Merge branch 'Add skb + xdp dynptrs'

Joanne Koong says:

====================

This patchset is the 2nd in the dynptr series. The 1st can be found here [0].

This patchset adds skb and xdp type dynptrs, which have two main benefits for
packet parsing:
    * allowing operations on sizes that are not statically known at
      compile-time (eg variable-sized accesses).
    * more ergonomic and less brittle iteration through data (eg does not need
      manual if checking for being within bounds of data_end)

When comparing the differences in runtime for packet parsing without dynptrs
vs. with dynptrs, there is no noticeable difference. Patch 9 contains more
details as well as examples of how to use skb and xdp dynptrs.

[0] https://lore.kernel.org/bpf/20220523210712.3641569-1-joannelkoong@gmail.com/
---
Changelog:

v12 = https://lore.kernel.org/bpf/20230226085120.3907863-1-joannelkoong@gmail.com/
v12 -> v13:
    * Fix missing { } for case statement

v11 = https://lore.kernel.org/bpf/20230222060747.2562549-1-joannelkoong@gmail.com/
v11 -> v12:
    * Change constant mem size checking to use "__szk" kfunc annotation
      for slices
    * Use autoloading for success selftests

v10 = https://lore.kernel.org/bpf/20230216225524.1192789-1-joannelkoong@gmail.com/
v10 -> v11:
    * Reject bpf_dynptr_slice_rdwr() for non-writable progs at load time
      instead of runtime
    * Add additional patch (__uninit kfunc annotation)
    * Expand on documentation
    * Add bpf_dynptr_write() calls for persisting writes in tests

v9 = https://lore.kernel.org/bpf/20230127191703.3864860-1-joannelkoong@gmail.com/
v9 -> v10:
    * Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr interface
    * Add some more tests
    * Split up patchset into more parts to make it easier to review

v8 = https://lore.kernel.org/bpf/20230126233439.3739120-1-joannelkoong@gmail.com/
v8 -> v9:
    * Fix dynptr_get_type() to check non-stack dynptrs

v7 = https://lore.kernel.org/bpf/20221021011510.1890852-1-joannelkoong@gmail.com/
v7 -> v8:
    * Change helpers to kfuncs
    * Add 2 new patches (1/5 and 2/5)

v6 = https://lore.kernel.org/bpf/20220907183129.745846-1-joannelkoong@gmail.com/
v6 -> v7
    * Change bpf_dynptr_data() to return read-only data slices if the skb prog
      is read-only (Martin)
    * Add test "skb_invalid_write" to test that writes to rd-only data slices
      are rejected

v5 = https://lore.kernel.org/bpf/20220831183224.3754305-1-joannelkoong@gmail.com/
v5 -> v6
    * Address kernel test robot errors by static inlining

v4 = https://lore.kernel.org/bpf/20220822235649.2218031-1-joannelkoong@gmail.com/
v4 -> v5
    * Address kernel test robot errors for configs w/out CONFIG_NET set
    * For data slices, return PTR_TO_MEM instead of PTR_TO_PACKET (Kumar)
    * Split selftests into subtests (Andrii)
    * Remove insn patching. Use rdonly and rdwr protos for dynptr skb
      construction (Andrii)
    * bpf_dynptr_data() returns NULL for rd-only dynptrs. There will be a
      separate bpf_dynptr_data_rdonly() added later (Andrii and Kumar)

v3 = https://lore.kernel.org/bpf/20220822193442.657638-1-joannelkoong@gmail.com/
v3 -> v4
    * Forgot to commit --amend the kernel test robot error fixups

v2 = https://lore.kernel.org/bpf/20220811230501.2632393-1-joannelkoong@gmail.com/
v2 -> v3
    * Fix kernel test robot build test errors

v1 = https://lore.kernel.org/bpf/20220726184706.954822-1-joannelkoong@gmail.com/
v1 -> v2
  * Return data slices to rd-only skb dynptrs (Martin)
  * bpf_dynptr_write allows writes to frags for skb dynptrs, but always
    invalidates associated data slices (Martin)
  * Use switch casing instead of ifs (Andrii)
  * Use 0xFD for experimental kind number in the selftest (Zvi)
  * Put selftest conversions w/ dynptrs into new files (Alexei)
  * Add new selftest "test_cls_redirect_dynptr.c"
====================

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit is contained in:
Alexei Starovoitov 2023-03-01 09:55:24 -08:00
commit c4b5c5bad9
25 changed files with 3324 additions and 188 deletions

View File

@ -100,6 +100,23 @@ Hence, whenever a constant scalar argument is accepted by a kfunc which is not a
size parameter, and the value of the constant matters for program safety, __k
suffix should be used.
2.2.2 __uninit Annotation
--------------------
This annotation is used to indicate that the argument will be treated as
uninitialized.
An example is given below::
__bpf_kfunc int bpf_dynptr_from_skb(..., struct bpf_dynptr_kern *ptr__uninit)
{
...
}
Here, the dynptr will be treated as an uninitialized dynptr. Without this
annotation, the verifier will reject the program if the dynptr passed in is
not initialized.
.. _BPF_kfunc_nodef:
2.3 Using an existing kernel function

View File

@ -607,11 +607,18 @@ enum bpf_type_flag {
*/
NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
/* DYNPTR points to sk_buff */
DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
/* DYNPTR points to xdp_buff */
DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
__BPF_TYPE_FLAG_MAX,
__BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
};
#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF)
#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
| DYNPTR_TYPE_XDP)
/* Max number of base types. */
#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
@ -1124,6 +1131,37 @@ static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
return bpf_func(ctx, insnsi);
}
/* the implementation of the opaque uapi struct bpf_dynptr */
struct bpf_dynptr_kern {
void *data;
/* Size represents the number of usable bytes of dynptr data.
* If for example the offset is at 4 for a local dynptr whose data is
* of type u64, the number of usable bytes is 4.
*
* The upper 8 bits are reserved. It is as follows:
* Bits 0 - 23 = size
* Bits 24 - 30 = dynptr type
* Bit 31 = whether dynptr is read-only
*/
u32 size;
u32 offset;
} __aligned(8);
enum bpf_dynptr_type {
BPF_DYNPTR_TYPE_INVALID,
/* Points to memory that is local to the bpf program */
BPF_DYNPTR_TYPE_LOCAL,
/* Underlying data is a ringbuf record */
BPF_DYNPTR_TYPE_RINGBUF,
/* Underlying data is a sk_buff */
BPF_DYNPTR_TYPE_SKB,
/* Underlying data is a xdp_buff */
BPF_DYNPTR_TYPE_XDP,
};
int bpf_dynptr_check_size(u32 size);
u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr);
#ifdef CONFIG_BPF_JIT
int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
@ -2266,6 +2304,11 @@ static inline bool has_current_bpf_ctx(void)
}
void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
enum bpf_dynptr_type type, u32 offset, u32 size);
void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
#else /* !CONFIG_BPF_SYSCALL */
static inline struct bpf_prog *bpf_prog_get(u32 ufd)
{
@ -2495,6 +2538,19 @@ static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
{
}
static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
enum bpf_dynptr_type type, u32 offset, u32 size)
{
}
static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
{
}
static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
{
}
#endif /* CONFIG_BPF_SYSCALL */
void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
@ -2801,6 +2857,8 @@ u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size);
int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
struct bpf_dynptr_kern *ptr);
#else
static inline bool bpf_sock_common_is_valid_access(int off, int size,
enum bpf_access_type type,
@ -2822,6 +2880,11 @@ static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
{
return 0;
}
static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
struct bpf_dynptr_kern *ptr)
{
return -EOPNOTSUPP;
}
#endif
#ifdef CONFIG_INET
@ -2913,36 +2976,6 @@ int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
u32 num_args, struct bpf_bprintf_data *data);
void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
/* the implementation of the opaque uapi struct bpf_dynptr */
struct bpf_dynptr_kern {
void *data;
/* Size represents the number of usable bytes of dynptr data.
* If for example the offset is at 4 for a local dynptr whose data is
* of type u64, the number of usable bytes is 4.
*
* The upper 8 bits are reserved. It is as follows:
* Bits 0 - 23 = size
* Bits 24 - 30 = dynptr type
* Bit 31 = whether dynptr is read-only
*/
u32 size;
u32 offset;
} __aligned(8);
enum bpf_dynptr_type {
BPF_DYNPTR_TYPE_INVALID,
/* Points to memory that is local to the bpf program */
BPF_DYNPTR_TYPE_LOCAL,
/* Underlying data is a kernel-produced ringbuf record */
BPF_DYNPTR_TYPE_RINGBUF,
};
void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
enum bpf_dynptr_type type, u32 offset, u32 size);
void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
int bpf_dynptr_check_size(u32 size);
u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr);
#ifdef CONFIG_BPF_LSM
void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
void bpf_cgroup_atype_put(int cgroup_atype);

View File

@ -616,9 +616,6 @@ int check_func_arg_reg_off(struct bpf_verifier_env *env,
enum bpf_arg_type arg_type);
int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
u32 regno, u32 mem_size);
struct bpf_call_arg_meta;
int process_dynptr_func(struct bpf_verifier_env *env, int regno,
enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta);
/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,

View File

@ -1542,4 +1542,50 @@ static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u64 index
return XDP_REDIRECT;
}
#ifdef CONFIG_NET
int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
u32 len, u64 flags);
int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
void *buf, unsigned long len, bool flush);
#else /* CONFIG_NET */
static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
void *to, u32 len)
{
return -EOPNOTSUPP;
}
static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
const void *from, u32 len, u64 flags)
{
return -EOPNOTSUPP;
}
static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
void *buf, u32 len)
{
return -EOPNOTSUPP;
}
static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
void *buf, u32 len)
{
return -EOPNOTSUPP;
}
static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
{
return NULL;
}
static inline void *bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
unsigned long len, bool flush)
{
return NULL;
}
#endif /* CONFIG_NET */
#endif /* __LINUX_FILTER_H__ */

View File

@ -5325,11 +5325,22 @@ union bpf_attr {
* Description
* Write *len* bytes from *src* into *dst*, starting from *offset*
* into *dst*.
* *flags* is currently unused.
*
* *flags* must be 0 except for skb-type dynptrs.
*
* For skb-type dynptrs:
* * All data slices of the dynptr are automatically
* invalidated after **bpf_dynptr_write**\ (). This is
* because writing may pull the skb and change the
* underlying packet buffer.
*
* * For *flags*, please see the flags accepted by
* **bpf_skb_store_bytes**\ ().
* Return
* 0 on success, -E2BIG if *offset* + *len* exceeds the length
* of *dst*'s data, -EINVAL if *dst* is an invalid dynptr or if *dst*
* is a read-only dynptr or if *flags* is not 0.
* is a read-only dynptr or if *flags* is not correct. For skb-type dynptrs,
* other errors correspond to errors returned by **bpf_skb_store_bytes**\ ().
*
* void *bpf_dynptr_data(const struct bpf_dynptr *ptr, u32 offset, u32 len)
* Description
@ -5337,6 +5348,9 @@ union bpf_attr {
*
* *len* must be a statically known value. The returned data slice
* is invalidated whenever the dynptr is invalidated.
*
* skb and xdp type dynptrs may not use bpf_dynptr_data. They should
* instead use bpf_dynptr_slice and bpf_dynptr_slice_rdwr.
* Return
* Pointer to the underlying dynptr data, NULL if the dynptr is
* read-only, if the dynptr is invalid, or if the offset and length

View File

@ -207,6 +207,11 @@ enum btf_kfunc_hook {
BTF_KFUNC_HOOK_TRACING,
BTF_KFUNC_HOOK_SYSCALL,
BTF_KFUNC_HOOK_FMODRET,
BTF_KFUNC_HOOK_CGROUP_SKB,
BTF_KFUNC_HOOK_SCHED_ACT,
BTF_KFUNC_HOOK_SK_SKB,
BTF_KFUNC_HOOK_SOCKET_FILTER,
BTF_KFUNC_HOOK_LWT,
BTF_KFUNC_HOOK_MAX,
};
@ -5683,6 +5688,10 @@ again:
* int socket_filter_bpf_prog(struct __sk_buff *skb)
* { // no fields of skb are ever used }
*/
if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
return ctx_type;
if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
return ctx_type;
if (strcmp(ctx_tname, tname)) {
/* bpf_user_pt_regs_t is a typedef, so resolve it to
* underlying struct and check name again
@ -7704,6 +7713,19 @@ static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
return BTF_KFUNC_HOOK_TRACING;
case BPF_PROG_TYPE_SYSCALL:
return BTF_KFUNC_HOOK_SYSCALL;
case BPF_PROG_TYPE_CGROUP_SKB:
return BTF_KFUNC_HOOK_CGROUP_SKB;
case BPF_PROG_TYPE_SCHED_ACT:
return BTF_KFUNC_HOOK_SCHED_ACT;
case BPF_PROG_TYPE_SK_SKB:
return BTF_KFUNC_HOOK_SK_SKB;
case BPF_PROG_TYPE_SOCKET_FILTER:
return BTF_KFUNC_HOOK_SOCKET_FILTER;
case BPF_PROG_TYPE_LWT_OUT:
case BPF_PROG_TYPE_LWT_IN:
case BPF_PROG_TYPE_LWT_XMIT:
case BPF_PROG_TYPE_LWT_SEG6LOCAL:
return BTF_KFUNC_HOOK_LWT;
default:
return BTF_KFUNC_HOOK_MAX;
}

