perf vendor events: Update TremontX

Note 01.org has no TremontX directory but in mapfile.csv the family and
model:
...
GenuineIntel-6-86,V1.17,/SNR/snowridgex_core_v1.17.json,core,,,
GenuineIntel-6-86,V1.17,/SNR/snowridgex_uncore_v1.17.json,uncore,,,
...
match TremontX in the perf mapfile.csv:
...
GenuineIntel-6-86,v1,tremontx,core
...

Events are at version 1.17:
    https://download.01.org/perfmon/SNR
Json files generated by the latest code at:
    https://github.com/intel/event-converter-for-linux-perf

floating-point.json is added.

Tested:

Not tested on a SnowridgeX/TremontX, on a SkylakeX:

  ...
    9: Parse perf pmu format                                           : Ok
   10: PMU events                                                      :
   10.1: PMU event table sanity                                        : Ok
   10.2: PMU event map aliases                                         : Ok
   10.3: Parsing of PMU event table metrics                            : Ok
   10.4: Parsing of PMU event table metrics with fake PMUs             : Ok
  ...

Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexandre Torgue <alexandre.torgue@foss.st.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Clark <james.clark@arm.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Garry <john.garry@huawei.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Zhengjun Xing <zhengjun.xing@linux.intel.com>
Link: https://lore.kernel.org/r/20220201015858.1226914-27-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This commit is contained in:
Ian Rogers 2022-01-31 17:58:58 -08:00 committed by Arnaldo Carvalho de Melo
parent 4ad91126e6
commit be5764c4e2
9 changed files with 5302 additions and 278 deletions

View file

@ -1,111 +1,305 @@
[
{
"BriefDescription": "Counts the number of core requests (demand and L1 prefetchers) rejected by the L2 queue (L2Q) due to a full condition.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts cacheable memory requests that miss in the the Last Level Cache. Requests include Demand Loads, Reads for Ownership(RFO), Instruction fetches and L1 HW prefetches. If the platform has an L3 cache, last level cache is the L3, otherwise it is the L2.",
"EventCode": "0x2e",
"Counter": "0,1,2,3",
"UMask": "0x41",
"EventCode": "0x31",
"EventName": "CORE_REJECT_L2Q.ANY",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of (demand and L1 prefetchers) core requests rejected by the L2 queue (L2Q) due to a full or nearly full condition, which likely indicates back pressure from L2Q. It also counts requests that would have gone directly to the External Queue (XQ), but are rejected due to a full or nearly full condition, indicating back pressure from the IDI link. The L2Q may also reject transactions from a core to ensure fairness between cores, or to delay a cores dirty eviction when the address conflicts incoming external snoops. (Note that L2 prefetcher requests that are dropped are not counted by this event). Counts on a per core basis.",
"SampleAfterValue": "200003"
},
{
"BriefDescription": "Counts the number of first level data cacheline (dirty) evictions caused by misses, stores, and prefetches.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x51",
"EventName": "DL1.DIRTY_EVICTION",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of first level data cacheline (dirty) evictions caused by misses, stores, and prefetches. Does not count evictions or dirty writebacks caused by snoops. Does not count a replacement unless a (dirty) line was written back.",
"SampleAfterValue": "200003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts the number of demand and prefetch transactions that the External Queue (XQ) rejects due to a full or near full condition.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x30",
"EventName": "L2_REJECT_XQ.ANY",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of demand and prefetch transactions that the External Queue (XQ) rejects due to a full or near full condition which likely indicates back pressure from the IDI link. The XQ may reject transactions from the L2Q (non-cacheable requests), BBL (L2 misses) and WOB (L2 write-back victims).",
"SampleAfterValue": "200003"
},
{
"BriefDescription": "Counts the number of cacheable memory requests that miss in the LLC. Counts on a per core basis.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x2e",
"EventName": "LONGEST_LAT_CACHE.MISS",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of cacheable memory requests that miss in the Last Level Cache (LLC). If the platform has an L3 cache, the LLC is the L3 cache, otherwise it is the L2 cache. Counts on a per core basis.",
"SampleAfterValue": "200003",
"BriefDescription": "Counts memory requests originating from the core that miss in the last level cache. If the platform has an L3 cache, last level cache is the L3, otherwise it is the L2."
"UMask": "0x41"
},
{
"BriefDescription": "Counts the number of cacheable memory requests that access the LLC. Counts on a per core basis.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts cacheable memory requests that access the Last Level Cache. Requests include Demand Loads, Reads for Ownership(RFO), Instruction fetches and L1 HW prefetches. If the platform has an L3 cache, last level cache is the L3, otherwise it is the L2.",
"EventCode": "0x2e",
"Counter": "0,1,2,3",
"UMask": "0x4f",
"PEBScounters": "0,1,2,3",
"EventCode": "0x2e",
"EventName": "LONGEST_LAT_CACHE.REFERENCE",
"PDIR_COUNTER": "na",
"SampleAfterValue": "200003",
"BriefDescription": "Counts memory requests originating from the core that reference a cache line in the last level cache. If the platform has an L3 cache, last level cache is the L3, otherwise it is the L2."
},
{
"PEBS": "1",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts the number of load uops retired. This event is Precise Event capable",
"EventCode": "0xd0",
"Counter": "0,1,2,3",
"UMask": "0x81",
"PEBScounters": "0,1,2,3",
"EventName": "MEM_UOPS_RETIRED.ALL_LOADS",
"PublicDescription": "Counts the number of cacheable memory requests that access the Last Level Cache (LLC). Requests include demand loads, reads for ownership (RFO), instruction fetches and L1 HW prefetches. If the platform has an L3 cache, the LLC is the L3 cache, otherwise it is the L2 cache. Counts on a per core basis.",
"SampleAfterValue": "200003",
"BriefDescription": "Counts the number of load uops retired.",
"Data_LA": "1"
"UMask": "0x4f"
},
{
"PEBS": "1",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts the number of store uops retired. This event is Precise Event capable",
"EventCode": "0xd0",
"BriefDescription": "Counts the number of cycles the core is stalled due to an instruction cache or TLB miss which hit in the L2, LLC, DRAM or MMIO (Non-DRAM).",
"Counter": "0,1,2,3",
"UMask": "0x82",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS.IFETCH",
"PEBScounters": "0,1,2,3",
"EventName": "MEM_UOPS_RETIRED.ALL_STORES",
"SampleAfterValue": "200003",
"BriefDescription": "Counts the number of store uops retired.",
"Data_LA": "1"
"UMask": "0x38"
},
{
"PEBS": "1",
