRQ */
tegra_rtc_wait_while_busy(dev); tegra_rtc_wait_while_busy(dev);
spin_lock_irqsave(&info->tegra_rtc_lock, sl_irq_flags); spin_lock_irqsave(&info->tegra_rtc_lock, sl_irq_flags);
writel(0, info->rtc_base + TEGRA_RTC_REG_INTR_MASK); writel(0, info->rtc_base + TEGRA_RTC_REG_INTR_MASK);
writel(status, info->rtc_base + TEGRA_RTC_REG_INTR_STATUS); writel(status, info->rtc_base + TEGRA_RTC_REG_INTR_STATUS);
spin_unlock_irqrestore(&info->tegra_rtc_lock, sl_irq_flags); spin_unlock_irqrestore(&info->tegra_rtc_lock, sl_irq_flags);
} }
/* check if Alarm */ /* check if alarm */
if ((status & TEGRA_RTC_INTR_STATUS_SEC_ALARM0)) if (status & TEGRA_RTC_INTR_STATUS_SEC_ALARM0)
events |= RTC_IRQF | RTC_AF; events |= RTC_IRQF | RTC_AF;
/* check if Periodic */ /* check if periodic */
if ((status & TEGRA_RTC_INTR_STATUS_SEC_CDN_ALARM)) if (status & TEGRA_RTC_INTR_STATUS_SEC_CDN_ALARM)
events |= RTC_IRQF | RTC_PF; events |= RTC_IRQF | RTC_PF;
rtc_update_irq(info->rtc_dev, 1, events); rtc_update_irq(info->rtc_dev, 1, events);
@ -255,11 +262,11 @@ static irqreturn_t tegra_rtc_irq_handler(int irq, void *data)
} }
static const struct rtc_class_ops tegra_rtc_ops = { static const struct rtc_class_ops tegra_rtc_ops = {
.read_time = tegra_rtc_read_time, .read_time = tegra_rtc_read_time,
.set_time = tegra_rtc_set_time, .set_time = tegra_rtc_set_time,
.read_alarm = tegra_rtc_read_alarm, .read_alarm = tegra_rtc_read_alarm,
.set_alarm = tegra_rtc_set_alarm, .set_alarm = tegra_rtc_set_alarm,
.proc = tegra_rtc_proc, .proc = tegra_rtc_proc,
.alarm_irq_enable = tegra_rtc_alarm_irq_enable, .alarm_irq_enable = tegra_rtc_alarm_irq_enable,
}; };
@ -275,8 +282,7 @@ static int __init tegra_rtc_probe(struct platform_device *pdev)
struct resource *res; struct resource *res;
int ret; int ret;
info = devm_kzalloc(&pdev->dev, sizeof(struct tegra_rtc_info), info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
GFP_KERNEL);
if (!info) if (!info)
return -ENOMEM; return -ENOMEM;
@ -308,13 +314,13 @@ static int __init tegra_rtc_probe(struct platform_device *pdev)
if (ret < 0) if (ret < 0)
return ret; return ret;
/* set context info. */ /* set context info */
info->pdev = pdev; info->pdev = pdev;
spin_lock_init(&info->tegra_rtc_lock); spin_lock_init(&info->tegra_rtc_lock);
platform_set_drvdata(pdev, info); platform_set_drvdata(pdev, info);
/* clear out the hardware. */ /* clear out the hardware */
writel(0, info->rtc_base + TEGRA_RTC_REG_SECONDS_ALARM0); writel(0, info->rtc_base + TEGRA_RTC_REG_SECONDS_ALARM0);
writel(0xffffffff, info->rtc_base + TEGRA_RTC_REG_INTR_STATUS); writel(0xffffffff, info->rtc_base + TEGRA_RTC_REG_INTR_STATUS);
writel(0, info->rtc_base + TEGRA_RTC_REG_INTR_MASK); writel(0, info->rtc_base + TEGRA_RTC_REG_INTR_MASK);
@ -322,19 +328,16 @@ static int __init tegra_rtc_probe(struct platform_device *pdev)
device_init_wakeup(&pdev->dev, 1); device_init_wakeup(&pdev->dev, 1);
ret = devm_request_irq(&pdev->dev, info->tegra_rtc_irq, ret = devm_request_irq(&pdev->dev, info->tegra_rtc_irq,
tegra_rtc_irq_handler, IRQF_TRIGGER_HIGH, tegra_rtc_irq_handler, IRQF_TRIGGER_HIGH,
dev_name(&pdev->dev), &pdev->dev); dev_name(&pdev->dev), &pdev->dev);
if (ret) { if (ret) {
dev_err(&pdev->dev, dev_err(&pdev->dev, "failed to request interrupt: %d\n", ret);