View File

@ -1420,11 +1420,21 @@ static bool bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
return ptr->size & DYNPTR_RDONLY_BIT;
}
void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
{
ptr->size |= DYNPTR_RDONLY_BIT;
}
static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
{
ptr->size |= type << DYNPTR_TYPE_SHIFT;
}
static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
{
return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
}
u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr)
{
return ptr->size & DYNPTR_SIZE_MASK;
@ -1497,6 +1507,7 @@ static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
u32, offset, u64, flags)
{
enum bpf_dynptr_type type;
int err;
if (!src->data || flags)
@ -1506,13 +1517,25 @@ BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern
if (err)
return err;
/* Source and destination may possibly overlap, hence use memmove to
* copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
* pointing to overlapping PTR_TO_MAP_VALUE regions.
*/
memmove(dst, src->data + src->offset + offset, len);
type = bpf_dynptr_get_type(src);
return 0;
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
/* Source and destination may possibly overlap, hence use memmove to
* copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
* pointing to overlapping PTR_TO_MAP_VALUE regions.
*/
memmove(dst, src->data + src->offset + offset, len);
return 0;
case BPF_DYNPTR_TYPE_SKB:
return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
case BPF_DYNPTR_TYPE_XDP:
return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
default:
WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
return -EFAULT;
}
}
static const struct bpf_func_proto bpf_dynptr_read_proto = {
@ -1529,22 +1552,40 @@ static const struct bpf_func_proto bpf_dynptr_read_proto = {
BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
u32, len, u64, flags)
{
enum bpf_dynptr_type type;
int err;
if (!dst->data || flags || bpf_dynptr_is_rdonly(dst))
if (!dst->data || bpf_dynptr_is_rdonly(dst))
return -EINVAL;
err = bpf_dynptr_check_off_len(dst, offset, len);
if (err)
return err;
/* Source and destination may possibly overlap, hence use memmove to
* copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
* pointing to overlapping PTR_TO_MAP_VALUE regions.
*/
memmove(dst->data + dst->offset + offset, src, len);
type = bpf_dynptr_get_type(dst);
return 0;
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
if (flags)
return -EINVAL;
/* Source and destination may possibly overlap, hence use memmove to
* copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
* pointing to overlapping PTR_TO_MAP_VALUE regions.
*/
memmove(dst->data + dst->offset + offset, src, len);
return 0;
case BPF_DYNPTR_TYPE_SKB:
return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
flags);
case BPF_DYNPTR_TYPE_XDP:
if (flags)
return -EINVAL;
return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
default:
WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
return -EFAULT;
}
}
static const struct bpf_func_proto bpf_dynptr_write_proto = {
@ -1560,6 +1601,7 @@ static const struct bpf_func_proto bpf_dynptr_write_proto = {
BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
{
enum bpf_dynptr_type type;
int err;
if (!ptr->data)
@ -1572,7 +1614,20 @@ BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u3
if (bpf_dynptr_is_rdonly(ptr))
return 0;
return (unsigned long)(ptr->data + ptr->offset + offset);
type = bpf_dynptr_get_type(ptr);
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
return (unsigned long)(ptr->data + ptr->offset + offset);
case BPF_DYNPTR_TYPE_SKB:
case BPF_DYNPTR_TYPE_XDP:
/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
return 0;
default:
WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
return 0;
}
}
static const struct bpf_func_proto bpf_dynptr_data_proto = {
@ -2138,6 +2193,142 @@ __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
return p;
}
/**
* bpf_dynptr_slice - Obtain a read-only pointer to the dynptr data.
*
* For non-skb and non-xdp type dynptrs, there is no difference between
* bpf_dynptr_slice and bpf_dynptr_data.
*
* If the intention is to write to the data slice, please use
* bpf_dynptr_slice_rdwr.
*
* The user must check that the returned pointer is not null before using it.
*
* Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
* does not change the underlying packet data pointers, so a call to
* bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
* the bpf program.
*
* @ptr: The dynptr whose data slice to retrieve
* @offset: Offset into the dynptr
* @buffer: User-provided buffer to copy contents into
* @buffer__szk: Size (in bytes) of the buffer. This is the length of the
* requested slice. This must be a constant.
*
* @returns: NULL if the call failed (eg invalid dynptr), pointer to a read-only
* data slice (can be either direct pointer to the data or a pointer to the user
* provided buffer, with its contents containing the data, if unable to obtain
* direct pointer)
*/
__bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
void *buffer, u32 buffer__szk)
{
enum bpf_dynptr_type type;
u32 len = buffer__szk;
int err;
if (!ptr->data)
return 0;
err = bpf_dynptr_check_off_len(ptr, offset, len);
if (err)
return 0;
type = bpf_dynptr_get_type(ptr);
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
return ptr->data + ptr->offset + offset;
case BPF_DYNPTR_TYPE_SKB:
return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer);
case BPF_DYNPTR_TYPE_XDP:
{
void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
if (xdp_ptr)
return xdp_ptr;
bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer, len, false);
return buffer;
}
default:
WARN_ONCE(true, "unknown dynptr type %d\n", type);
return 0;
}
}
/**
* bpf_dynptr_slice_rdwr - Obtain a writable pointer to the dynptr data.
*
* For non-skb and non-xdp type dynptrs, there is no difference between
* bpf_dynptr_slice and bpf_dynptr_data.
*
* The returned pointer is writable and may point to either directly the dynptr
* data at the requested offset or to the buffer if unable to obtain a direct
* data pointer to (example: the requested slice is to the paged area of an skb
* packet). In the case where the returned pointer is to the buffer, the user
* is responsible for persisting writes through calling bpf_dynptr_write(). This
* usually looks something like this pattern:
*
* struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
* if (!eth)
* return TC_ACT_SHOT;
*
* // mutate eth header //
*
* if (eth == buffer)
* bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
*
* Please note that, as in the example above, the user must check that the
* returned pointer is not null before using it.
*
* Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
* does not change the underlying packet data pointers, so a call to
* bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
* the bpf program.
*
* @ptr: The dynptr whose data slice to retrieve
* @offset: Offset into the dynptr
* @buffer: User-provided buffer to copy contents into
* @buffer__szk: Size (in bytes) of the buffer. This is the length of the
* requested slice. This must be a constant.
*
* @returns: NULL if the call failed (eg invalid dynptr), pointer to a
* data slice (can be either direct pointer to the data or a pointer to the user
* provided buffer, with its contents containing the data, if unable to obtain
* direct pointer)
*/
__bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
void *buffer, u32 buffer__szk)
{
if (!ptr->data || bpf_dynptr_is_rdonly(ptr))
return 0;
/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
*
* For skb-type dynptrs, it is safe to write into the returned pointer
* if the bpf program allows skb data writes. There are two possiblities
* that may occur when calling bpf_dynptr_slice_rdwr:
*
* 1) The requested slice is in the head of the skb. In this case, the
* returned pointer is directly to skb data, and if the skb is cloned, the
* verifier will have uncloned it (see bpf_unclone_prologue()) already.
* The pointer can be directly written into.
*
* 2) Some portion of the requested slice is in the paged buffer area.
* In this case, the requested data will be copied out into the buffer
* and the returned pointer will be a pointer to the buffer. The skb
* will not be pulled. To persist the write, the user will need to call
* bpf_dynptr_write(), which will pull the skb and commit the write.
*
* Similarly for xdp programs, if the requested slice is not across xdp
* fragments, then a direct pointer will be returned, otherwise the data
* will be copied out into the buffer and the user will need to call
* bpf_dynptr_write() to commit changes.
*/
return bpf_dynptr_slice(ptr, offset, buffer, buffer__szk);
}
__bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
{
return obj;
@ -2207,6 +2398,8 @@ BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
BTF_ID_FLAGS(func, bpf_rdonly_cast)
BTF_ID_FLAGS(func, bpf_rcu_read_lock)
BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
BTF_SET8_END(common_btf_ids)
static const struct btf_kfunc_id_set common_kfunc_set = {