"BriefDescription": "Counts the number of cycles the core is stalled due to an instruction cache or TLB miss which hit in DRAM or MMIO (Non-DRAM).",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS.IFETCH_DRAM_HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of cycles a core is stalled due to an instruction cache or translation lookaside buffer (TLB) access which hit in DRAM or MMIO (non-DRAM).",
"SampleAfterValue": "200003",
"UMask": "0x20"
},
{
"BriefDescription": "Counts the number of cycles the core is stalled due to an instruction cache or TLB miss which hit in the L2 cache.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS.IFETCH_L2_HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of cycles a core is stalled due to an instruction cache or Translation Lookaside Buffer (TLB) access which hit in the L2 cache.",
"SampleAfterValue": "200003",
"UMask": "0x8"
},
{
"BriefDescription": "Counts the number of cycles the core is stalled due to an instruction cache or TLB miss which hit in the LLC or other core with HITE/F/M.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS.IFETCH_LLC_HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of cycles a core is stalled due to an instruction cache or Translation Lookaside Buffer (TLB) access which hit in the Last Level Cache (LLC) or other core with HITE/F/M.",
"SampleAfterValue": "200003",
"UMask": "0x10"
},
{
"BriefDescription": "Counts the number of cycles the core is stalled due to a demand load miss which hit in the L2, LLC, DRAM or MMIO (Non-DRAM).",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS.LOAD",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x7"
},
{
"BriefDescription": "Counts the number of cycles the core is stalled due to a demand load miss which hit in DRAM or MMIO (Non-DRAM).",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS.LOAD_DRAM_HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x4"
},
{
"BriefDescription": "Counts the number of cycles the core is stalled due to a demand load which hit in the L2 cache.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS.LOAD_L2_HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of cycles a core is stalled due to a demand load which hit in the L2 cache.",
"SampleAfterValue": "200003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts the number of cycles the core is stalled due to a demand load which hit in the LLC or other core with HITE/F/M.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS.LOAD_LLC_HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of cycles a core is stalled due to a demand load which hit in the Last Level Cache (LLC) or other core with HITE/F/M.",
"SampleAfterValue": "200003",
"UMask": "0x2"
},
{
"BriefDescription": "Counts the number of cycles a core is stalled due to a store buffer being full.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS.STORE_BUFFER_FULL",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x40"
},
{
"BriefDescription": "Counts the number of load ops retired that hit in DRAM.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"Data_LA": "1",
"EventCode": "0xd1",
"Counter": "0,1,2,3",
"UMask": "0x1",
"EventName": "MEM_LOAD_UOPS_RETIRED.DRAM_HIT",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x80"
},
{
"BriefDescription": "Counts the number of retired loads that hit in the L3 cache, in which a snoop was required and modified data was forwarded from another core.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"Data_LA": "1",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_UOPS_RETIRED.HITM",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x20"
},
{
"BriefDescription": "Counts the number of load uops retired that hit in the L1 data cache.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"Data_LA": "1",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_UOPS_RETIRED.L1_HIT",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"BriefDescription": "Counts the number of load uops retired that hit the level 1 data cache",
"Data_LA": "1"
"UMask": "0x1"
},
{
"PEBS": "1",
"BriefDescription": "Counts the number of load uops retired that miss in the L1 data cache.",
"CollectPEBSRecord": "2",
"EventCode": "0xd1",
"Counter": "0,1,2,3",
"UMask": "0x2",
"PEBScounters": "0,1,2,3",
"EventName": "MEM_LOAD_UOPS_RETIRED.L2_HIT",
"SampleAfterValue": "200003",
"BriefDescription": "Counts the number of load uops retired that hit in the level 2 cache",
"Data_LA": "1"
},
{
"PEBS": "1",
"CollectPEBSRecord": "2",
"Data_LA": "1",
"EventCode": "0xd1",
"Counter": "0,1,2,3",
"UMask": "0x4",
"PEBScounters": "0,1,2,3",
"EventName": "MEM_LOAD_UOPS_RETIRED.L3_HIT",
"SampleAfterValue": "200003",
"BriefDescription": "Counts the number of load uops retired that miss in the level 3 cache"
},
{
"PEBS": "1",
"CollectPEBSRecord": "2",
"EventCode": "0xd1",
"Counter": "0,1,2,3",
"UMask": "0x8",
"PEBScounters": "0,1,2,3",
"EventName": "MEM_LOAD_UOPS_RETIRED.L1_MISS",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"BriefDescription": "Counts the number of load uops retired that miss in the level 1 data cache",
"Data_LA": "1"
"UMask": "0x8"
},
{
"PEBS": "1",
"BriefDescription": "Counts the number of load uops retired that hit in the L2 cache.",
"CollectPEBSRecord": "2",
"EventCode": "0xd1",
"Counter": "0,1,2,3",
"UMask": "0x10",
"Data_LA": "1",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_UOPS_RETIRED.L2_HIT",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"EventName": "MEM_LOAD_UOPS_RETIRED.L2_MISS",
"SampleAfterValue": "200003",
"BriefDescription": "Counts the number of load uops retired that miss in the level 2 cache",
"Data_LA": "1"
"UMask": "0x2"
},
{
"BriefDescription": "Counts the number of load uops retired that miss in the L2 cache.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"Data_LA": "1",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_UOPS_RETIRED.L2_MISS",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x10"
},
{
"BriefDescription": "Counts the number of load uops retired that hit in the L3 cache.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_UOPS_RETIRED.L3_HIT",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x4"
},
{
"BriefDescription": "Counts the number of load uops retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.ALL_LOADS",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the total number of load uops retired.",
"SampleAfterValue": "200003",
"UMask": "0x81"
},
{
"BriefDescription": "Counts the number of store uops retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.ALL_STORES",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the total number of store uops retired.",
"SampleAfterValue": "200003",
"UMask": "0x82"
},
{
"BriefDescription": "Counts the number of memory uops retired that were splits.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.SPLIT",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x43"
},
{
"BriefDescription": "Counts the number of retired split loads uops.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.SPLIT_LOADS",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x41"
},
{
"BriefDescription": "Counts the number of issue slots every cycle that were not delivered by the frontend due to instruction cache misses.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x71",
"EventName": "TOPDOWN_FE_BOUND.ICACHE",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "1000003",
"UMask": "0x20"
}
]