"Unable to request interrupt for device (err=%d).\n",
ret);
goto disable_clk; goto disable_clk;
} }
ret = rtc_register_device(info->rtc_dev); ret = rtc_register_device(info->rtc_dev);
if (ret) { if (ret) {
dev_err(&pdev->dev, "Unable to register device (err=%d).\n", dev_err(&pdev->dev, "failed to register device: %d\n", ret);
ret);
goto disable_clk; goto disable_clk;
} }
@ -363,18 +366,18 @@ static int tegra_rtc_suspend(struct device *dev)
tegra_rtc_wait_while_busy(dev); tegra_rtc_wait_while_busy(dev);
/* only use ALARM0 as a wake source. */ /* only use ALARM0 as a wake source */
writel(0xffffffff, info->rtc_base + TEGRA_RTC_REG_INTR_STATUS); writel(0xffffffff, info->rtc_base + TEGRA_RTC_REG_INTR_STATUS);
writel(TEGRA_RTC_INTR_STATUS_SEC_ALARM0, writel(TEGRA_RTC_INTR_STATUS_SEC_ALARM0,
info->rtc_base + TEGRA_RTC_REG_INTR_MASK); info->rtc_base + TEGRA_RTC_REG_INTR_MASK);
dev_vdbg(dev, "alarm sec = %d\n", dev_vdbg(dev, "alarm sec = %d\n",
readl(info->rtc_base + TEGRA_RTC_REG_SECONDS_ALARM0)); readl(info->rtc_base + TEGRA_RTC_REG_SECONDS_ALARM0));
dev_vdbg(dev, "Suspend (device_may_wakeup=%d) irq:%d\n", dev_vdbg(dev, "Suspend (device_may_wakeup=%d) IRQ:%d\n",
device_may_wakeup(dev), info->tegra_rtc_irq); device_may_wakeup(dev), info->tegra_rtc_irq);
/* leave the alarms on as a wake source. */ /* leave the alarms on as a wake source */
if (device_may_wakeup(dev)) if (device_may_wakeup(dev))
enable_irq_wake(info->tegra_rtc_irq); enable_irq_wake(info->tegra_rtc_irq);
@ -386,8 +389,9 @@ static int tegra_rtc_resume(struct device *dev)
struct tegra_rtc_info *info = dev_get_drvdata(dev); struct tegra_rtc_info *info = dev_get_drvdata(dev);
dev_vdbg(dev, "Resume (device_may_wakeup=%d)\n", dev_vdbg(dev, "Resume (device_may_wakeup=%d)\n",
device_may_wakeup(dev)); device_may_wakeup(dev));
/* alarms were left on as a wake source, turn them off. */
/* alarms were left on as a wake source, turn them off */
if (device_may_wakeup(dev)) if (device_may_wakeup(dev))
disable_irq_wake(info->tegra_rtc_irq); disable_irq_wake(info->tegra_rtc_irq);
@ -399,18 +403,17 @@ static SIMPLE_DEV_PM_OPS(tegra_rtc_pm_ops, tegra_rtc_suspend, tegra_rtc_resume);
static void tegra_rtc_shutdown(struct platform_device *pdev) static void tegra_rtc_shutdown(struct platform_device *pdev)
{ {
dev_vdbg(&pdev->dev, "disabling interrupts.\n"); dev_vdbg(&pdev->dev, "disabling interrupts\n");
tegra_rtc_alarm_irq_enable(&pdev->dev, 0); tegra_rtc_alarm_irq_enable(&pdev->dev, 0);
} }
MODULE_ALIAS("platform:tegra_rtc");
static struct platform_driver tegra_rtc_driver = { static struct platform_driver tegra_rtc_driver = {
.remove = tegra_rtc_remove, .remove = tegra_rtc_remove,
.shutdown = tegra_rtc_shutdown, .shutdown = tegra_rtc_shutdown,
.driver = { .driver = {
.name = "tegra_rtc", .name = "tegra_rtc",
.of_match_table = tegra_rtc_dt_match, .of_match_table = tegra_rtc_dt_match,
.pm = &tegra_rtc_pm_ops, .pm = &tegra_rtc_pm_ops,
}, },
}; };
@ -418,4 +421,5 @@ module_platform_driver_probe(tegra_rtc_driver, tegra_rtc_probe);
MODULE_AUTHOR("Jon Mayo <jmayo@nvidia.com>"); MODULE_AUTHOR("Jon Mayo <jmayo@nvidia.com>");
MODULE_DESCRIPTION("driver for Tegra internal RTC"); MODULE_DESCRIPTION("driver for Tegra internal RTC");
MODULE_ALIAS("platform:tegra_rtc");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");