View File

@ -268,7 +268,6 @@ struct bpf_call_arg_meta {
u32 ret_btf_id;
u32 subprogno;
struct btf_field *kptr_field;
u8 uninit_dynptr_regno;
};
struct btf *btf_vmlinux;
@ -751,11 +750,31 @@ static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
return BPF_DYNPTR_TYPE_LOCAL;
case DYNPTR_TYPE_RINGBUF:
return BPF_DYNPTR_TYPE_RINGBUF;
case DYNPTR_TYPE_SKB:
return BPF_DYNPTR_TYPE_SKB;
case DYNPTR_TYPE_XDP:
return BPF_DYNPTR_TYPE_XDP;
default:
return BPF_DYNPTR_TYPE_INVALID;
}
}
static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
{
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
return DYNPTR_TYPE_LOCAL;
case BPF_DYNPTR_TYPE_RINGBUF:
return DYNPTR_TYPE_RINGBUF;
case BPF_DYNPTR_TYPE_SKB:
return DYNPTR_TYPE_SKB;
case BPF_DYNPTR_TYPE_XDP:
return DYNPTR_TYPE_XDP;
default:
return 0;
}
}
static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
{
return type == BPF_DYNPTR_TYPE_RINGBUF;
@ -959,39 +978,49 @@ static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
return 0;
}
static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
int spi)
static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
{
int spi;
if (reg->type == CONST_PTR_TO_DYNPTR)
return false;
/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
* will do check_mem_access to check and update stack bounds later, so
* return true for that case.
spi = dynptr_get_spi(env, reg);
/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
* error because this just means the stack state hasn't been updated yet.
* We will do check_mem_access to check and update stack bounds later.
*/
if (spi < 0)
return spi == -ERANGE;
/* We allow overwriting existing unreferenced STACK_DYNPTR slots, see
* mark_stack_slots_dynptr which calls destroy_if_dynptr_stack_slot to
* ensure dynptr objects at the slots we are touching are completely
* destructed before we reinitialize them for a new one. For referenced
* ones, destroy_if_dynptr_stack_slot returns an error early instead of
* delaying it until the end where the user will get "Unreleased
if (spi < 0 && spi != -ERANGE)
return false;
/* We don't need to check if the stack slots are marked by previous
* dynptr initializations because we allow overwriting existing unreferenced
* STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
* destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
* touching are completely destructed before we reinitialize them for a new
* one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
* instead of delaying it until the end where the user will get "Unreleased
* reference" error.
*/
return true;
}
static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
int spi)
static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
{
struct bpf_func_state *state = func(env, reg);
int i;
int i, spi;
/* This already represents first slot of initialized bpf_dynptr */
/* This already represents first slot of initialized bpf_dynptr.
*
* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
* check_func_arg_reg_off's logic, so we don't need to check its
* offset and alignment.
*/
if (reg->type == CONST_PTR_TO_DYNPTR)
return true;
spi = dynptr_get_spi(env, reg);
if (spi < 0)
return false;
if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
@ -1668,6 +1697,12 @@ static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
reg->type == PTR_TO_PACKET_END;
}
static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
{
return base_type(reg->type) == PTR_TO_MEM &&
(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
}
/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
enum bpf_reg_type which)
@ -6215,11 +6250,11 @@ static int process_kptr_func(struct bpf_verifier_env *env, int regno,
* Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
* type, and declare it as 'const struct bpf_dynptr *' in their prototype.
*/
int process_dynptr_func(struct bpf_verifier_env *env, int regno,
enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta)
static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
enum bpf_arg_type arg_type)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
int spi = 0;
int err;
/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
* ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
@ -6228,15 +6263,6 @@ int process_dynptr_func(struct bpf_verifier_env *env, int regno,
verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
return -EFAULT;
}
/* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
* check_func_arg_reg_off's logic. We only need to check offset
* and its alignment for PTR_TO_STACK.
*/
if (reg->type == PTR_TO_STACK) {
spi = dynptr_get_spi(env, reg);
if (spi < 0 && spi != -ERANGE)
return spi;
}
/* MEM_UNINIT - Points to memory that is an appropriate candidate for
* constructing a mutable bpf_dynptr object.
@ -6254,30 +6280,30 @@ int process_dynptr_func(struct bpf_verifier_env *env, int regno,
* to.
*/
if (arg_type & MEM_UNINIT) {
if (!is_dynptr_reg_valid_uninit(env, reg, spi)) {
int i;
if (!is_dynptr_reg_valid_uninit(env, reg)) {
verbose(env, "Dynptr has to be an uninitialized dynptr\n");
return -EINVAL;
}
/* We only support one dynptr being uninitialized at the moment,
* which is sufficient for the helper functions we have right now.
*/
if (meta->uninit_dynptr_regno) {
verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
return -EFAULT;
/* we write BPF_DW bits (8 bytes) at a time */
for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
err = check_mem_access(env, insn_idx, regno,
i, BPF_DW, BPF_WRITE, -1, false);
if (err)
return err;
}
meta->uninit_dynptr_regno = regno;
err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx);
} else /* MEM_RDONLY and None case from above */ {
int err;
/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
return -EINVAL;
}
if (!is_dynptr_reg_valid_init(env, reg, spi)) {
if (!is_dynptr_reg_valid_init(env, reg)) {
verbose(env,
"Expected an initialized dynptr as arg #%d\n",
regno);
@ -6295,6 +6321,12 @@ int process_dynptr_func(struct bpf_verifier_env *env, int regno,
case DYNPTR_TYPE_RINGBUF:
err_extra = "ringbuf";
break;
case DYNPTR_TYPE_SKB:
err_extra = "skb ";
break;
case DYNPTR_TYPE_XDP:
err_extra = "xdp ";
break;
default:
err_extra = "<unknown>";
break;
@ -6306,10 +6338,8 @@ int process_dynptr_func(struct bpf_verifier_env *env, int regno,
}
err = mark_dynptr_read(env, reg);
if (err)
return err;
}
return 0;
return err;
}
static bool arg_type_is_mem_size(enum bpf_arg_type type)
@ -6691,6 +6721,28 @@ int check_func_arg_reg_off(struct bpf_verifier_env *env,
}
}
static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
const struct bpf_func_proto *fn,
struct bpf_reg_state *regs)
{
struct bpf_reg_state *state = NULL;
int i;
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
if (arg_type_is_dynptr(fn->arg_type[i])) {
if (state) {
verbose(env, "verifier internal error: multiple dynptr args\n");
return NULL;
}
state = &regs[BPF_REG_1 + i];
}
if (!state)
verbose(env, "verifier internal error: no dynptr arg found\n");
return state;
}
static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
{
struct bpf_func_state *state = func(env, reg);
@ -6717,9 +6769,28 @@ static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state
return state->stack[spi].spilled_ptr.ref_obj_id;
}
static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
struct bpf_reg_state *reg)
{
struct bpf_func_state *state = func(env, reg);
int spi;
if (reg->type == CONST_PTR_TO_DYNPTR)
return reg->dynptr.type;
spi = __get_spi(reg->off);
if (spi < 0) {
verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
return BPF_DYNPTR_TYPE_INVALID;
}
return state->stack[spi].spilled_ptr.dynptr.type;
}
static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
struct bpf_call_arg_meta *meta,
const struct bpf_func_proto *fn)
const struct bpf_func_proto *fn,
int insn_idx)
{
u32 regno = BPF_REG_1 + arg;
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
@ -6932,7 +7003,7 @@ skip_type_check:
err = check_mem_size_reg(env, reg, regno, true, meta);
break;
case ARG_PTR_TO_DYNPTR:
err = process_dynptr_func(env, regno, arg_type, meta);
err = process_dynptr_func(env, regno, insn_idx, arg_type);
if (err)
return err;
break;
@ -7380,6 +7451,9 @@ static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
* are now invalid, so turn them into unknown SCALAR_VALUE.
*
* This also applies to dynptr slices belonging to skb and xdp dynptrs,
* since these slices point to packet data.
*/
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
@ -7387,7 +7461,7 @@ static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
struct bpf_reg_state *reg;
bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
if (reg_is_pkt_pointer_any(reg))
if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
mark_reg_invalid(env, reg);
}));
}
@ -8218,7 +8292,7 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
meta.func_id = func_id;
/* check args */
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
err = check_func_arg(env, i, &meta, fn);
err = check_func_arg(env, i, &meta, fn, insn_idx);
if (err)
return err;
}
@ -8243,30 +8317,6 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
regs = cur_regs(env);
/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
* be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr
* is safe to do directly.
*/
if (meta.uninit_dynptr_regno) {
if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) {
verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n");
return -EFAULT;
}
/* we write BPF_DW bits (8 bytes) at a time */
for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
i, BPF_DW, BPF_WRITE, -1, false);
if (err)
return err;
}
err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
insn_idx);
if (err)
return err;
}
if (meta.release_regno) {
err = -EINVAL;
/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
@ -8351,43 +8401,62 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
}
break;
case BPF_FUNC_dynptr_data:
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
if (arg_type_is_dynptr(fn->arg_type[i])) {
struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
int id, ref_obj_id;
{
struct bpf_reg_state *reg;
int id, ref_obj_id;
if (meta.dynptr_id) {
verbose(env, "verifier internal error: meta.dynptr_id already set\n");
return -EFAULT;
}
reg = get_dynptr_arg_reg(env, fn, regs);
if (!reg)
return -EFAULT;
if (meta.ref_obj_id) {
verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
return -EFAULT;
}
id = dynptr_id(env, reg);
if (id < 0) {
verbose(env, "verifier internal error: failed to obtain dynptr id\n");
return id;
}
ref_obj_id = dynptr_ref_obj_id(env, reg);
if (ref_obj_id < 0) {
verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
return ref_obj_id;
}
meta.dynptr_id = id;
meta.ref_obj_id = ref_obj_id;
break;
}
}
if (i == MAX_BPF_FUNC_REG_ARGS) {
verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
if (meta.dynptr_id) {
verbose(env, "verifier internal error: meta.dynptr_id already set\n");
return -EFAULT;
}
if (meta.ref_obj_id) {
verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
return -EFAULT;
}
id = dynptr_id(env, reg);
if (id < 0) {
verbose(env, "verifier internal error: failed to obtain dynptr id\n");
return id;
}
ref_obj_id = dynptr_ref_obj_id(env, reg);
if (ref_obj_id < 0) {
verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
return ref_obj_id;
}
meta.dynptr_id = id;
meta.ref_obj_id = ref_obj_id;
break;
}
case BPF_FUNC_dynptr_write:
{
enum bpf_dynptr_type dynptr_type;
struct bpf_reg_state *reg;
reg = get_dynptr_arg_reg(env, fn, regs);
if (!reg)
return -EFAULT;
dynptr_type = dynptr_get_type(env, reg);
if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
return -EFAULT;
if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
/* this will trigger clear_all_pkt_pointers(), which will
* invalidate all dynptr slices associated with the skb
*/
changes_data = true;
break;
}
case BPF_FUNC_user_ringbuf_drain:
err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
set_user_ringbuf_callback_state);
@ -8644,6 +8713,11 @@ struct bpf_kfunc_call_arg_meta {
struct {
struct btf_field *field;
} arg_rbtree_root;
struct {
enum bpf_dynptr_type type;
u32 id;
} initialized_dynptr;
u64 mem_size;
};
static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
@ -8717,6 +8791,19 @@ static bool is_kfunc_arg_mem_size(const struct btf *btf,
return __kfunc_param_match_suffix(btf, arg, "__sz");
}
static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
const struct btf_param *arg,
const struct bpf_reg_state *reg)
{
const struct btf_type *t;
t = btf_type_skip_modifiers(btf, arg->type, NULL);
if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
return false;
return __kfunc_param_match_suffix(btf, arg, "__szk");
}
static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
{
return __kfunc_param_match_suffix(btf, arg, "__k");
@ -8732,6 +8819,11 @@ static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param
return __kfunc_param_match_suffix(btf, arg, "__alloc");
}
static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
{
return __kfunc_param_match_suffix(btf, arg, "__uninit");
}
static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
const struct btf_param *arg,
const char *name)
@ -8898,6 +8990,10 @@ enum special_kfunc_type {
KF_bpf_rbtree_remove,
KF_bpf_rbtree_add,
KF_bpf_rbtree_first,
KF_bpf_dynptr_from_skb,
KF_bpf_dynptr_from_xdp,
KF_bpf_dynptr_slice,
KF_bpf_dynptr_slice_rdwr,
};
BTF_SET_START(special_kfunc_set)
@ -8912,6 +9008,10 @@ BTF_ID(func, bpf_rdonly_cast)
BTF_ID(func, bpf_rbtree_remove)
BTF_ID(func, bpf_rbtree_add)
BTF_ID(func, bpf_rbtree_first)
BTF_ID(func, bpf_dynptr_from_skb)
BTF_ID(func, bpf_dynptr_from_xdp)
BTF_ID(func, bpf_dynptr_slice)
BTF_ID(func, bpf_dynptr_slice_rdwr)
BTF_SET_END(special_kfunc_set)
BTF_ID_LIST(special_kfunc_list)
@ -8928,6 +9028,10 @@ BTF_ID(func, bpf_rcu_read_unlock)
BTF_ID(func, bpf_rbtree_remove)
BTF_ID(func, bpf_rbtree_add)
BTF_ID(func, bpf_rbtree_first)
BTF_ID(func, bpf_dynptr_from_skb)
BTF_ID(func, bpf_dynptr_from_xdp)
BTF_ID(func, bpf_dynptr_slice)
BTF_ID(func, bpf_dynptr_slice_rdwr)
static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
{
@ -9007,7 +9111,10 @@ get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
return KF_ARG_PTR_TO_CALLBACK;
if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]))
if (argno + 1 < nargs &&
(is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
arg_mem_size = true;
/* This is the catch all argument type of register types supported by
@ -9475,7 +9582,8 @@ static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
&meta->arg_rbtree_root.field);
}
static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta)
static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
int insn_idx)
{
const char *func_name = meta->func_name, *ref_tname;
const struct btf *btf = meta->btf;
@ -9666,16 +9774,43 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
return ret;
break;
case KF_ARG_PTR_TO_DYNPTR:
{
enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
if (reg->type != PTR_TO_STACK &&
reg->type != CONST_PTR_TO_DYNPTR) {
verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
return -EINVAL;
}
ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL);
if (reg->type == CONST_PTR_TO_DYNPTR)
dynptr_arg_type |= MEM_RDONLY;
if (is_kfunc_arg_uninit(btf, &args[i]))
dynptr_arg_type |= MEM_UNINIT;
if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb])
dynptr_arg_type |= DYNPTR_TYPE_SKB;
else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp])
dynptr_arg_type |= DYNPTR_TYPE_XDP;
ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type);
if (ret < 0)
return ret;
if (!(dynptr_arg_type & MEM_UNINIT)) {
int id = dynptr_id(env, reg);
if (id < 0) {
verbose(env, "verifier internal error: failed to obtain dynptr id\n");
return id;
}
meta->initialized_dynptr.id = id;
meta->initialized_dynptr.type = dynptr_get_type(env, reg);
}
break;
}
case KF_ARG_PTR_TO_LIST_HEAD:
if (reg->type != PTR_TO_MAP_VALUE &&
reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
@ -9769,14 +9904,33 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
return ret;
break;
case KF_ARG_PTR_TO_MEM_SIZE:
ret = check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1);
{
struct bpf_reg_state *size_reg = &regs[regno + 1];
const struct btf_param *size_arg = &args[i + 1];
ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
if (ret < 0) {
verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
return ret;
}
/* Skip next '__sz' argument */
if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
if (meta->arg_constant.found) {
verbose(env, "verifier internal error: only one constant argument permitted\n");
return -EFAULT;
}
if (!tnum_is_const(size_reg->var_off)) {
verbose(env, "R%d must be a known constant\n", regno + 1);
return -EINVAL;
}
meta->arg_constant.found = true;
meta->arg_constant.value = size_reg->var_off.value;
}
/* Skip next '__sz' or '__szk' argument */
i++;
break;
}
case KF_ARG_PTR_TO_CALLBACK:
meta->subprogno = reg->subprogno;
break;
@ -9880,7 +10034,7 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
}
/* Check the arguments */
err = check_kfunc_args(env, &meta);
err = check_kfunc_args(env, &meta, insn_idx);
if (err < 0)
return err;
/* In case of release function, we get register number of refcounted
@ -10011,6 +10165,42 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
regs[BPF_REG_0].btf = desc_btf;
regs[BPF_REG_0].btf_id = meta.arg_constant.value;
} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
mark_reg_known_zero(env, regs, BPF_REG_0);
if (!meta.arg_constant.found) {
verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
return -EFAULT;
}
regs[BPF_REG_0].mem_size = meta.arg_constant.value;
/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
regs[BPF_REG_0].type |= MEM_RDONLY;
} else {
/* this will set env->seen_direct_write to true */
if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
verbose(env, "the prog does not allow writes to packet data\n");
return -EINVAL;
}
}
if (!meta.initialized_dynptr.id) {
verbose(env, "verifier internal error: no dynptr id\n");
return -EFAULT;
}
regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
/* we don't need to set BPF_REG_0's ref obj id
* because packet slices are not refcounted (see
* dynptr_type_refcounted)
*/
} else {
verbose(env, "kernel function %s unhandled dynamic return type\n",
meta.func_name);
@ -16345,6 +16535,17 @@ static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
*cnt = 1;
} else if (desc->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
bool seen_direct_write = env->seen_direct_write;
bool is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
if (is_rdonly)
insn->imm = BPF_CALL_IMM(bpf_dynptr_from_skb_rdonly);
/* restore env->seen_direct_write to its original value, since
* may_access_direct_pkt_data mutates it
*/
env->seen_direct_write = seen_direct_write;
}
return 0;
}

View File

@ -1721,6 +1721,12 @@ static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
.arg5_type = ARG_ANYTHING,
};
int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
u32 len, u64 flags)
{
return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
}
BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
void *, to, u32, len)
{
@ -1751,6 +1757,11 @@ static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
.arg4_type = ARG_CONST_SIZE,
};
int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
{
return ____bpf_skb_load_bytes(skb, offset, to, len);
}
BPF_CALL_4(bpf_flow_dissector_load_bytes,
const struct bpf_flow_dissector *, ctx, u32, offset,
void *, to, u32, len)
@ -3828,7 +3839,7 @@ static const struct bpf_func_proto sk_skb_change_head_proto = {
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
{
return xdp_get_buff_len(xdp);
}
@ -3883,8 +3894,8 @@ static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
.arg2_type = ARG_ANYTHING,
};
static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
void *buf, unsigned long len, bool flush)
void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
void *buf, unsigned long len, bool flush)
{
unsigned long ptr_len, ptr_off = 0;
skb_frag_t *next_frag, *end_frag;
@ -3930,7 +3941,7 @@ static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
}
}
static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
{
struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
u32 size = xdp->data_end - xdp->data;
@ -3988,6 +3999,11 @@ static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
.arg4_type = ARG_CONST_SIZE,
};
int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
{
return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
}
BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
void *, buf, u32, len)
{
@ -4015,6 +4031,11 @@ static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
.arg4_type = ARG_CONST_SIZE,
};
int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
{
return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
}
static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
{
struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
@ -11621,3 +11642,82 @@ bpf_sk_base_func_proto(enum bpf_func_id func_id)
return func;
}
__diag_push();
__diag_ignore_all("-Wmissing-prototypes",
"Global functions as their definitions will be in vmlinux BTF");
__bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
struct bpf_dynptr_kern *ptr__uninit)
{
if (flags) {
bpf_dynptr_set_null(ptr__uninit);
return -EINVAL;
}
bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
return 0;
}
__bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
struct bpf_dynptr_kern *ptr__uninit)
{
if (flags) {
bpf_dynptr_set_null(ptr__uninit);
return -EINVAL;
}
bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
return 0;
}
__diag_pop();
int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
struct bpf_dynptr_kern *ptr__uninit)
{
int err;
err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
if (err)
return err;
bpf_dynptr_set_rdonly(ptr__uninit);
return 0;
}
BTF_SET8_START(bpf_kfunc_check_set_skb)
BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
BTF_SET8_END(bpf_kfunc_check_set_skb)
BTF_SET8_START(bpf_kfunc_check_set_xdp)
BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
BTF_SET8_END(bpf_kfunc_check_set_xdp)
static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
.owner = THIS_MODULE,
.set = &bpf_kfunc_check_set_skb,
};
static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
.owner = THIS_MODULE,
.set = &bpf_kfunc_check_set_xdp,
};
static int __init bpf_kfunc_init(void)
{
int ret;
ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
}
late_initcall(bpf_kfunc_init);