View file

@ -0,0 +1,24 @@
[
{
"BriefDescription": "Counts the number of cycles the floating point divider is busy. Does not imply a stall waiting for the divider.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xcd",
"EventName": "CYCLES_DIV_BUSY.FPDIV",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x2"
},
{
"BriefDescription": "Counts the number of floating point divide uops retired (x87 and SSE, including x87 sqrt).",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc2",
"EventName": "UOPS_RETIRED.FPDIV",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "2000003",
"UMask": "0x8"
}
]

View file

@ -1,26 +1,105 @@
[
{
"BriefDescription": "Counts the total number of BACLEARS due to all branch types including conditional and unconditional jumps, returns, and indirect branches.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts requests to the Instruction Cache (ICache) for one or more bytes in an ICache Line and that cache line is not in the ICache (miss). The event strives to count on a cache line basis, so that multiple accesses which miss in a single cache line count as one ICACHE.MISS. Specifically, the event counts when straight line code crosses the cache line boundary, or when a branch target is to a new line, and that cache line is not in the ICache.",
"EventCode": "0x80",
"Counter": "0,1,2,3",
"UMask": "0x2",
"PEBScounters": "0,1,2,3",
"EventName": "ICACHE.MISSES",
"EventCode": "0xe6",
"EventName": "BACLEARS.ANY",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the total number of BACLEARS, which occur when the Branch Target Buffer (BTB) prediction or lack thereof, was corrected by a later branch predictor in the frontend. Includes BACLEARS due to all branch types including conditional and unconditional jumps, returns, and indirect branches.",
"SampleAfterValue": "200003",
"BriefDescription": "Counts requests to the Instruction Cache (ICache) for one or more bytes in a cache line and they do not hit in the ICache (miss)."
"UMask": "0x1"
},
{
"BriefDescription": "Counts the number of BACLEARS due to a conditional jump.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts requests to the Instruction Cache (ICache) for one or more bytes in an ICache Line. The event strives to count on a cache line basis, so that multiple fetches to a single cache line count as one ICACHE.ACCESS. Specifically, the event counts when accesses from straight line code crosses the cache line boundary, or when a branch target is to a new line.",
"EventCode": "0x80",
"Counter": "0,1,2,3",
"UMask": "0x3",
"EventCode": "0xe6",
"EventName": "BACLEARS.COND",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x10"
},
{
"BriefDescription": "Counts the number of BACLEARS due to an indirect branch.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xe6",
"EventName": "BACLEARS.INDIRECT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x2"
},
{
"BriefDescription": "Counts the number of BACLEARS due to a return branch.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xe6",
"EventName": "BACLEARS.RETURN",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x8"
},
{
"BriefDescription": "Counts the number of BACLEARS due to a direct, unconditional jump.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xe6",
"EventName": "BACLEARS.UNCOND",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x4"
},
{
"BriefDescription": "Counts the number of times a decode restriction reduces the decode throughput due to wrong instruction length prediction.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xe9",
"EventName": "DECODE_RESTRICTION.PREDECODE_WRONG",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts the number of requests to the instruction cache for one or more bytes of a cache line.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x80",
"EventName": "ICACHE.ACCESSES",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the total number of requests to the instruction cache. The event only counts new cache line accesses, so that multiple back to back fetches to the exact same cache line or byte chunk count as one. Specifically, the event counts when accesses from sequential code crosses the cache line boundary, or when a branch target is moved to a new line or to a non-sequential byte chunk of the same line.",
"SampleAfterValue": "200003",
"BriefDescription": "Counts requests to the Instruction Cache (ICache) for one or more bytes cache Line."
"UMask": "0x3"
},
{
"BriefDescription": "Counts the number of instruction cache hits.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x80",
"EventName": "ICACHE.HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of requests that hit in the instruction cache. The event only counts new cache line accesses, so that multiple back to back fetches to the exact same cache line and byte chunk count as one. Specifically, the event counts when accesses from sequential code crosses the cache line boundary, or when a branch target is moved to a new line or to a non-sequential byte chunk of the same line.",
"SampleAfterValue": "200003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts the number of instruction cache misses.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x80",
"EventName": "ICACHE.MISSES",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of missed requests to the instruction cache. The event only counts new cache line accesses, so that multiple back to back fetches to the exact same cache line and byte chunk count as one. Specifically, the event counts when accesses from sequential code crosses the cache line boundary, or when a branch target is moved to a new line or to a non-sequential byte chunk of the same line.",
"SampleAfterValue": "200003",
"UMask": "0x2"
}
]

View file

@ -1,26 +1,457 @@
[
{
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"EventCode": "0XB7",
"MSRValue": "0x000000003F04000001",
"BriefDescription": "Counts the number of machine clears due to memory ordering caused by a snoop from an external agent. Does not count internally generated machine clears such as those due to memory disambiguation.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"UMask": "0x1",
"EventName": "OCR.DEMAND_DATA_RD.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"SampleAfterValue": "100003",
"BriefDescription": "Counts demand data reads that was not supplied by the L3 cache.",
"Offcore": "1"
"EventCode": "0xc3",
"EventName": "MACHINE_CLEARS.MEMORY_ORDERING",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "20003",
"UMask": "0x2"
},
{
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"EventCode": "0XB7",
"MSRValue": "0x000000003F04000002",
"BriefDescription": "Counts all code reads that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"UMask": "0x1",
"EventCode": "0XB7",
"EventName": "OCR.ALL_CODE_RD.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000044",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts all code reads that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.ALL_CODE_RD.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000044",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts modified writebacks from L1 cache and L2 cache that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.COREWB_M.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x3002184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts modified writebacks from L1 cache and L2 cache that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.COREWB_M.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x3002184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts demand instruction fetches and L1 instruction cache prefetches that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.DEMAND_CODE_RD.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000004",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts demand instruction fetches and L1 instruction cache prefetches that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.DEMAND_CODE_RD.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000004",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts cacheable demand data reads, L1 data cache hardware prefetches and software prefetches (except PREFETCHW) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.DEMAND_DATA_AND_L1PF_RD.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000001",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts cacheable demand data reads, L1 data cache hardware prefetches and software prefetches (except PREFETCHW) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.DEMAND_DATA_AND_L1PF_RD.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000001",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "This event is deprecated. Refer to new event OCR.DEMAND_DATA_AND_L1PF_RD.L3_MISS",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.DEMAND_DATA_RD.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000001",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "This event is deprecated. Refer to new event OCR.DEMAND_DATA_AND_L1PF_RD.L3_MISS_LOCAL",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.DEMAND_DATA_RD.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000001",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts demand reads for ownership (RFO) and software prefetches for exclusive ownership (PREFETCHW) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.DEMAND_RFO.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000002",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"BriefDescription": "Counts all demand reads for ownership (RFO) requests and software based prefetches for exclusive ownership (PREFETCHW) that was not supplied by the L3 cache.",
"Offcore": "1"
"UMask": "0x1"
},
{
"BriefDescription": "Counts demand reads for ownership (RFO) and software prefetches for exclusive ownership (PREFETCHW) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.DEMAND_RFO.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000002",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts streaming stores which modify a full 64 byte cacheline that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.FULL_STREAMING_WR.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x802184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts streaming stores which modify a full 64 byte cacheline that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.FULL_STREAMING_WR.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x802184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts L2 cache hardware prefetch code reads (written to the L2 cache only) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.HWPF_L2_CODE_RD.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000040",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts L2 cache hardware prefetch code reads (written to the L2 cache only) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.HWPF_L2_CODE_RD.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000040",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts L2 cache hardware prefetch data reads (written to the L2 cache only) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.HWPF_L2_DATA_RD.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000010",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts L2 cache hardware prefetch data reads (written to the L2 cache only) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.HWPF_L2_DATA_RD.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000010",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts L2 cache hardware prefetch RFOs (written to the L2 cache only) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.HWPF_L2_RFO.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000020",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts L2 cache hardware prefetch RFOs (written to the L2 cache only) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.HWPF_L2_RFO.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000020",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts modified writebacks from L1 cache that miss the L2 cache that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.L1WB_M.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x1002184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts modified writebacks from L1 cache that miss the L2 cache that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.L1WB_M.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x1002184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts modified writeBacks from L2 cache that miss the L3 cache that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.L2WB_M.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2002184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts modified writeBacks from L2 cache that miss the L3 cache that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.L2WB_M.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2002184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts miscellaneous requests, such as I/O accesses, that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.OTHER.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184008000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts miscellaneous requests, such as I/O accesses, that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.OTHER.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184008000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts streaming stores which modify only part of a 64 byte cacheline that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.PARTIAL_STREAMING_WR.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x402184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts streaming stores which modify only part of a 64 byte cacheline that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.PARTIAL_STREAMING_WR.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x402184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts all hardware and software prefetches that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.PREFETCHES.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000470",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts all data read, code read and RFO requests including demands and prefetches to the core caches (L1 or L2) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.READS_TO_CORE.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000477",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts all data read, code read and RFO requests including demands and prefetches to the core caches (L1 or L2) that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.READS_TO_CORE.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000477",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts streaming stores that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.STREAMING_WR.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000800",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts streaming stores that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.STREAMING_WR.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x2184000800",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts uncached memory reads that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.UC_RD.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x102184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts uncached memory reads that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.UC_RD.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x102184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts uncached memory writes that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.UC_WR.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x202184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts uncached memory writes that were not supplied by the L3 cache.",
"Counter": "0,1,2,3",
"EventCode": "0XB7",
"EventName": "OCR.UC_WR.L3_MISS_LOCAL",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x202184000000",
"Offcore": "1",
"PublicDescription": "Offcore response can be programmed only with a specific pair of event select and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the offcore transaction.",
"SampleAfterValue": "100003",
"UMask": "0x1"
}
]

File diff suppressed because it is too large Load diff

View file

@ -1,111 +1,354 @@
[
{
"PEBS": "1",
"BriefDescription": "Counts the total number of branch instructions retired for all branch types.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts the number of instructions that retire. For instructions that consist of multiple uops, this event counts the retirement of the last uop of the instruction. The counter continues counting during hardware interrupts, traps, and inside interrupt handlers. This event uses fixed counter 0.",
"Counter": "32",
"UMask": "0x1",
"PEBScounters": "32",
"EventName": "INST_RETIRED.ANY",
"SampleAfterValue": "2000003",
"BriefDescription": "Counts the number of instructions retired. (Fixed event)"
"Counter": "0,1,2,3",
"EventCode": "0xc4",
"EventName": "BR_INST_RETIRED.ALL_BRANCHES",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the total number of instructions in which the instruction pointer (IP) of the processor is resteered due to a branch instruction and the branch instruction successfully retires. All branch type instructions are accounted for.",
"SampleAfterValue": "200003"
},
{
"BriefDescription": "Counts the number of near CALL branch instructions retired.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts the number of core cycles while the core is not in a halt state. The core enters the halt state when it is running the HLT instruction. The core frequency may change from time to time. For this reason this event may have a changing ratio with regards to time. This event uses fixed counter 1.",
"Counter": "33",
"UMask": "0x2",
"PEBScounters": "33",
"Counter": "0,1,2,3",
"EventCode": "0xc4",
"EventName": "BR_INST_RETIRED.CALL",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0xf9"
},
{
"BriefDescription": "Counts the number of far branch instructions retired, includes far jump, far call and return, and interrupt call and return.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc4",
"EventName": "BR_INST_RETIRED.FAR_BRANCH",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0xbf"
},
{
"BriefDescription": "Counts the number of near indirect CALL branch instructions retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc4",
"EventName": "BR_INST_RETIRED.IND_CALL",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0xfb"
},
{
"BriefDescription": "Counts the number of retired JCC (Jump on Conditional Code) branch instructions retired, includes both taken and not taken branches.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc4",
"EventName": "BR_INST_RETIRED.JCC",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x7e"
},
{
"BriefDescription": "Counts the number of near indirect JMP and near indirect CALL branch instructions retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc4",
"EventName": "BR_INST_RETIRED.NON_RETURN_IND",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0xeb"
},
{
"BriefDescription": "Counts the number of near relative CALL branch instructions retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc4",
"EventName": "BR_INST_RETIRED.REL_CALL",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0xfd"
},
{
"BriefDescription": "Counts the number of near RET branch instructions retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc4",
"EventName": "BR_INST_RETIRED.RETURN",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0xf7"
},
{
"BriefDescription": "Counts the number of taken JCC (Jump on Conditional Code) branch instructions retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc4",
"EventName": "BR_INST_RETIRED.TAKEN_JCC",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0xfe"
},
{
"BriefDescription": "Counts the total number of mispredicted branch instructions retired for all branch types.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc5",
"EventName": "BR_MISP_RETIRED.ALL_BRANCHES",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the total number of mispredicted branch instructions retired. All branch type instructions are accounted for. Prediction of the branch target address enables the processor to begin executing instructions before the non-speculative execution path is known. The branch prediction unit (BPU) predicts the target address based on the instruction pointer (IP) of the branch and on the execution path through which execution reached this IP. A branch misprediction occurs when the prediction is wrong, and results in discarding all instructions executed in the speculative path and re-fetching from the correct path.",
"SampleAfterValue": "200003"
},
{
"BriefDescription": "Counts the number of mispredicted near indirect CALL branch instructions retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc5",
"EventName": "BR_MISP_RETIRED.IND_CALL",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0xfb"
},
{
"BriefDescription": "Counts the number of mispredicted JCC (Jump on Conditional Code) branch instructions retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc5",
"EventName": "BR_MISP_RETIRED.JCC",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x7e"
},
{
"BriefDescription": "Counts the number of mispredicted near indirect JMP and near indirect CALL branch instructions retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc5",
"EventName": "BR_MISP_RETIRED.NON_RETURN_IND",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0xeb"
},
{
"BriefDescription": "Counts the number of mispredicted near RET branch instructions retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc5",
"EventName": "BR_MISP_RETIRED.RETURN",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0xf7"
},
{
"BriefDescription": "Counts the number of mispredicted taken JCC (Jump on Conditional Code) branch instructions retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc5",
"EventName": "BR_MISP_RETIRED.TAKEN_JCC",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0xfe"
},
{
"BriefDescription": "Counts the number of unhalted core clock cycles. (Fixed event)",
"CollectPEBSRecord": "2",
"Counter": "Fixed counter 1",
"EventName": "CPU_CLK_UNHALTED.CORE",
"PDIR_COUNTER": "na",
"PEBScounters": "33",
"PublicDescription": "Counts the number of core cycles while the core is not in a halt state. The core enters the halt state when it is running the HLT instruction. The core frequency may change from time to time. For this reason this event may have a changing ratio with regards to time. This event uses fixed counter 1.",
"SampleAfterValue": "2000003",
"BriefDescription": "Counts the number of unhalted core clock cycles. (Fixed event)"
"UMask": "0x2"
},
{
"BriefDescription": "Counts the number of unhalted core clock cycles.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts the number of reference cycles that the core is not in a halt state. The core enters the halt state when it is running the HLT instruction. The core frequency may change from time. This event is not affected by core frequency changes and at a fixed frequency. This event uses fixed counter 2.",
"Counter": "34",
"UMask": "0x3",
"PEBScounters": "34",
"EventName": "CPU_CLK_UNHALTED.REF_TSC",
"PDIR_COUNTER": "na",
"SampleAfterValue": "2000003",
"BriefDescription": "Counts the number of unhalted reference clock cycles at TSC frequency. (Fixed event)"
},
{
"CollectPEBSRecord": "2",
"PublicDescription": "Counts the number of core cycles while the core is not in a halt state. The core enters the halt state when it is running the HLT instruction. The core frequency may change from time to time. For this reason this event may have a changing ratio with regards to time. This event uses a programmable general purpose performance counter.",
"EventCode": "0x3c",
"Counter": "0,1,2,3",
"PEBScounters": "0,1,2,3",
"EventCode": "0x3c",
"EventName": "CPU_CLK_UNHALTED.CORE_P",
"PDIR_COUNTER": "na",
"SampleAfterValue": "2000003",
"BriefDescription": "Counts the number of unhalted core clock cycles."
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of core cycles while the core is not in a halt state. The core enters the halt state when it is running the HLT instruction. The core frequency may change from time to time. For this reason this event may have a changing ratio with regards to time. This event uses a programmable general purpose performance counter.",
"SampleAfterValue": "2000003"
},
{
"BriefDescription": "Counts the number of unhalted reference clock cycles at TSC frequency.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts reference cycles (at TSC frequency) when core is not halted. This event uses a programmable general purpose perfmon counter.",