View File

@ -5325,11 +5325,22 @@ union bpf_attr {
* Description
* Write *len* bytes from *src* into *dst*, starting from *offset*
* into *dst*.
* *flags* is currently unused.
*
* *flags* must be 0 except for skb-type dynptrs.
*
* For skb-type dynptrs:
* * All data slices of the dynptr are automatically
* invalidated after **bpf_dynptr_write**\ (). This is
* because writing may pull the skb and change the
* underlying packet buffer.
*
* * For *flags*, please see the flags accepted by
* **bpf_skb_store_bytes**\ ().
* Return
* 0 on success, -E2BIG if *offset* + *len* exceeds the length
* of *dst*'s data, -EINVAL if *dst* is an invalid dynptr or if *dst*
* is a read-only dynptr or if *flags* is not 0.
* is a read-only dynptr or if *flags* is not correct. For skb-type dynptrs,
* other errors correspond to errors returned by **bpf_skb_store_bytes**\ ().
*
* void *bpf_dynptr_data(const struct bpf_dynptr *ptr, u32 offset, u32 len)
* Description
@ -5337,6 +5348,9 @@ union bpf_attr {
*
* *len* must be a statically known value. The returned data slice
* is invalidated whenever the dynptr is invalidated.
*
* skb and xdp type dynptrs may not use bpf_dynptr_data. They should
* instead use bpf_dynptr_slice and bpf_dynptr_slice_rdwr.
* Return
* Pointer to the underlying dynptr data, NULL if the dynptr is
* read-only, if the dynptr is invalid, or if the offset and length

View File

@ -4,6 +4,8 @@ bloom_filter_map # failed to find kernel BTF type ID of
bpf_cookie # failed to open_and_load program: -524 (trampoline)
bpf_loop # attaches to __x64_sys_nanosleep
cgrp_local_storage # prog_attach unexpected error: -524 (trampoline)
dynptr/test_dynptr_skb_data
dynptr/test_skb_readonly
fexit_sleep # fexit_skel_load fexit skeleton failed (trampoline)
get_stack_raw_tp # user_stack corrupted user stack (no backchain userspace)
kprobe_multi_bench_attach # bpf_program__attach_kprobe_multi_opts unexpected error: -95

View File

@ -0,0 +1,38 @@
#ifndef __BPF_KFUNCS__
#define __BPF_KFUNCS__
/* Description
* Initializes an skb-type dynptr
* Returns
* Error code
*/
extern int bpf_dynptr_from_skb(struct __sk_buff *skb, __u64 flags,
struct bpf_dynptr *ptr__uninit) __ksym;
/* Description
* Initializes an xdp-type dynptr
* Returns
* Error code
*/
extern int bpf_dynptr_from_xdp(struct xdp_md *xdp, __u64 flags,
struct bpf_dynptr *ptr__uninit) __ksym;
/* Description
* Obtain a read-only pointer to the dynptr's data
* Returns
* Either a direct pointer to the dynptr data or a pointer to the user-provided
* buffer if unable to obtain a direct pointer
*/
extern void *bpf_dynptr_slice(const struct bpf_dynptr *ptr, __u32 offset,
void *buffer, __u32 buffer__szk) __ksym;
/* Description
* Obtain a read-write pointer to the dynptr's data
* Returns
* Either a direct pointer to the dynptr data or a pointer to the user-provided
* buffer if unable to obtain a direct pointer
*/
extern void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *ptr, __u32 offset,
void *buffer, __u32 buffer__szk) __ksym;
#endif

View File

@ -13,6 +13,7 @@
#include "progs/test_cls_redirect.h"
#include "test_cls_redirect.skel.h"
#include "test_cls_redirect_dynptr.skel.h"
#include "test_cls_redirect_subprogs.skel.h"
#define ENCAP_IP INADDR_LOOPBACK
@ -446,6 +447,28 @@ cleanup:
close_fds((int *)conns, sizeof(conns) / sizeof(conns[0][0]));
}
static void test_cls_redirect_dynptr(void)
{
struct test_cls_redirect_dynptr *skel;
int err;
skel = test_cls_redirect_dynptr__open();
if (!ASSERT_OK_PTR(skel, "skel_open"))
return;
skel->rodata->ENCAPSULATION_IP = htonl(ENCAP_IP);
skel->rodata->ENCAPSULATION_PORT = htons(ENCAP_PORT);
err = test_cls_redirect_dynptr__load(skel);
if (!ASSERT_OK(err, "skel_load"))
goto cleanup;
test_cls_redirect_common(skel->progs.cls_redirect);
cleanup:
test_cls_redirect_dynptr__destroy(skel);
}
static void test_cls_redirect_inlined(void)
{
struct test_cls_redirect *skel;
@ -496,4 +519,6 @@ void test_cls_redirect(void)
test_cls_redirect_inlined();
if (test__start_subtest("cls_redirect_subprogs"))
test_cls_redirect_subprogs();
if (test__start_subtest("cls_redirect_dynptr"))
test_cls_redirect_dynptr();
}

View File

@ -2,20 +2,32 @@
/* Copyright (c) 2022 Facebook */
#include <test_progs.h>
#include <network_helpers.h>
#include "dynptr_fail.skel.h"
#include "dynptr_success.skel.h"
static const char * const success_tests[] = {
"test_read_write",
"test_data_slice",
"test_ringbuf",
enum test_setup_type {
SETUP_SYSCALL_SLEEP,
SETUP_SKB_PROG,
};
static void verify_success(const char *prog_name)
static struct {
const char *prog_name;
enum test_setup_type type;
} success_tests[] = {
{"test_read_write", SETUP_SYSCALL_SLEEP},
{"test_dynptr_data", SETUP_SYSCALL_SLEEP},
{"test_ringbuf", SETUP_SYSCALL_SLEEP},
{"test_skb_readonly", SETUP_SKB_PROG},
{"test_dynptr_skb_data", SETUP_SKB_PROG},
};
static void verify_success(const char *prog_name, enum test_setup_type setup_type)
{
struct dynptr_success *skel;
struct bpf_program *prog;
struct bpf_link *link;
int err;
skel = dynptr_success__open();
if (!ASSERT_OK_PTR(skel, "dynptr_success__open"))
@ -23,24 +35,54 @@ static void verify_success(const char *prog_name)
skel->bss->pid = getpid();
dynptr_success__load(skel);
if (!ASSERT_OK_PTR(skel, "dynptr_success__load"))
goto cleanup;
prog = bpf_object__find_program_by_name(skel->obj, prog_name);
if (!ASSERT_OK_PTR(prog, "bpf_object__find_program_by_name"))
goto cleanup;
link = bpf_program__attach(prog);
if (!ASSERT_OK_PTR(link, "bpf_program__attach"))
bpf_program__set_autoload(prog, true);
err = dynptr_success__load(skel);
if (!ASSERT_OK(err, "dynptr_success__load"))
goto cleanup;
usleep(1);
switch (setup_type) {
case SETUP_SYSCALL_SLEEP:
link = bpf_program__attach(prog);
if (!ASSERT_OK_PTR(link, "bpf_program__attach"))
goto cleanup;
usleep(1);
bpf_link__destroy(link);
break;
case SETUP_SKB_PROG:
{
int prog_fd;
char buf[64];
LIBBPF_OPTS(bpf_test_run_opts, topts,
.data_in = &pkt_v4,
.data_size_in = sizeof(pkt_v4),
.data_out = buf,
.data_size_out = sizeof(buf),
.repeat = 1,
);
prog_fd = bpf_program__fd(prog);
if (!ASSERT_GE(prog_fd, 0, "prog_fd"))
goto cleanup;
err = bpf_prog_test_run_opts(prog_fd, &topts);
if (!ASSERT_OK(err, "test_run"))
goto cleanup;
break;
}
}
ASSERT_EQ(skel->bss->err, 0, "err");
bpf_link__destroy(link);
cleanup:
dynptr_success__destroy(skel);
}
@ -50,10 +92,10 @@ void test_dynptr(void)
int i;
for (i = 0; i < ARRAY_SIZE(success_tests); i++) {
if (!test__start_subtest(success_tests[i]))
if (!test__start_subtest(success_tests[i].prog_name))
continue;
verify_success(success_tests[i]);
verify_success(success_tests[i].prog_name, success_tests[i].type);
}
RUN_TESTS(dynptr_fail);

View File

@ -93,4 +93,6 @@ void test_l4lb_all(void)
test_l4lb("test_l4lb.bpf.o");
if (test__start_subtest("l4lb_noinline"))
test_l4lb("test_l4lb_noinline.bpf.o");
if (test__start_subtest("l4lb_noinline_dynptr"))
test_l4lb("test_l4lb_noinline_dynptr.bpf.o");
}

View File

@ -0,0 +1,93 @@
// SPDX-License-Identifier: GPL-2.0
#include <test_progs.h>
#include <network_helpers.h>
#include "test_parse_tcp_hdr_opt.skel.h"
#include "test_parse_tcp_hdr_opt_dynptr.skel.h"
#include "test_tcp_hdr_options.h"
struct test_pkt {
struct ipv6_packet pk6_v6;
u8 options[16];
} __packed;
struct test_pkt pkt = {
.pk6_v6.eth.h_proto = __bpf_constant_htons(ETH_P_IPV6),
.pk6_v6.iph.nexthdr = IPPROTO_TCP,
.pk6_v6.iph.payload_len = __bpf_constant_htons(MAGIC_BYTES),
.pk6_v6.tcp.urg_ptr = 123,
.pk6_v6.tcp.doff = 9, /* 16 bytes of options */
.options = {
TCPOPT_MSS, 4, 0x05, 0xB4, TCPOPT_NOP, TCPOPT_NOP,
0, 6, 0xBB, 0xBB, 0xBB, 0xBB, TCPOPT_EOL
},
};
static void test_parse_opt(void)
{
struct test_parse_tcp_hdr_opt *skel;
struct bpf_program *prog;
char buf[128];
int err;
LIBBPF_OPTS(bpf_test_run_opts, topts,
.data_in = &pkt,
.data_size_in = sizeof(pkt),
.data_out = buf,
.data_size_out = sizeof(buf),
.repeat = 3,
);
skel = test_parse_tcp_hdr_opt__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
return;
pkt.options[6] = skel->rodata->tcp_hdr_opt_kind_tpr;
prog = skel->progs.xdp_ingress_v6;
err = bpf_prog_test_run_opts(bpf_program__fd(prog), &topts);
ASSERT_OK(err, "ipv6 test_run");
ASSERT_EQ(topts.retval, XDP_PASS, "ipv6 test_run retval");
ASSERT_EQ(skel->bss->server_id, 0xBBBBBBBB, "server id");
test_parse_tcp_hdr_opt__destroy(skel);
}
static void test_parse_opt_dynptr(void)
{
struct test_parse_tcp_hdr_opt_dynptr *skel;
struct bpf_program *prog;
char buf[128];
int err;
LIBBPF_OPTS(bpf_test_run_opts, topts,
.data_in = &pkt,
.data_size_in = sizeof(pkt),
.data_out = buf,
.data_size_out = sizeof(buf),
.repeat = 3,
);
skel = test_parse_tcp_hdr_opt_dynptr__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
return;
pkt.options[6] = skel->rodata->tcp_hdr_opt_kind_tpr;
prog = skel->progs.xdp_ingress_v6;
err = bpf_prog_test_run_opts(bpf_program__fd(prog), &topts);
ASSERT_OK(err, "ipv6 test_run");
ASSERT_EQ(topts.retval, XDP_PASS, "ipv6 test_run retval");
ASSERT_EQ(skel->bss->server_id, 0xBBBBBBBB, "server id");
test_parse_tcp_hdr_opt_dynptr__destroy(skel);
}
void test_parse_tcp_hdr_opt(void)
{
if (test__start_subtest("parse_tcp_hdr_opt"))
test_parse_opt();
if (test__start_subtest("parse_tcp_hdr_opt_dynptr"))
test_parse_opt_dynptr();
}

View File

@ -4,11 +4,10 @@
#define IFINDEX_LO 1
#define XDP_FLAGS_REPLACE (1U << 4)
void serial_test_xdp_attach(void)
static void test_xdp_attach(const char *file)
{
__u32 duration = 0, id1, id2, id0 = 0, len;
struct bpf_object *obj1, *obj2, *obj3;
const char *file = "./test_xdp.bpf.o";
struct bpf_prog_info info = {};
int err, fd1, fd2, fd3;
LIBBPF_OPTS(bpf_xdp_attach_opts, opts);
@ -85,3 +84,11 @@ out_2:
out_1:
bpf_object__close(obj1);
}
void serial_test_xdp_attach(void)
{
if (test__start_subtest("xdp_attach"))
test_xdp_attach("./test_xdp.bpf.o");
if (test__start_subtest("xdp_attach_dynptr"))
test_xdp_attach("./test_xdp_dynptr.bpf.o");
}

View File

@ -5,7 +5,9 @@
#include <string.h>
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include <linux/if_ether.h>
#include "bpf_misc.h"
#include "bpf_kfuncs.h"
char _license[] SEC("license") = "GPL";
@ -244,6 +246,27 @@ done:
return 0;
}
/* A data slice can't be accessed out of bounds */
SEC("?tc")
__failure __msg("value is outside of the allowed memory range")
int data_slice_out_of_bounds_skb(struct __sk_buff *skb)
{
struct bpf_dynptr ptr;
struct ethhdr *hdr;
char buffer[sizeof(*hdr)] = {};
bpf_dynptr_from_skb(skb, 0, &ptr);
hdr = bpf_dynptr_slice_rdwr(&ptr, 0, buffer, sizeof(buffer));
if (!hdr)
return SK_DROP;
/* this should fail */
*(__u8*)(hdr + 1) = 1;
return SK_PASS;
}
SEC("?raw_tp")
__failure __msg("value is outside of the allowed memory range")
int data_slice_out_of_bounds_map_value(void *ctx)
@ -399,7 +422,6 @@ int invalid_helper2(void *ctx)
/* this should fail */
bpf_dynptr_read(read_data, sizeof(read_data), (void *)&ptr + 8, 0, 0);
return 0;
}
@ -1044,6 +1066,193 @@ int dynptr_read_into_slot(void *ctx)
return 0;
}
/* bpf_dynptr_slice()s are read-only and cannot be written to */
SEC("?tc")
__failure __msg("R0 cannot write into rdonly_mem")
int skb_invalid_slice_write(struct __sk_buff *skb)
{
struct bpf_dynptr ptr;
struct ethhdr *hdr;
char buffer[sizeof(*hdr)] = {};
bpf_dynptr_from_skb(skb, 0, &ptr);
hdr = bpf_dynptr_slice(&ptr, 0, buffer, sizeof(buffer));
if (!hdr)
return SK_DROP;
/* this should fail */
hdr->h_proto = 1;
return SK_PASS;
}
/* The read-only data slice is invalidated whenever a helper changes packet data */
SEC("?tc")
__failure __msg("invalid mem access 'scalar'")
int skb_invalid_data_slice1(struct __sk_buff *skb)
{
struct bpf_dynptr ptr;
struct ethhdr *hdr;
char buffer[sizeof(*hdr)] = {};
bpf_dynptr_from_skb(skb, 0, &ptr);
hdr = bpf_dynptr_slice(&ptr, 0, buffer, sizeof(buffer));
if (!hdr)
return SK_DROP;
val = hdr->h_proto;
if (bpf_skb_pull_data(skb, skb->len))
return SK_DROP;
/* this should fail */
val = hdr->h_proto;
return SK_PASS;
}
/* The read-write data slice is invalidated whenever a helper changes packet data */
SEC("?tc")
__failure __msg("invalid mem access 'scalar'")
int skb_invalid_data_slice2(struct __sk_buff *skb)
{
struct bpf_dynptr ptr;
struct ethhdr *hdr;
char buffer[sizeof(*hdr)] = {};
bpf_dynptr_from_skb(skb, 0, &ptr);
hdr = bpf_dynptr_slice_rdwr(&ptr, 0, buffer, sizeof(buffer));
if (!hdr)
return SK_DROP;
hdr->h_proto = 123;
if (bpf_skb_pull_data(skb, skb->len))
return SK_DROP;
/* this should fail */
hdr->h_proto = 1;
return SK_PASS;
}
/* The read-only data slice is invalidated whenever bpf_dynptr_write() is called */
SEC("?tc")
__failure __msg("invalid mem access 'scalar'")
int skb_invalid_data_slice3(struct __sk_buff *skb)
{
char write_data[64] = "hello there, world!!";
struct bpf_dynptr ptr;
struct ethhdr *hdr;
char buffer[sizeof(*hdr)] = {};
bpf_dynptr_from_skb(skb, 0, &ptr);
hdr = bpf_dynptr_slice(&ptr, 0, buffer, sizeof(buffer));
if (!hdr)
return SK_DROP;
val = hdr->h_proto;
bpf_dynptr_write(&ptr, 0, write_data, sizeof(write_data), 0);
/* this should fail */
val = hdr->h_proto;
return SK_PASS;
}
/* The read-write data slice is invalidated whenever bpf_dynptr_write() is called */
SEC("?tc")
__failure __msg("invalid mem access 'scalar'")
int skb_invalid_data_slice4(struct __sk_buff *skb)
{
char write_data[64] = "hello there, world!!";
struct bpf_dynptr ptr;
struct ethhdr *hdr;
char buffer[sizeof(*hdr)] = {};
bpf_dynptr_from_skb(skb, 0, &ptr);
hdr = bpf_dynptr_slice_rdwr(&ptr, 0, buffer, sizeof(buffer));
if (!hdr)
return SK_DROP;
hdr->h_proto = 123;
bpf_dynptr_write(&ptr, 0, write_data, sizeof(write_data), 0);
/* this should fail */
hdr->h_proto = 1;
return SK_PASS;
}
/* The read-only data slice is invalidated whenever a helper changes packet data */
SEC("?xdp")
__failure __msg("invalid mem access 'scalar'")
int xdp_invalid_data_slice1(struct xdp_md *xdp)
{
struct bpf_dynptr ptr;
struct ethhdr *hdr;
char buffer[sizeof(*hdr)] = {};
bpf_dynptr_from_xdp(xdp, 0, &ptr);
hdr = bpf_dynptr_slice(&ptr, 0, buffer, sizeof(buffer));
if (!hdr)
return SK_DROP;
val = hdr->h_proto;
if (bpf_xdp_adjust_head(xdp, 0 - (int)sizeof(*hdr)))
return XDP_DROP;
/* this should fail */
val = hdr->h_proto;
return XDP_PASS;
}
/* The read-write data slice is invalidated whenever a helper changes packet data */
SEC("?xdp")
__failure __msg("invalid mem access 'scalar'")
int xdp_invalid_data_slice2(struct xdp_md *xdp)
{
struct bpf_dynptr ptr;
struct ethhdr *hdr;
char buffer[sizeof(*hdr)] = {};
bpf_dynptr_from_xdp(xdp, 0, &ptr);
hdr = bpf_dynptr_slice_rdwr(&ptr, 0, buffer, sizeof(buffer));
if (!hdr)
return SK_DROP;
hdr->h_proto = 9;
if (bpf_xdp_adjust_head(xdp, 0 - (int)sizeof(*hdr)))
return XDP_DROP;
/* this should fail */
hdr->h_proto = 1;
return XDP_PASS;
}
/* Only supported prog type can create skb-type dynptrs */
SEC("?raw_tp")
__failure __msg("calling kernel function bpf_dynptr_from_skb is not allowed")
int skb_invalid_ctx(void *ctx)
{
struct bpf_dynptr ptr;
/* this should fail */
bpf_dynptr_from_skb(ctx, 0, &ptr);
return 0;
}
/* Reject writes to dynptr slot for uninit arg */
SEC("?raw_tp")
__failure __msg("potential write to dynptr at off=-16")
@ -1061,6 +1270,61 @@ int uninit_write_into_slot(void *ctx)
return 0;
}
/* Only supported prog type can create xdp-type dynptrs */
SEC("?raw_tp")
__failure __msg("calling kernel function bpf_dynptr_from_xdp is not allowed")
int xdp_invalid_ctx(void *ctx)
{
struct bpf_dynptr ptr;
/* this should fail */
bpf_dynptr_from_xdp(ctx, 0, &ptr);
return 0;
}
__u32 hdr_size = sizeof(struct ethhdr);
/* Can't pass in variable-sized len to bpf_dynptr_slice */
SEC("?tc")
__failure __msg("unbounded memory access")
int dynptr_slice_var_len1(struct __sk_buff *skb)
{
struct bpf_dynptr ptr;
struct ethhdr *hdr;
char buffer[sizeof(*hdr)] = {};
bpf_dynptr_from_skb(skb, 0, &ptr);
/* this should fail */
hdr = bpf_dynptr_slice(&ptr, 0, buffer, hdr_size);
if (!hdr)
return SK_DROP;
return SK_PASS;
}
/* Can't pass in variable-sized len to bpf_dynptr_slice */
SEC("?tc")
__failure __msg("must be a known constant")
int dynptr_slice_var_len2(struct __sk_buff *skb)
{
char buffer[sizeof(struct ethhdr)] = {};
struct bpf_dynptr ptr;
struct ethhdr *hdr;
bpf_dynptr_from_skb(skb, 0, &ptr);
if (hdr_size <= sizeof(buffer)) {
/* this should fail */
hdr = bpf_dynptr_slice_rdwr(&ptr, 0, buffer, hdr_size);
if (!hdr)
return SK_DROP;
hdr->h_proto = 12;
}
return SK_PASS;
}
static int callback(__u32 index, void *data)
{
*(__u32 *)data = 123;
@ -1092,3 +1356,24 @@ int invalid_data_slices(void *ctx)
return 0;
}
/* Program types that don't allow writes to packet data should fail if
* bpf_dynptr_slice_rdwr is called
*/
SEC("cgroup_skb/ingress")
__failure __msg("the prog does not allow writes to packet data")
int invalid_slice_rdwr_rdonly(struct __sk_buff *skb)
{
char buffer[sizeof(struct ethhdr)] = {};
struct bpf_dynptr ptr;
struct ethhdr *hdr;
bpf_dynptr_from_skb(skb, 0, &ptr);
/* this should fail since cgroup_skb doesn't allow
* changing packet data
*/
hdr = bpf_dynptr_slice_rdwr(&ptr, 0, buffer, sizeof(buffer));
return 0;
}

View File

@ -5,6 +5,7 @@
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include "bpf_misc.h"
#include "bpf_kfuncs.h"
#include "errno.h"
char _license[] SEC("license") = "GPL";
@ -30,7 +31,7 @@ struct {
__type(value, __u32);
} array_map SEC(".maps");
SEC("tp/syscalls/sys_enter_nanosleep")
SEC("?tp/syscalls/sys_enter_nanosleep")
int test_read_write(void *ctx)
{
char write_data[64] = "hello there, world!!";
@ -61,8 +62,8 @@ int test_read_write(void *ctx)
return 0;
}
SEC("tp/syscalls/sys_enter_nanosleep")
int test_data_slice(void *ctx)
SEC("?tp/syscalls/sys_enter_nanosleep")
int test_dynptr_data(void *ctx)
{
__u32 key = 0, val = 235, *map_val;
struct bpf_dynptr ptr;
@ -131,7 +132,7 @@ static int ringbuf_callback(__u32 index, void *data)
return 0;
}
SEC("tp/syscalls/sys_enter_nanosleep")
SEC("?tp/syscalls/sys_enter_nanosleep")
int test_ringbuf(void *ctx)
{
struct bpf_dynptr ptr;
@ -163,3 +164,49 @@ done:
bpf_ringbuf_discard_dynptr(&ptr, 0);
return 0;
}
SEC("?cgroup_skb/egress")
int test_skb_readonly(struct __sk_buff *skb)
{
__u8 write_data[2] = {1, 2};
struct bpf_dynptr ptr;
__u64 *data;
int ret;
if (bpf_dynptr_from_skb(skb, 0, &ptr)) {
err = 1;
return 1;
}
/* since cgroup skbs are read only, writes should fail */
ret = bpf_dynptr_write(&ptr, 0, write_data, sizeof(write_data), 0);
if (ret != -EINVAL) {
err = 2;
return 1;
}
return 1;
}
SEC("?cgroup_skb/egress")
int test_dynptr_skb_data(struct __sk_buff *skb)
{
__u8 write_data[2] = {1, 2};
struct bpf_dynptr ptr;
__u64 *data;
int ret;
if (bpf_dynptr_from_skb(skb, 0, &ptr)) {
err = 1;
return 1;
}
/* This should return NULL. Must use bpf_dynptr_slice API */
data = bpf_dynptr_data(&ptr, 0, 1);
if (data) {
err = 2;
return 1;
}
return 1;
}