"EventCode": "0x3c",
"Counter": "0,1,2,3",
"UMask": "0x1",
"PEBScounters": "0,1,2,3",
"EventCode": "0x3c",
"EventName": "CPU_CLK_UNHALTED.REF",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of reference cycles that the core is not in a halt state. The core enters the halt state when it is running the HLT instruction. This event is not affected by core frequency changes and increments at a fixed frequency that is also used for the Time Stamp Counter (TSC). This event uses fixed counter 2.",
"SampleAfterValue": "2000003",
"BriefDescription": "Counts the number of unhalted reference clock cycles at TSC frequency."
"UMask": "0x1"
},
{
"PEBS": "1",
"BriefDescription": "Counts the number of unhalted reference clock cycles at TSC frequency. (Fixed event)",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts the number of instructions that retire execution. For instructions that consist of multiple uops, this event counts the retirement of the last uop of the instruction. The event continues counting during hardware interrupts, traps, and inside interrupt handlers. This is an architectural performance event. This event uses a Programmable general purpose perfmon counter. *This event is Precise Event capable: The EventingRIP field in the PEBS record is precise to the address of the instruction which caused the event.",
"EventCode": "0xc0",
"Counter": "0,1,2,3",
"PEBScounters": "0,1,2,3",
"EventName": "INST_RETIRED.ANY_P",
"SampleAfterValue": "2000003",
"BriefDescription": "Counts the number of instructions retired."
},
{
"CollectPEBSRecord": "2",
"EventCode": "0xc3",
"Counter": "0,1,2,3",
"PEBScounters": "0,1,2,3",
"EventName": "MACHINE_CLEARS.ANY",
"Counter": "Fixed counter 2",
"EventName": "CPU_CLK_UNHALTED.REF_TSC",
"PDIR_COUNTER": "na",
"SampleAfterValue": "20003",
"BriefDescription": "Counts all machine clears due to, but not limited to memory ordering, memory disambiguation, SMC, page faults and FP assist."
"PEBScounters": "34",
"PublicDescription": "Counts the number of reference cycles that the core is not in a halt state. The core enters the halt state when it is running the HLT instruction. This event is not affected by core frequency changes and increments at a fixed frequency that is also used for the Time Stamp Counter (TSC). This event uses fixed counter 2.",
"SampleAfterValue": "2000003",
"UMask": "0x3"
},
{
"PEBS": "1",
"BriefDescription": "Counts the number of unhalted reference clock cycles at TSC frequency.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts branch instructions retired for all branch types. This event is Precise Event capable. This is an architectural event.",
"EventCode": "0xc4",
"Counter": "0,1,2,3",
"EventCode": "0x3c",
"EventName": "CPU_CLK_UNHALTED.REF_TSC_P",
"PEBScounters": "0,1,2,3",
"EventName": "BR_INST_RETIRED.ALL_BRANCHES",
"SampleAfterValue": "200003",
"BriefDescription": "Counts the number of branch instructions retired for all branch types."
"PublicDescription": "Counts the number of reference cycles that the core is not in a halt state. The core enters the halt state when it is running the HLT instruction. This event is not affected by core frequency changes and increments at a fixed frequency that is also used for the Time Stamp Counter (TSC). This event uses a programmable general purpose performance counter.",
"SampleAfterValue": "2000003",
"UMask": "0x1"
},
{
"PEBS": "1",
"BriefDescription": "This event is deprecated.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts mispredicted branch instructions retired for all branch types. This event is Precise Event capable. This is an architectural event.",
"EventCode": "0xc5",
"Counter": "0,1,2,3",
"PEBScounters": "0,1,2,3",
"EventName": "BR_MISP_RETIRED.ALL_BRANCHES",
"SampleAfterValue": "200003",
"BriefDescription": "Counts the number of mispredicted branch instructions retired."
},
{
"CollectPEBSRecord": "2",
"EventCode": "0xcd",
"Counter": "0,1,2,3",
"PEBScounters": "0,1,2,3",
"EventName": "CYCLES_DIV_BUSY.ANY",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "2000003"
},
{
"BriefDescription": "Counts the number of cycles the integer divider is busy. Does not imply a stall waiting for the divider.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xcd",
"EventName": "CYCLES_DIV_BUSY.IDIV",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts the total number of instructions retired. (Fixed event)",
"CollectPEBSRecord": "2",
"Counter": "Fixed counter 0",
"EventName": "INST_RETIRED.ANY",
"PEBS": "1",
"PEBScounters": "32",
"PublicDescription": "Counts the total number of instructions that retired. For instructions that consist of multiple uops, this event counts the retirement of the last uop of the instruction. This event continues counting during hardware interrupts, traps, and inside interrupt handlers. This event uses fixed counter 0.",
"SampleAfterValue": "2000003",
"BriefDescription": "Counts cycles the floating point divider or integer divider or both are busy. Does not imply a stall waiting for either divider."
"UMask": "0x1"
},
{
"BriefDescription": "Counts the total number of instructions retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc0",
"EventName": "INST_RETIRED.ANY_P",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the total number of instructions that retired. For instructions that consist of multiple uops, this event counts the retirement of the last uop of the instruction. This event continues counting during hardware interrupts, traps, and inside interrupt handlers. This event uses a programmable general purpose performance counter.",
"SampleAfterValue": "2000003"
},
{
"BriefDescription": "Counts the number of retired loads that are blocked because it initially appears to be store forward blocked, but subsequently is shown not to be blocked based on 4K alias check.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x03",
"EventName": "LD_BLOCKS.4K_ALIAS",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "1000003",
"UMask": "0x4"
},
{
"BriefDescription": "Counts the number of retired loads that are blocked because its address exactly matches an older store whose data is not ready.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x03",
"EventName": "LD_BLOCKS.DATA_UNKNOWN",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "1000003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts the total number of machine clears for any reason including, but not limited to, memory ordering, memory disambiguation, SMC, and FP assist.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc3",
"EventName": "MACHINE_CLEARS.ANY",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "20003"
},
{
"BriefDescription": "Counts the number of machine clears due to a page fault. Counts both I-Side and D-Side (Loads/Stores) page faults. A page fault occurs when either the page is not present, or an access violation occurs.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc3",
"EventName": "MACHINE_CLEARS.PAGE_FAULT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "20003",
"UMask": "0x20"
},
{
"BriefDescription": "Counts the number of machine clears due typically to program modifying data (self modifying code) within 1K of a recently fetched code page.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc3",
"EventName": "MACHINE_CLEARS.SMC",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "20003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts the total number of uops retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc2",
"EventName": "UOPS_RETIRED.ALL",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "2000003"
},
{
"BriefDescription": "Counts the number of integer divide uops retired.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc2",
"EventName": "UOPS_RETIRED.IDIV",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "2000003",
"UMask": "0x10"
},
{
"BriefDescription": "Counts the number of uops that are from complex flows issued by the micro-sequencer (MS).",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0xc2",
"EventName": "UOPS_RETIRED.MS",
"PDIR_COUNTER": "na",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of uops that are from complex flows issued by the Microcode Sequencer (MS). This includes uops from flows due to complex instructions, faults, assists, and inserted flows.",
"SampleAfterValue": "2000003",
"UMask": "0x1"
}
]

View file

@ -50,13 +50,79 @@
"Unit": "iMC"
},
{
"BriefDescription": "Precharge due to read on page miss, write on page miss or PGT",
"BriefDescription": "DRAM Activate Count : All Activates",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x01",
"EventName": "UNC_M_ACT_COUNT.ALL",
"PerPkg": "1",
"PublicDescription": "DRAM Activate Count : All Activates : Counts the number of DRAM Activate commands sent on this channel. Activate commands are issued to open up a page on the DRAM devices so that it can be read or written to with a CAS. One can calculate the number of Page Misses by subtracting the number of Page Miss precharges from the number of Activates.",
"UMask": "0x0B",
"Unit": "iMC"
},
{
"BriefDescription": "All DRAM CAS commands issued",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x04",
"EventName": "UNC_M_CAS_COUNT.ALL",
"PerPkg": "1",
"PublicDescription": "Counts the total number of DRAM CAS commands issued on this channel.",
"UMask": "0x3f",
"Unit": "iMC"
},
{
"BriefDescription": "Number of DRAM Refreshes Issued",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x45",
"EventName": "UNC_M_DRAM_REFRESH.HIGH",
"PerPkg": "1",
"PublicDescription": "Number of DRAM Refreshes Issued : Counts the number of refreshes issued.",
"UMask": "0x04",
"Unit": "iMC"
},
{
"BriefDescription": "Number of DRAM Refreshes Issued",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x45",
"EventName": "UNC_M_DRAM_REFRESH.OPPORTUNISTIC",
"PerPkg": "1",
"PublicDescription": "Number of DRAM Refreshes Issued : Counts the number of refreshes issued.",
"UMask": "0x01",
"Unit": "iMC"
},
{
"BriefDescription": "Number of DRAM Refreshes Issued",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x45",
"EventName": "UNC_M_DRAM_REFRESH.PANIC",
"PerPkg": "1",
"PublicDescription": "Number of DRAM Refreshes Issued : Counts the number of refreshes issued.",
"UMask": "0x02",
"Unit": "iMC"
},
{
"BriefDescription": "Half clockticks for IMC",
"Counter": "FIXED",
"CounterType": "FIXED",
"EventCode": "0xff",
"EventName": "UNC_M_HCLOCKTICKS",
"PerPkg": "1",
"PublicDescription": "Half clockticks for IMC",
"Unit": "iMC"
},
{
"BriefDescription": "DRAM Precharge commands.",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x02",
"EventName": "UNC_M_PRE_COUNT.ALL",
"PerPkg": "1",
"UMask": "0x1c",
"PublicDescription": "DRAM Precharge commands. : Counts the number of DRAM Precharge commands sent on this channel.",
"UMask": "0x1C",
"Unit": "iMC"
},
{
@ -66,8 +132,92 @@
"EventCode": "0x02",
"EventName": "UNC_M_PRE_COUNT.PGT",
"PerPkg": "1",
"PublicDescription": "DRAM Precharge commands. : Precharge due to page table : Counts the number of DRAM Precharge commands sent on this channel.",
"PublicDescription": "DRAM Precharge commands. : Precharge due to page table : Counts the number of DRAM Precharge commands sent on this channel. : Prechages from Page Table",
"UMask": "0x10",
"Unit": "iMC"
},
{
"BriefDescription": "Read Pending Queue Allocations",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x10",
"EventName": "UNC_M_RPQ_INSERTS.PCH0",
"PerPkg": "1",
"PublicDescription": "Read Pending Queue Allocations : Counts the number of allocations into the Read Pending Queue. This queue is used to schedule reads out to the memory controller and to track the requests. Requests allocate into the RPQ soon after they enter the memory controller, and need credits for an entry in this buffer before being sent from the HA to the iMC. They deallocate after the CAS command has been issued to memory. This includes both ISOCH and non-ISOCH requests.",
"UMask": "0x01",
"Unit": "iMC"
},
{
"BriefDescription": "Read Pending Queue Allocations",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x10",
"EventName": "UNC_M_RPQ_INSERTS.PCH1",
"PerPkg": "1",
"PublicDescription": "Read Pending Queue Allocations : Counts the number of allocations into the Read Pending Queue. This queue is used to schedule reads out to the memory controller and to track the requests. Requests allocate into the RPQ soon after they enter the memory controller, and need credits for an entry in this buffer before being sent from the HA to the iMC. They deallocate after the CAS command has been issued to memory. This includes both ISOCH and non-ISOCH requests.",
"UMask": "0x02",
"Unit": "iMC"
},
{
"BriefDescription": "Read Pending Queue Occupancy",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x80",
"EventName": "UNC_M_RPQ_OCCUPANCY_PCH0",
"PerPkg": "1",
"PublicDescription": "Read Pending Queue Occupancy : Accumulates the occupancies of the Read Pending Queue each cycle. This can then be used to calculate both the average occupancy (in conjunction with the number of cycles not empty) and the average latency (in conjunction with the number of allocations). The RPQ is used to schedule reads out to the memory controller and to track the requests. Requests allocate into the RPQ soon after they enter the memory controller, and need credits for an entry in this buffer before being sent from the HA to the iMC. They deallocate after the CAS command has been issued to memory.",
"Unit": "iMC"
},
{
"BriefDescription": "Read Pending Queue Occupancy",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x81",
"EventName": "UNC_M_RPQ_OCCUPANCY_PCH1",
"PerPkg": "1",
"PublicDescription": "Read Pending Queue Occupancy : Accumulates the occupancies of the Read Pending Queue each cycle. This can then be used to calculate both the average occupancy (in conjunction with the number of cycles not empty) and the average latency (in conjunction with the number of allocations). The RPQ is used to schedule reads out to the memory controller and to track the requests. Requests allocate into the RPQ soon after they enter the memory controller, and need credits for an entry in this buffer before being sent from the HA to the iMC. They deallocate after the CAS command has been issued to memory.",
"Unit": "iMC"
},
{
"BriefDescription": "Write Pending Queue Allocations",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x20",
"EventName": "UNC_M_WPQ_INSERTS.PCH0",
"PerPkg": "1",
"PublicDescription": "Write Pending Queue Allocations : Counts the number of allocations into the Write Pending Queue. This can then be used to calculate the average queuing latency (in conjunction with the WPQ occupancy count). The WPQ is used to schedule write out to the memory controller and to track the writes. Requests allocate into the WPQ soon after they enter the memory controller, and need credits for an entry in this buffer before being sent from the CHA to the iMC. They deallocate after being issued to DRAM. Write requests themselves are able to complete (from the perspective of the rest of the system) as soon they have posted to the iMC.",
"UMask": "0x01",
"Unit": "iMC"
},
{
"BriefDescription": "Write Pending Queue Allocations",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x20",
"EventName": "UNC_M_WPQ_INSERTS.PCH1",
"PerPkg": "1",
"PublicDescription": "Write Pending Queue Allocations : Counts the number of allocations into the Write Pending Queue. This can then be used to calculate the average queuing latency (in conjunction with the WPQ occupancy count). The WPQ is used to schedule write out to the memory controller and to track the writes. Requests allocate into the WPQ soon after they enter the memory controller, and need credits for an entry in this buffer before being sent from the CHA to the iMC. They deallocate after being issued to DRAM. Write requests themselves are able to complete (from the perspective of the rest of the system) as soon they have posted to the iMC.",
"UMask": "0x02",
"Unit": "iMC"
},
{
"BriefDescription": "Write Pending Queue Occupancy",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x82",
"EventName": "UNC_M_WPQ_OCCUPANCY_PCH0",
"PerPkg": "1",
"PublicDescription": "Write Pending Queue Occupancy : Accumulates the occupancies of the Write Pending Queue each cycle. This can then be used to calculate both the average queue occupancy (in conjunction with the number of cycles not empty) and the average latency (in conjunction with the number of allocations). The WPQ is used to schedule write out to the memory controller and to track the writes. Requests allocate into the WPQ soon after they enter the memory controller, and need credits for an entry in this buffer before being sent from the HA to the iMC. They deallocate after being issued to DRAM. Write requests themselves are able to complete (from the perspective of the rest of the system) as soon they have posted to the iMC. This is not to be confused with actually performing the write to DRAM. Therefore, the average latency for this queue is actually not useful for deconstruction intermediate write latencies. So, we provide filtering based on if the request has posted or not. By using the not posted filter, we can track how long writes spent in the iMC before completions were sent to the HA. The posted filter, on the other hand, provides information about how much queueing is actually happenning in the iMC for writes before they are actually issued to memory. High average occupancies will generally coincide with high write major mode counts.",
"Unit": "iMC"
},
{
"BriefDescription": "Write Pending Queue Occupancy",
"Counter": "0,1,2,3",
"CounterType": "PGMABLE",
"EventCode": "0x83",
"EventName": "UNC_M_WPQ_OCCUPANCY_PCH1",
"PerPkg": "1",
"PublicDescription": "Write Pending Queue Occupancy : Accumulates the occupancies of the Write Pending Queue each cycle. This can then be used to calculate both the average queue occupancy (in conjunction with the number of cycles not empty) and the average latency (in conjunction with the number of allocations). The WPQ is used to schedule write out to the memory controller and to track the writes. Requests allocate into the WPQ soon after they enter the memory controller, and need credits for an entry in this buffer before being sent from the HA to the iMC. They deallocate after being issued to DRAM. Write requests themselves are able to complete (from the perspective of the rest of the system) as soon they have posted to the iMC. This is not to be confused with actually performing the write to DRAM. Therefore, the average latency for this queue is actually not useful for deconstruction intermediate write latencies. So, we provide filtering based on if the request has posted or not. By using the not posted filter, we can track how long writes spent in the iMC before completions were sent to the HA. The posted filter, on the other hand, provides information about how much queueing is actually happenning in the iMC for writes before they are actually issued to memory. High average occupancies will generally coincide with high write major mode counts.",
"Unit": "iMC"
}
]