View File

@ -0,0 +1,980 @@
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
// Copyright (c) 2019, 2020 Cloudflare
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <linux/bpf.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/if_ether.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/pkt_cls.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_endian.h>
#include "test_cls_redirect.h"
#include "bpf_kfuncs.h"
#define offsetofend(TYPE, MEMBER) \
(offsetof(TYPE, MEMBER) + sizeof((((TYPE *)0)->MEMBER)))
#define IP_OFFSET_MASK (0x1FFF)
#define IP_MF (0x2000)
char _license[] SEC("license") = "Dual BSD/GPL";
/**
* Destination port and IP used for UDP encapsulation.
*/
volatile const __be16 ENCAPSULATION_PORT;
volatile const __be32 ENCAPSULATION_IP;
typedef struct {
uint64_t processed_packets_total;
uint64_t l3_protocol_packets_total_ipv4;
uint64_t l3_protocol_packets_total_ipv6;
uint64_t l4_protocol_packets_total_tcp;
uint64_t l4_protocol_packets_total_udp;
uint64_t accepted_packets_total_syn;
uint64_t accepted_packets_total_syn_cookies;
uint64_t accepted_packets_total_last_hop;
uint64_t accepted_packets_total_icmp_echo_request;
uint64_t accepted_packets_total_established;
uint64_t forwarded_packets_total_gue;
uint64_t forwarded_packets_total_gre;
uint64_t errors_total_unknown_l3_proto;
uint64_t errors_total_unknown_l4_proto;
uint64_t errors_total_malformed_ip;
uint64_t errors_total_fragmented_ip;
uint64_t errors_total_malformed_icmp;
uint64_t errors_total_unwanted_icmp;
uint64_t errors_total_malformed_icmp_pkt_too_big;
uint64_t errors_total_malformed_tcp;
uint64_t errors_total_malformed_udp;
uint64_t errors_total_icmp_echo_replies;
uint64_t errors_total_malformed_encapsulation;
uint64_t errors_total_encap_adjust_failed;
uint64_t errors_total_encap_buffer_too_small;
uint64_t errors_total_redirect_loop;
uint64_t errors_total_encap_mtu_violate;
} metrics_t;
typedef enum {
INVALID = 0,
UNKNOWN,
ECHO_REQUEST,
SYN,
SYN_COOKIE,
ESTABLISHED,
} verdict_t;
typedef struct {
uint16_t src, dst;
} flow_ports_t;
_Static_assert(
sizeof(flow_ports_t) !=
offsetofend(struct bpf_sock_tuple, ipv4.dport) -
offsetof(struct bpf_sock_tuple, ipv4.sport) - 1,
"flow_ports_t must match sport and dport in struct bpf_sock_tuple");
_Static_assert(
sizeof(flow_ports_t) !=
offsetofend(struct bpf_sock_tuple, ipv6.dport) -
offsetof(struct bpf_sock_tuple, ipv6.sport) - 1,
"flow_ports_t must match sport and dport in struct bpf_sock_tuple");
struct iphdr_info {
void *hdr;
__u64 len;
};
typedef int ret_t;
/* This is a bit of a hack. We need a return value which allows us to
* indicate that the regular flow of the program should continue,
* while allowing functions to use XDP_PASS and XDP_DROP, etc.
*/
static const ret_t CONTINUE_PROCESSING = -1;
/* Convenience macro to call functions which return ret_t.
*/
#define MAYBE_RETURN(x) \
do { \
ret_t __ret = x; \
if (__ret != CONTINUE_PROCESSING) \
return __ret; \
} while (0)
static bool ipv4_is_fragment(const struct iphdr *ip)
{
uint16_t frag_off = ip->frag_off & bpf_htons(IP_OFFSET_MASK);
return (ip->frag_off & bpf_htons(IP_MF)) != 0 || frag_off > 0;
}
static int pkt_parse_ipv4(struct bpf_dynptr *dynptr, __u64 *offset, struct iphdr *iphdr)
{
if (bpf_dynptr_read(iphdr, sizeof(*iphdr), dynptr, *offset, 0))
return -1;
*offset += sizeof(*iphdr);
if (iphdr->ihl < 5)
return -1;
/* skip ipv4 options */
*offset += (iphdr->ihl - 5) * 4;
return 0;
}
/* Parse the L4 ports from a packet, assuming a layout like TCP or UDP. */
static bool pkt_parse_icmp_l4_ports(struct bpf_dynptr *dynptr, __u64 *offset, flow_ports_t *ports)
{
if (bpf_dynptr_read(ports, sizeof(*ports), dynptr, *offset, 0))
return false;
*offset += sizeof(*ports);
/* Ports in the L4 headers are reversed, since we are parsing an ICMP
* payload which is going towards the eyeball.
*/
uint16_t dst = ports->src;
ports->src = ports->dst;
ports->dst = dst;
return true;
}
static uint16_t pkt_checksum_fold(uint32_t csum)
{
/* The highest reasonable value for an IPv4 header
* checksum requires two folds, so we just do that always.
*/
csum = (csum & 0xffff) + (csum >> 16);
csum = (csum & 0xffff) + (csum >> 16);
return (uint16_t)~csum;
}
static void pkt_ipv4_checksum(struct iphdr *iph)
{
iph->check = 0;
/* An IP header without options is 20 bytes. Two of those
* are the checksum, which we always set to zero. Hence,
* the maximum accumulated value is 18 / 2 * 0xffff = 0x8fff7,
* which fits in 32 bit.
*/
_Static_assert(sizeof(struct iphdr) == 20, "iphdr must be 20 bytes");
uint32_t acc = 0;
uint16_t *ipw = (uint16_t *)iph;
for (size_t i = 0; i < sizeof(struct iphdr) / 2; i++)
acc += ipw[i];
iph->check = pkt_checksum_fold(acc);
}
static bool pkt_skip_ipv6_extension_headers(struct bpf_dynptr *dynptr, __u64 *offset,
const struct ipv6hdr *ipv6, uint8_t *upper_proto,
bool *is_fragment)
{
/* We understand five extension headers.
* https://tools.ietf.org/html/rfc8200#section-4.1 states that all
* headers should occur once, except Destination Options, which may
* occur twice. Hence we give up after 6 headers.
*/
struct {
uint8_t next;
uint8_t len;
} exthdr = {
.next = ipv6->nexthdr,
};
*is_fragment = false;
for (int i = 0; i < 6; i++) {
switch (exthdr.next) {
case IPPROTO_FRAGMENT:
*is_fragment = true;
/* NB: We don't check that hdrlen == 0 as per spec. */
/* fallthrough; */
case IPPROTO_HOPOPTS:
case IPPROTO_ROUTING:
case IPPROTO_DSTOPTS:
case IPPROTO_MH:
if (bpf_dynptr_read(&exthdr, sizeof(exthdr), dynptr, *offset, 0))
return false;
/* hdrlen is in 8-octet units, and excludes the first 8 octets. */
*offset += (exthdr.len + 1) * 8;
/* Decode next header */
break;
default:
/* The next header is not one of the known extension
* headers, treat it as the upper layer header.
*
* This handles IPPROTO_NONE.
*
* Encapsulating Security Payload (50) and Authentication
* Header (51) also end up here (and will trigger an
* unknown proto error later). They have a custom header
* format and seem too esoteric to care about.
*/
*upper_proto = exthdr.next;
return true;
}
}
/* We never found an upper layer header. */
return false;
}
static int pkt_parse_ipv6(struct bpf_dynptr *dynptr, __u64 *offset, struct ipv6hdr *ipv6,
uint8_t *proto, bool *is_fragment)
{
if (bpf_dynptr_read(ipv6, sizeof(*ipv6), dynptr, *offset, 0))
return -1;
*offset += sizeof(*ipv6);
if (!pkt_skip_ipv6_extension_headers(dynptr, offset, ipv6, proto, is_fragment))
return -1;
return 0;
}
/* Global metrics, per CPU
*/
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(max_entries, 1);
__type(key, unsigned int);
__type(value, metrics_t);
} metrics_map SEC(".maps");
static metrics_t *get_global_metrics(void)
{
uint64_t key = 0;
return bpf_map_lookup_elem(&metrics_map, &key);
}
static ret_t accept_locally(struct __sk_buff *skb, encap_headers_t *encap)
{
const int payload_off =
sizeof(*encap) +
sizeof(struct in_addr) * encap->unigue.hop_count;
int32_t encap_overhead = payload_off - sizeof(struct ethhdr);
/* Changing the ethertype if the encapsulated packet is ipv6 */
if (encap->gue.proto_ctype == IPPROTO_IPV6)
encap->eth.h_proto = bpf_htons(ETH_P_IPV6);
if (bpf_skb_adjust_room(skb, -encap_overhead, BPF_ADJ_ROOM_MAC,
BPF_F_ADJ_ROOM_FIXED_GSO |
BPF_F_ADJ_ROOM_NO_CSUM_RESET) ||
bpf_csum_level(skb, BPF_CSUM_LEVEL_DEC))
return TC_ACT_SHOT;
return bpf_redirect(skb->ifindex, BPF_F_INGRESS);
}
static ret_t forward_with_gre(struct __sk_buff *skb, struct bpf_dynptr *dynptr,
encap_headers_t *encap, struct in_addr *next_hop,
metrics_t *metrics)
{
const int payload_off =
sizeof(*encap) +
sizeof(struct in_addr) * encap->unigue.hop_count;
int32_t encap_overhead =
payload_off - sizeof(struct ethhdr) - sizeof(struct iphdr);
int32_t delta = sizeof(struct gre_base_hdr) - encap_overhead;
__u8 encap_buffer[sizeof(encap_gre_t)] = {};
uint16_t proto = ETH_P_IP;
uint32_t mtu_len = 0;
encap_gre_t *encap_gre;
metrics->forwarded_packets_total_gre++;
/* Loop protection: the inner packet's TTL is decremented as a safeguard
* against any forwarding loop. As the only interesting field is the TTL
* hop limit for IPv6, it is easier to use bpf_skb_load_bytes/bpf_skb_store_bytes
* as they handle the split packets if needed (no need for the data to be
* in the linear section).
*/
if (encap->gue.proto_ctype == IPPROTO_IPV6) {
proto = ETH_P_IPV6;
uint8_t ttl;
int rc;
rc = bpf_skb_load_bytes(
skb, payload_off + offsetof(struct ipv6hdr, hop_limit),
&ttl, 1);
if (rc != 0) {
metrics->errors_total_malformed_encapsulation++;
return TC_ACT_SHOT;
}
if (ttl == 0) {
metrics->errors_total_redirect_loop++;
return TC_ACT_SHOT;
}
ttl--;
rc = bpf_skb_store_bytes(
skb, payload_off + offsetof(struct ipv6hdr, hop_limit),
&ttl, 1, 0);
if (rc != 0) {
metrics->errors_total_malformed_encapsulation++;
return TC_ACT_SHOT;
}
} else {
uint8_t ttl;
int rc;
rc = bpf_skb_load_bytes(
skb, payload_off + offsetof(struct iphdr, ttl), &ttl,
1);
if (rc != 0) {
metrics->errors_total_malformed_encapsulation++;
return TC_ACT_SHOT;
}
if (ttl == 0) {
metrics->errors_total_redirect_loop++;
return TC_ACT_SHOT;
}
/* IPv4 also has a checksum to patch. While the TTL is only one byte,
* this function only works for 2 and 4 bytes arguments (the result is
* the same).
*/
rc = bpf_l3_csum_replace(
skb, payload_off + offsetof(struct iphdr, check), ttl,
ttl - 1, 2);
if (rc != 0) {
metrics->errors_total_malformed_encapsulation++;
return TC_ACT_SHOT;
}
ttl--;
rc = bpf_skb_store_bytes(
skb, payload_off + offsetof(struct iphdr, ttl), &ttl, 1,
0);
if (rc != 0) {
metrics->errors_total_malformed_encapsulation++;
return TC_ACT_SHOT;
}
}
if (bpf_check_mtu(skb, skb->ifindex, &mtu_len, delta, 0)) {
metrics->errors_total_encap_mtu_violate++;
return TC_ACT_SHOT;
}
if (bpf_skb_adjust_room(skb, delta, BPF_ADJ_ROOM_NET,
BPF_F_ADJ_ROOM_FIXED_GSO |
BPF_F_ADJ_ROOM_NO_CSUM_RESET) ||
bpf_csum_level(skb, BPF_CSUM_LEVEL_INC)) {
metrics->errors_total_encap_adjust_failed++;
return TC_ACT_SHOT;
}
if (bpf_skb_pull_data(skb, sizeof(encap_gre_t))) {
metrics->errors_total_encap_buffer_too_small++;
return TC_ACT_SHOT;
}
encap_gre = bpf_dynptr_slice_rdwr(dynptr, 0, encap_buffer, sizeof(encap_buffer));
if (!encap_gre) {
metrics->errors_total_encap_buffer_too_small++;
return TC_ACT_SHOT;
}
encap_gre->ip.protocol = IPPROTO_GRE;
encap_gre->ip.daddr = next_hop->s_addr;
encap_gre->ip.saddr = ENCAPSULATION_IP;
encap_gre->ip.tot_len =
bpf_htons(bpf_ntohs(encap_gre->ip.tot_len) + delta);
encap_gre->gre.flags = 0;
encap_gre->gre.protocol = bpf_htons(proto);
pkt_ipv4_checksum((void *)&encap_gre->ip);
if (encap_gre == encap_buffer)
bpf_dynptr_write(dynptr, 0, encap_buffer, sizeof(encap_buffer), 0);
return bpf_redirect(skb->ifindex, 0);
}
static ret_t forward_to_next_hop(struct __sk_buff *skb, struct bpf_dynptr *dynptr,
encap_headers_t *encap, struct in_addr *next_hop,
metrics_t *metrics)
{
/* swap L2 addresses */
/* This assumes that packets are received from a router.
* So just swapping the MAC addresses here will make the packet go back to
* the router, which will send it to the appropriate machine.
*/
unsigned char temp[ETH_ALEN];
memcpy(temp, encap->eth.h_dest, sizeof(temp));
memcpy(encap->eth.h_dest, encap->eth.h_source,
sizeof(encap->eth.h_dest));
memcpy(encap->eth.h_source, temp, sizeof(encap->eth.h_source));
if (encap->unigue.next_hop == encap->unigue.hop_count - 1 &&
encap->unigue.last_hop_gre) {
return forward_with_gre(skb, dynptr, encap, next_hop, metrics);
}
metrics->forwarded_packets_total_gue++;
uint32_t old_saddr = encap->ip.saddr;
encap->ip.saddr = encap->ip.daddr;
encap->ip.daddr = next_hop->s_addr;
if (encap->unigue.next_hop < encap->unigue.hop_count) {
encap->unigue.next_hop++;
}
/* Remove ip->saddr, add next_hop->s_addr */
const uint64_t off = offsetof(typeof(*encap), ip.check);
int ret = bpf_l3_csum_replace(skb, off, old_saddr, next_hop->s_addr, 4);
if (ret < 0) {
return TC_ACT_SHOT;
}
return bpf_redirect(skb->ifindex, 0);
}
static ret_t skip_next_hops(__u64 *offset, int n)
{
__u32 res;
switch (n) {
case 1:
*offset += sizeof(struct in_addr);