File diff suppressed because it is too large Load diff

View file

@ -1,86 +1,354 @@
[
{
"BriefDescription": "Counts the number of page walks due to loads that miss the PDE (Page Directory Entry) cache.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts page walks completed due to demand data loads (including SW prefetches) whose address translations missed in all TLB levels and were mapped to 4K pages. The page walks can end with or without a page fault.",
"EventCode": "0x08",
"Counter": "0,1,2,3",
"UMask": "0x2",
"PEBScounters": "0,1,2,3",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED_4K",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.PDE_CACHE_MISS",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"BriefDescription": "Page walk completed due to a demand load to a 4K page."
"UMask": "0x80"
},
{
"BriefDescription": "Counts the number of first level TLB misses but second level hits due to loads that did not start a page walk. Account for all pages sizes. Will result in a DTLB write from STLB.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts page walks completed due to demand data loads (including SW prefetches) whose address translations missed in all TLB levels and were mapped to 2M or 4M pages. The page walks can end with or without a page fault.",
"EventCode": "0x08",
"Counter": "0,1,2,3",
"UMask": "0x4",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.STLB_HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x20"
},
{
"BriefDescription": "Counts the number of page walks completed due to load DTLB misses to any page size.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to loads (including SW prefetches) whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to any page size. Includes page walks that page fault.",
"SampleAfterValue": "200003",
"UMask": "0xe"
},
{
"BriefDescription": "Counts the number of page walks completed due to load DTLB misses to a 1G page.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED_1G",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to loads (including SW prefetches) whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to 1GB pages. Includes page walks that page fault.",
"SampleAfterValue": "200003",
"UMask": "0x8"
},
{
"BriefDescription": "Counts the number of page walks completed due to load DTLB misses to a 2M or 4M page.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED_2M_4M",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to loads (including SW prefetches) whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to 2M or 4M pages. Includes page walks that page fault.",
"SampleAfterValue": "200003",
"BriefDescription": "Page walk completed due to a demand load to a 2M or 4M page."
"UMask": "0x4"
},
{
"BriefDescription": "Counts the number of page walks completed due to load DTLB misses to a 4K page.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts page walks completed due to demand data stores whose address translations missed in the TLB and were mapped to 4K pages. The page walks can end with or without a page fault.",
"EventCode": "0x49",
"Counter": "0,1,2,3",
"UMask": "0x2",
"PEBScounters": "0,1,2,3",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED_4K",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED_4K",
"PDIR_COUNTER": "na",
"SampleAfterValue": "2000003",
"BriefDescription": "Page walk completed due to a demand data store to a 4K page."
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to loads (including SW prefetches) whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to 4K pages. Includes page walks that page fault.",
"SampleAfterValue": "200003",
"UMask": "0x2"
},
{
"BriefDescription": "Counts the number of page walks outstanding in the page miss handler (PMH) for loads every cycle.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts page walks completed due to demand data stores whose address translations missed in the TLB and were mapped to 2M or 4M pages. The page walks can end with or without a page fault.",
"EventCode": "0x49",
"Counter": "0,1,2,3",
"UMask": "0x4",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_PENDING",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks outstanding in the page miss handler (PMH) for loads every cycle. A page walk is outstanding from start till PMH becomes idle again (ready to serve next walk). Includes EPT-walk intervals.",
"SampleAfterValue": "200003",
"UMask": "0x10"
},
{
"BriefDescription": "Counts the number of page walks due to stores that miss the PDE (Page Directory Entry) cache.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.PDE_CACHE_MISS",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks due to storse that miss the PDE (Page Directory Entry) cache.",
"SampleAfterValue": "2000003",
"UMask": "0x80"
},
{
"BriefDescription": "Counts the number of first level TLB misses but second level hits due to stores that did not start a page walk. Account for all pages sizes. Will result in a DTLB write from STLB.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.STLB_HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "2000003",
"UMask": "0x20"
},
{
"BriefDescription": "Counts the number of page walks completed due to store DTLB misses to any page size.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to stores whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to any page size. Includes page walks that page fault.",
"SampleAfterValue": "200003",
"UMask": "0xe"
},
{
"BriefDescription": "Counts the number of page walks completed due to store DTLB misses to a 1G page.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED_1G",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to stores whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to 1G pages. Includes page walks that page fault.",
"SampleAfterValue": "200003",
"UMask": "0x8"
},
{
"BriefDescription": "Counts the number of page walks completed due to store DTLB misses to a 2M or 4M page.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED_2M_4M",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to stores whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to 2M or 4M pages. Includes page walks that page fault.",
"SampleAfterValue": "2000003",
"BriefDescription": "Page walk completed due to a demand data store to a 2M or 4M page."
"UMask": "0x4"
},
{
"BriefDescription": "Counts the number of page walks completed due to store DTLB misses to a 4K page.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts the number of times the machine was unable to find a translation in the Instruction Translation Lookaside Buffer (ITLB) and new translation was filled into the ITLB. The event is speculative in nature, but will not count translations (page walks) that are begun and not finished, or translations that are finished but not filled into the ITLB.",
"EventCode": "0x81",
"Counter": "0,1,2,3",
"UMask": "0x4",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED_4K",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to stores whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to 4K pages. Includes page walks that page fault.",
"SampleAfterValue": "2000003",
"UMask": "0x2"
},
{
"BriefDescription": "Counts the number of page walks outstanding in the page miss handler (PMH) for stores every cycle.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_PENDING",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks outstanding in the page miss handler (PMH) for stores every cycle. A page walk is outstanding from start till PMH becomes idle again (ready to serve next walk). Includes EPT-walk intervals.",
"SampleAfterValue": "200003",
"UMask": "0x10"
},
{
"BriefDescription": "Counts the number of Extended Page Directory Entry hits.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x4f",
"EventName": "EPT.EPDE_HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of Extended Page Directory Entry hits. The Extended Page Directory cache is used by Virtual Machine operating systems while the guest operating systems use the standard TLB caches.",
"SampleAfterValue": "2000003",
"UMask": "0x2"
},
{
"BriefDescription": "Counts the number of Extended Page Directory Entry misses.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x4f",
"EventName": "EPT.EPDE_MISS",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number Extended Page Directory Entry misses. The Extended Page Directory cache is used by Virtual Machine operating systems while the guest operating systems use the standard TLB caches.",
"SampleAfterValue": "2000003",
"UMask": "0x1"
},
{
"BriefDescription": "Counts the number of Extended Page Directory Pointer Entry hits.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x4f",
"EventName": "EPT.EPDPE_HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number Extended Page Directory Pointer Entry hits. The Extended Page Directory cache is used by Virtual Machine operating systems while the guest operating systems use the standard TLB caches.",
"SampleAfterValue": "2000003",
"UMask": "0x4"
},
{
"BriefDescription": "Counts the number of Extended Page Directory Pointer Entry misses.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x4f",
"EventName": "EPT.EPDPE_MISS",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number Extended Page Directory Pointer Entry misses. The Extended Page Directory cache is used by Virtual Machine operating systems while the guest operating systems use the standard TLB caches.",
"SampleAfterValue": "2000003",
"UMask": "0x8"
},
{
"BriefDescription": "Counts the number of page walks outstanding for an Extended Page table walk including GTLB hits per cycle.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x4f",
"EventName": "EPT.WALK_PENDING",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks outstanding for an Extended Page table walk including GTLB hits per cycle. The Extended Page Directory cache is used by Virtual Machine operating systems while the guest operating systems use the standard TLB caches.",
"SampleAfterValue": "200003",
"UMask": "0x10"
},
{
"BriefDescription": "Counts the number of times there was an ITLB miss and a new translation was filled into the ITLB.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x81",
"EventName": "ITLB.FILLS",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of times the machine was unable to find a translation in the Instruction Translation Lookaside Buffer (ITLB) and a new translation was filled into the ITLB. The event is speculative in nature, but will not count translations (page walks) that are begun and not finished, or translations that are finished but not filled into the ITLB.",
"SampleAfterValue": "200003",
"BriefDescription": "Counts the number of times there was an ITLB miss and a new translation was filled into the ITLB."
"UMask": "0x4"
},
{
"BriefDescription": "Counts the number of page walks due to an instruction fetch that miss the PDE (Page Directory Entry) cache.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts page walks completed due to instruction fetches whose address translations missed in the TLB and were mapped to 4K pages. The page walks can end with or without a page fault.",
"EventCode": "0x85",
"Counter": "0,1,2,3",
"UMask": "0x2",
"PEBScounters": "0,1,2,3",
"EventName": "ITLB_MISSES.WALK_COMPLETED_4K",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.PDE_CACHE_MISS",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "2000003",
"BriefDescription": "Page walk completed due to an instruction fetch in a 4K page."
"UMask": "0x80"
},
{
"BriefDescription": "Counts the number of first level TLB misses but second level hits due to an instruction fetch that did not start a page walk. Account for all pages sizes. Will results in a DTLB write from STLB.",
"CollectPEBSRecord": "2",
"PublicDescription": "Counts page walks completed due to instruction fetches whose address translations missed in the TLB and were mapped to 2M or 4M pages. The page walks can end with or without a page fault.",
"EventCode": "0x85",
"Counter": "0,1,2,3",
"UMask": "0x4",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.STLB_HIT",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "2000003",
"UMask": "0x20"
},
{
"BriefDescription": "Counts the number of page walks completed due to instruction fetch misses to any page size.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_COMPLETED",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to instruction fetches whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to any page size. Includes page walks that page fault.",
"SampleAfterValue": "200003",
"UMask": "0xe"
},
{
"BriefDescription": "Counts the number of page walks completed due to instruction fetch misses to a 1G page.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_COMPLETED_1G",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to instruction fetches whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to 1G pages. Includes page walks that page fault.",
"SampleAfterValue": "200003",
"UMask": "0x8"
},
{
"BriefDescription": "Counts the number of page walks completed due to instruction fetch misses to a 2M or 4M page.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_COMPLETED_2M_4M",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to instruction fetches whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to 2M or 4M pages. Includes page walks that page fault.",
"SampleAfterValue": "2000003",
"BriefDescription": "Page walk completed due to an instruction fetch in a 2M or 4M page."
"UMask": "0x4"
},
{
"BriefDescription": "Counts the number of page walks completed due to instruction fetch misses to a 4K page.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_COMPLETED_4K",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks completed due to instruction fetches whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to 4K pages. Includes page walks that page fault.",
"SampleAfterValue": "2000003",
"UMask": "0x2"
},
{
"BriefDescription": "Counts the number of page walks outstanding in the page miss handler (PMH) for instruction fetches every cycle.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_PENDING",
"PDIR_COUNTER": "na",
"PEBScounters": "0,1,2,3",
"PublicDescription": "Counts the number of page walks outstanding in the page miss handler (PMH) for instruction fetches every cycle. A page walk is outstanding from start till PMH becomes idle again (ready to serve next walk).",
"SampleAfterValue": "200003",
"UMask": "0x10"
},
{
"BriefDescription": "Counts the number of memory retired ops that missed in the second level TLB.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.DTLB_MISS",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x13"
},
{
"BriefDescription": "Counts the number of load ops retired that miss in the second Level TLB.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.DTLB_MISS_LOADS",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x11"
},
{
"BriefDescription": "Counts the number of store ops retired that miss in the second level TLB.",
"CollectPEBSRecord": "2",
"Counter": "0,1,2,3",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.DTLB_MISS_STORES",
"PEBS": "1",
"PEBScounters": "0,1,2,3",
"SampleAfterValue": "200003",
"UMask": "0x12"
}
]