case 0:
return CONTINUE_PROCESSING;
default:
return TC_ACT_SHOT;
}
}
/* Get the next hop from the GLB header.
*
* Sets next_hop->s_addr to 0 if there are no more hops left.
* pkt is positioned just after the variable length GLB header
* iff the call is successful.
*/
static ret_t get_next_hop(struct bpf_dynptr *dynptr, __u64 *offset, encap_headers_t *encap,
struct in_addr *next_hop)
{
if (encap->unigue.next_hop > encap->unigue.hop_count)
return TC_ACT_SHOT;
/* Skip "used" next hops. */
MAYBE_RETURN(skip_next_hops(offset, encap->unigue.next_hop));
if (encap->unigue.next_hop == encap->unigue.hop_count) {
/* No more next hops, we are at the end of the GLB header. */
next_hop->s_addr = 0;
return CONTINUE_PROCESSING;
}
if (bpf_dynptr_read(next_hop, sizeof(*next_hop), dynptr, *offset, 0))
return TC_ACT_SHOT;
*offset += sizeof(*next_hop);
/* Skip the remainig next hops (may be zero). */
return skip_next_hops(offset, encap->unigue.hop_count - encap->unigue.next_hop - 1);
}
/* Fill a bpf_sock_tuple to be used with the socket lookup functions.
* This is a kludge that let's us work around verifier limitations:
*
* fill_tuple(&t, foo, sizeof(struct iphdr), 123, 321)
*
* clang will substitue a costant for sizeof, which allows the verifier
* to track it's value. Based on this, it can figure out the constant
* return value, and calling code works while still being "generic" to
* IPv4 and IPv6.
*/
static uint64_t fill_tuple(struct bpf_sock_tuple *tuple, void *iph,
uint64_t iphlen, uint16_t sport, uint16_t dport)
{
switch (iphlen) {
case sizeof(struct iphdr): {
struct iphdr *ipv4 = (struct iphdr *)iph;
tuple->ipv4.daddr = ipv4->daddr;
tuple->ipv4.saddr = ipv4->saddr;
tuple->ipv4.sport = sport;
tuple->ipv4.dport = dport;
return sizeof(tuple->ipv4);
}
case sizeof(struct ipv6hdr): {
struct ipv6hdr *ipv6 = (struct ipv6hdr *)iph;
memcpy(&tuple->ipv6.daddr, &ipv6->daddr,
sizeof(tuple->ipv6.daddr));
memcpy(&tuple->ipv6.saddr, &ipv6->saddr,
sizeof(tuple->ipv6.saddr));
tuple->ipv6.sport = sport;
tuple->ipv6.dport = dport;
return sizeof(tuple->ipv6);
}
default:
return 0;
}
}
static verdict_t classify_tcp(struct __sk_buff *skb, struct bpf_sock_tuple *tuple,
uint64_t tuplen, void *iph, struct tcphdr *tcp)
{
struct bpf_sock *sk =
bpf_skc_lookup_tcp(skb, tuple, tuplen, BPF_F_CURRENT_NETNS, 0);
if (sk == NULL)
return UNKNOWN;
if (sk->state != BPF_TCP_LISTEN) {
bpf_sk_release(sk);
return ESTABLISHED;
}
if (iph != NULL && tcp != NULL) {
/* Kludge: we've run out of arguments, but need the length of the ip header. */
uint64_t iphlen = sizeof(struct iphdr);
if (tuplen == sizeof(tuple->ipv6))
iphlen = sizeof(struct ipv6hdr);
if (bpf_tcp_check_syncookie(sk, iph, iphlen, tcp,
sizeof(*tcp)) == 0) {
bpf_sk_release(sk);
return SYN_COOKIE;
}
}
bpf_sk_release(sk);
return UNKNOWN;
}
static verdict_t classify_udp(struct __sk_buff *skb, struct bpf_sock_tuple *tuple, uint64_t tuplen)
{
struct bpf_sock *sk =
bpf_sk_lookup_udp(skb, tuple, tuplen, BPF_F_CURRENT_NETNS, 0);
if (sk == NULL)
return UNKNOWN;
if (sk->state == BPF_TCP_ESTABLISHED) {
bpf_sk_release(sk);
return ESTABLISHED;
}
bpf_sk_release(sk);
return UNKNOWN;
}
static verdict_t classify_icmp(struct __sk_buff *skb, uint8_t proto, struct bpf_sock_tuple *tuple,
uint64_t tuplen, metrics_t *metrics)
{
switch (proto) {
case IPPROTO_TCP:
return classify_tcp(skb, tuple, tuplen, NULL, NULL);
case IPPROTO_UDP:
return classify_udp(skb, tuple, tuplen);
default:
metrics->errors_total_malformed_icmp++;
return INVALID;
}
}
static verdict_t process_icmpv4(struct __sk_buff *skb, struct bpf_dynptr *dynptr, __u64 *offset,
metrics_t *metrics)
{
struct icmphdr icmp;
struct iphdr ipv4;
if (bpf_dynptr_read(&icmp, sizeof(icmp), dynptr, *offset, 0)) {
metrics->errors_total_malformed_icmp++;
return INVALID;
}
*offset += sizeof(icmp);
/* We should never receive encapsulated echo replies. */
if (icmp.type == ICMP_ECHOREPLY) {
metrics->errors_total_icmp_echo_replies++;
return INVALID;
}
if (icmp.type == ICMP_ECHO)
return ECHO_REQUEST;
if (icmp.type != ICMP_DEST_UNREACH || icmp.code != ICMP_FRAG_NEEDED) {
metrics->errors_total_unwanted_icmp++;
return INVALID;
}
if (pkt_parse_ipv4(dynptr, offset, &ipv4)) {
metrics->errors_total_malformed_icmp_pkt_too_big++;
return INVALID;
}
/* The source address in the outer IP header is from the entity that
* originated the ICMP message. Use the original IP header to restore
* the correct flow tuple.
*/
struct bpf_sock_tuple tuple;
tuple.ipv4.saddr = ipv4.daddr;
tuple.ipv4.daddr = ipv4.saddr;
if (!pkt_parse_icmp_l4_ports(dynptr, offset, (flow_ports_t *)&tuple.ipv4.sport)) {
metrics->errors_total_malformed_icmp_pkt_too_big++;
return INVALID;
}
return classify_icmp(skb, ipv4.protocol, &tuple,
sizeof(tuple.ipv4), metrics);
}
static verdict_t process_icmpv6(struct bpf_dynptr *dynptr, __u64 *offset, struct __sk_buff *skb,
metrics_t *metrics)
{
struct bpf_sock_tuple tuple;
struct ipv6hdr ipv6;
struct icmp6hdr icmp6;
bool is_fragment;
uint8_t l4_proto;
if (bpf_dynptr_read(&icmp6, sizeof(icmp6), dynptr, *offset, 0)) {
metrics->errors_total_malformed_icmp++;
return INVALID;
}
/* We should never receive encapsulated echo replies. */
if (icmp6.icmp6_type == ICMPV6_ECHO_REPLY) {
metrics->errors_total_icmp_echo_replies++;
return INVALID;
}
if (icmp6.icmp6_type == ICMPV6_ECHO_REQUEST) {
return ECHO_REQUEST;
}
if (icmp6.icmp6_type != ICMPV6_PKT_TOOBIG) {
metrics->errors_total_unwanted_icmp++;
return INVALID;
}
if (pkt_parse_ipv6(dynptr, offset, &ipv6, &l4_proto, &is_fragment)) {
metrics->errors_total_malformed_icmp_pkt_too_big++;
return INVALID;
}
if (is_fragment) {
metrics->errors_total_fragmented_ip++;
return INVALID;
}
/* Swap source and dest addresses. */
memcpy(&tuple.ipv6.saddr, &ipv6.daddr, sizeof(tuple.ipv6.saddr));
memcpy(&tuple.ipv6.daddr, &ipv6.saddr, sizeof(tuple.ipv6.daddr));
if (!pkt_parse_icmp_l4_ports(dynptr, offset, (flow_ports_t *)&tuple.ipv6.sport)) {
metrics->errors_total_malformed_icmp_pkt_too_big++;
return INVALID;
}
return classify_icmp(skb, l4_proto, &tuple, sizeof(tuple.ipv6),
metrics);
}
static verdict_t process_tcp(struct bpf_dynptr *dynptr, __u64 *offset, struct __sk_buff *skb,
struct iphdr_info *info, metrics_t *metrics)
{
struct bpf_sock_tuple tuple;
struct tcphdr tcp;
uint64_t tuplen;
metrics->l4_protocol_packets_total_tcp++;
if (bpf_dynptr_read(&tcp, sizeof(tcp), dynptr, *offset, 0)) {
metrics->errors_total_malformed_tcp++;
return INVALID;
}
*offset += sizeof(tcp);
if (tcp.syn)
return SYN;
tuplen = fill_tuple(&tuple, info->hdr, info->len, tcp.source, tcp.dest);
return classify_tcp(skb, &tuple, tuplen, info->hdr, &tcp);
}
static verdict_t process_udp(struct bpf_dynptr *dynptr, __u64 *offset, struct __sk_buff *skb,
struct iphdr_info *info, metrics_t *metrics)
{
struct bpf_sock_tuple tuple;
struct udphdr udph;
uint64_t tuplen;
metrics->l4_protocol_packets_total_udp++;
if (bpf_dynptr_read(&udph, sizeof(udph), dynptr, *offset, 0)) {
metrics->errors_total_malformed_udp++;
return INVALID;
}
*offset += sizeof(udph);
tuplen = fill_tuple(&tuple, info->hdr, info->len, udph.source, udph.dest);
return classify_udp(skb, &tuple, tuplen);
}
static verdict_t process_ipv4(struct __sk_buff *skb, struct bpf_dynptr *dynptr,
__u64 *offset, metrics_t *metrics)
{
struct iphdr ipv4;
struct iphdr_info info = {
.hdr = &ipv4,
.len = sizeof(ipv4),
};
metrics->l3_protocol_packets_total_ipv4++;
if (pkt_parse_ipv4(dynptr, offset, &ipv4)) {
metrics->errors_total_malformed_ip++;
return INVALID;
}
if (ipv4.version != 4) {
metrics->errors_total_malformed_ip++;
return INVALID;
}
if (ipv4_is_fragment(&ipv4)) {
metrics->errors_total_fragmented_ip++;
return INVALID;
}
switch (ipv4.protocol) {
case IPPROTO_ICMP:
return process_icmpv4(skb, dynptr, offset, metrics);
case IPPROTO_TCP:
return process_tcp(dynptr, offset, skb, &info, metrics);
case IPPROTO_UDP:
return process_udp(dynptr, offset, skb, &info, metrics);
default:
metrics->errors_total_unknown_l4_proto++;
return INVALID;
}
}
static verdict_t process_ipv6(struct __sk_buff *skb, struct bpf_dynptr *dynptr,
__u64 *offset, metrics_t *metrics)
{
struct ipv6hdr ipv6;
struct iphdr_info info = {
.hdr = &ipv6,
.len = sizeof(ipv6),
};
uint8_t l4_proto;
bool is_fragment;
metrics->l3_protocol_packets_total_ipv6++;
if (pkt_parse_ipv6(dynptr, offset, &ipv6, &l4_proto, &is_fragment)) {
metrics->errors_total_malformed_ip++;
return INVALID;
}
if (ipv6.version != 6) {
metrics->errors_total_malformed_ip++;
return INVALID;
}
if (is_fragment) {
metrics->errors_total_fragmented_ip++;
return INVALID;
}
switch (l4_proto) {
case IPPROTO_ICMPV6:
return process_icmpv6(dynptr, offset, skb, metrics);
case IPPROTO_TCP:
return process_tcp(dynptr, offset, skb, &info, metrics);
case IPPROTO_UDP:
return process_udp(dynptr, offset, skb, &info, metrics);
default:
metrics->errors_total_unknown_l4_proto++;
return INVALID;
}
}
SEC("tc")
int cls_redirect(struct __sk_buff *skb)
{
__u8 encap_buffer[sizeof(encap_headers_t)] = {};
struct bpf_dynptr dynptr;
struct in_addr next_hop;
/* Tracks offset of the dynptr. This will be unnecessary once
* bpf_dynptr_advance() is available.
*/
__u64 off = 0;
ret_t ret;
bpf_dynptr_from_skb(skb, 0, &dynptr);
metrics_t *metrics = get_global_metrics();
if (metrics == NULL)
return TC_ACT_SHOT;
metrics->processed_packets_total++;
/* Pass bogus packets as long as we're not sure they're
* destined for us.
*/
if (skb->protocol != bpf_htons(ETH_P_IP))
return TC_ACT_OK;
encap_headers_t *encap;
/* Make sure that all encapsulation headers are available in
* the linear portion of the skb. This makes it easy to manipulate them.
*/
if (bpf_skb_pull_data(skb, sizeof(*encap)))
return TC_ACT_OK;
encap = bpf_dynptr_slice_rdwr(&dynptr, 0, encap_buffer, sizeof(encap_buffer));
if (!encap)
return TC_ACT_OK;
off += sizeof(*encap);
if (encap->ip.ihl != 5)
/* We never have any options. */
return TC_ACT_OK;
if (encap->ip.daddr != ENCAPSULATION_IP ||
encap->ip.protocol != IPPROTO_UDP)
return TC_ACT_OK;
/* TODO Check UDP length? */
if (encap->udp.dest != ENCAPSULATION_PORT)
return TC_ACT_OK;
/* We now know that the packet is destined to us, we can
* drop bogus ones.
*/
if (ipv4_is_fragment((void *)&encap->ip)) {
metrics->errors_total_fragmented_ip++;
return TC_ACT_SHOT;
}
if (encap->gue.variant != 0) {
metrics->errors_total_malformed_encapsulation++;
return TC_ACT_SHOT;
}
if (encap->gue.control != 0) {
metrics->errors_total_malformed_encapsulation++;
return TC_ACT_SHOT;
}
if (encap->gue.flags != 0) {
metrics->errors_total_malformed_encapsulation++;
return TC_ACT_SHOT;
}
if (encap->gue.hlen !=
sizeof(encap->unigue) / 4 + encap->unigue.hop_count) {
metrics->errors_total_malformed_encapsulation++;
return TC_ACT_SHOT;
}
if (encap->unigue.version != 0) {
metrics->errors_total_malformed_encapsulation++;
return TC_ACT_SHOT;
}
if (encap->unigue.reserved != 0)
return TC_ACT_SHOT;
MAYBE_RETURN(get_next_hop(&dynptr, &off, encap, &next_hop));
if (next_hop.s_addr == 0) {
metrics->accepted_packets_total_last_hop++;
return accept_locally(skb, encap);
}
verdict_t verdict;
switch (encap->gue.proto_ctype) {
case IPPROTO_IPIP:
verdict = process_ipv4(skb, &dynptr, &off, metrics);
break;
case IPPROTO_IPV6:
verdict = process_ipv6(skb, &dynptr, &off, metrics);
break;
default:
metrics->errors_total_unknown_l3_proto++;
return TC_ACT_SHOT;
}
switch (verdict) {
case INVALID:
/* metrics have already been bumped */
return TC_ACT_SHOT;
case UNKNOWN:
return forward_to_next_hop(skb, &dynptr, encap, &next_hop, metrics);
case ECHO_REQUEST:
metrics->accepted_packets_total_icmp_echo_request++;
break;
case SYN:
if (encap->unigue.forward_syn) {
return forward_to_next_hop(skb, &dynptr, encap, &next_hop,
metrics);
}
metrics->accepted_packets_total_syn++;
break;
case SYN_COOKIE:
metrics->accepted_packets_total_syn_cookies++;
break;
case ESTABLISHED:
metrics->accepted_packets_total_established++;
break;
}
ret = accept_locally(skb, encap);
if (encap == encap_buffer)
bpf_dynptr_write(&dynptr, 0, encap_buffer, sizeof(encap_buffer), 0);
return ret;
}

View File

@ -0,0 +1,487 @@
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2017 Facebook
#include <stddef.h>
#include <stdbool.h>
#include <string.h>
#include <linux/pkt_cls.h>
#include <linux/bpf.h>
#include <linux/in.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <bpf/bpf_helpers.h>
#include "test_iptunnel_common.h"
#include <bpf/bpf_endian.h>
#include "bpf_kfuncs.h"
static __always_inline __u32 rol32(__u32 word, unsigned int shift)
{
return (word << shift) | (word >> ((-shift) & 31));
}
/* copy paste of jhash from kernel sources to make sure llvm
* can compile it into valid sequence of bpf instructions
*/
#define __jhash_mix(a, b, c) \
{ \
a -= c; a ^= rol32(c, 4); c += b; \
b -= a; b ^= rol32(a, 6); a += c; \
c -= b; c ^= rol32(b, 8); b += a; \
a -= c; a ^= rol32(c, 16); c += b; \
b -= a; b ^= rol32(a, 19); a += c; \
c -= b; c ^= rol32(b, 4); b += a; \
}
#define __jhash_final(a, b, c) \
{ \
c ^= b; c -= rol32(b, 14); \
a ^= c; a -= rol32(c, 11); \
b ^= a; b -= rol32(a, 25); \
c ^= b; c -= rol32(b, 16); \
a ^= c; a -= rol32(c, 4); \
b ^= a; b -= rol32(a, 14); \
c ^= b; c -= rol32(b, 24); \
}
#define JHASH_INITVAL 0xdeadbeef
typedef unsigned int u32;
static __noinline u32 jhash(const void *key, u32 length, u32 initval)
{
u32 a, b, c;
const unsigned char *k = key;
a = b = c = JHASH_INITVAL + length + initval;
while (length > 12) {
a += *(u32 *)(k);
b += *(u32 *)(k + 4);
c += *(u32 *)(k + 8);
__jhash_mix(a, b, c);
length -= 12;
k += 12;
}
switch (length) {
case 12: c += (u32)k[11]<<24;
case 11: c += (u32)k[10]<<16;
case 10: c += (u32)k[9]<<8;
case 9: c += k[8];
case 8: b += (u32)k[7]<<24;
case 7: b += (u32)k[6]<<16;
case 6: b += (u32)k[5]<<8;
case 5: b += k[4];
case 4: a += (u32)k[3]<<24;
case 3: a += (u32)k[2]<<16;
case 2: a += (u32)k[1]<<8;
case 1: a += k[0];
__jhash_final(a, b, c);
case 0: /* Nothing left to add */
break;
}
return c;
}
static __noinline u32 __jhash_nwords(u32 a, u32 b, u32 c, u32 initval)
{
a += initval;
b += initval;
c += initval;
__jhash_final(a, b, c);
return c;
}
static __noinline u32 jhash_2words(u32 a, u32 b, u32 initval)
{
return __jhash_nwords(a, b, 0, initval + JHASH_INITVAL + (2 << 2));
}
#define PCKT_FRAGMENTED 65343
#define IPV4_HDR_LEN_NO_OPT 20
#define IPV4_PLUS_ICMP_HDR 28
#define IPV6_PLUS_ICMP_HDR 48
#define RING_SIZE 2
#define MAX_VIPS 12
#define MAX_REALS 5
#define CTL_MAP_SIZE 16
#define CH_RINGS_SIZE (MAX_VIPS * RING_SIZE)
#define F_IPV6 (1 << 0)
#define F_HASH_NO_SRC_PORT (1 << 0)
#define F_ICMP (1 << 0)
#define F_SYN_SET (1 << 1)
struct packet_description {
union {
__be32 src;
__be32 srcv6[4];
};
union {
__be32 dst;
__be32 dstv6[4];
};
union {
__u32 ports;
__u16 port16[2];
};
__u8 proto;
__u8 flags;
};
struct ctl_value {
union {
__u64 value;
__u32 ifindex;
__u8 mac[6];
};
};
struct vip_meta {
__u32 flags;
__u32 vip_num;
};
struct real_definition {
union {
__be32 dst;
__be32 dstv6[4];
};
__u8 flags;
};
struct vip_stats {
__u64 bytes;
__u64 pkts;
};
struct eth_hdr {
unsigned char eth_dest[ETH_ALEN];
unsigned char eth_source[ETH_ALEN];
unsigned short eth_proto;
};
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, MAX_VIPS);
__type(key, struct vip);
__type(value, struct vip_meta);
} vip_map SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, CH_RINGS_SIZE);
__type(key, __u32);
__type(value, __u32);
} ch_rings SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, MAX_REALS);
__type(key, __u32);
__type(value, struct real_definition);
} reals SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(max_entries, MAX_VIPS);
__type(key, __u32);
__type(value, struct vip_stats);
} stats SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, CTL_MAP_SIZE);
__type(key, __u32);
__type(value, struct ctl_value);
} ctl_array SEC(".maps");
static __noinline __u32 get_packet_hash(struct packet_description *pckt, bool ipv6)
{
if (ipv6)
return jhash_2words(jhash(pckt->srcv6, 16, MAX_VIPS),
pckt->ports, CH_RINGS_SIZE);
else
return jhash_2words(pckt->src, pckt->ports, CH_RINGS_SIZE);
}
static __noinline bool get_packet_dst(struct real_definition **real,
struct packet_description *pckt,
struct vip_meta *vip_info,
bool is_ipv6)
{
__u32 hash = get_packet_hash(pckt, is_ipv6);
__u32 key = RING_SIZE * vip_info->vip_num + hash % RING_SIZE;
__u32 *real_pos;
if (hash != 0x358459b7 /* jhash of ipv4 packet */ &&
hash != 0x2f4bc6bb /* jhash of ipv6 packet */)
return false;
real_pos = bpf_map_lookup_elem(&ch_rings, &key);
if (!real_pos)
return false;
key = *real_pos;
*real = bpf_map_lookup_elem(&reals, &key);
if (!(*real))
return false;
return true;
}
static __noinline int parse_icmpv6(struct bpf_dynptr *skb_ptr, __u64 off,
struct packet_description *pckt)
{
__u8 buffer[sizeof(struct ipv6hdr)] = {};
struct icmp6hdr *icmp_hdr;
struct ipv6hdr *ip6h;
icmp_hdr = bpf_dynptr_slice(skb_ptr, off, buffer, sizeof(buffer));
if (!icmp_hdr)
return TC_ACT_SHOT;
if (icmp_hdr->icmp6_type != ICMPV6_PKT_TOOBIG)
return TC_ACT_OK;
off += sizeof(struct icmp6hdr);
ip6h = bpf_dynptr_slice(skb_ptr, off, buffer, sizeof(buffer));
if (!ip6h)
return TC_ACT_SHOT;
pckt->proto = ip6h->nexthdr;
pckt->flags |= F_ICMP;
memcpy(pckt->srcv6, ip6h->daddr.s6_addr32, 16);
memcpy(pckt->dstv6, ip6h->saddr.s6_addr32, 16);
return TC_ACT_UNSPEC;
}
static __noinline int parse_icmp(struct bpf_dynptr *skb_ptr, __u64 off,
struct packet_description *pckt)
{
__u8 buffer_icmp[sizeof(struct iphdr)] = {};
__u8 buffer_ip[sizeof(struct iphdr)] = {};
struct icmphdr *icmp_hdr;
struct iphdr *iph;
icmp_hdr = bpf_dynptr_slice(skb_ptr, off, buffer_icmp, sizeof(buffer_icmp));
if (!icmp_hdr)
return TC_ACT_SHOT;
if (icmp_hdr->type != ICMP_DEST_UNREACH ||
icmp_hdr->code != ICMP_FRAG_NEEDED)
return TC_ACT_OK;
off += sizeof(struct icmphdr);
iph = bpf_dynptr_slice(skb_ptr, off, buffer_ip, sizeof(buffer_ip));
if (!iph || iph->ihl != 5)
return TC_ACT_SHOT;
pckt->proto = iph->protocol;
pckt->flags |= F_ICMP;
pckt->src = iph->daddr;
pckt->dst = iph->saddr;
return TC_ACT_UNSPEC;
}
static __noinline bool parse_udp(struct bpf_dynptr *skb_ptr, __u64 off,
struct packet_description *pckt)
{
__u8 buffer[sizeof(struct udphdr)] = {};
struct udphdr *udp;
udp = bpf_dynptr_slice(skb_ptr, off, buffer, sizeof(buffer));
if (!udp)
return false;
if (!(pckt->flags & F_ICMP)) {
pckt->port16[0] = udp->source;
pckt->port16[1] = udp->dest;
} else {
pckt->port16[0] = udp->dest;
pckt->port16[1] = udp->source;
}
return true;
}
static __noinline bool parse_tcp(struct bpf_dynptr *skb_ptr, __u64 off,
struct packet_description *pckt)
{
__u8 buffer[sizeof(struct tcphdr)] = {};
struct tcphdr *tcp;
tcp = bpf_dynptr_slice(skb_ptr, off, buffer, sizeof(buffer));
if (!tcp)
return false;
if (tcp->syn)
pckt->flags |= F_SYN_SET;
if (!(pckt->flags & F_ICMP)) {
pckt->port16[0] = tcp->source;
pckt->port16[1] = tcp->dest;
} else {
pckt->port16[0] = tcp->dest;
pckt->port16[1] = tcp->source;
}
return true;
}
static __noinline int process_packet(struct bpf_dynptr *skb_ptr,
struct eth_hdr *eth, __u64 off,
bool is_ipv6, struct __sk_buff *skb)
{
struct packet_description pckt = {};
struct bpf_tunnel_key tkey = {};
struct vip_stats *data_stats;
struct real_definition *dst;
struct vip_meta *vip_info;
struct ctl_value *cval;
__u32 v4_intf_pos = 1;
__u32 v6_intf_pos = 2;
struct ipv6hdr *ip6h;
struct vip vip = {};
struct iphdr *iph;
int tun_flag = 0;
__u16 pkt_bytes;
__u64 iph_len;
__u32 ifindex;
__u8 protocol;
__u32 vip_num;
int action;
tkey.tunnel_ttl = 64;
if (is_ipv6) {
__u8 buffer[sizeof(struct ipv6hdr)] = {};
ip6h = bpf_dynptr_slice(skb_ptr, off, buffer, sizeof(buffer));
if (!ip6h)
return TC_ACT_SHOT;
iph_len = sizeof(struct ipv6hdr);
protocol = ip6h->nexthdr;
pckt.proto = protocol;
pkt_bytes = bpf_ntohs(ip6h->payload_len);
off += iph_len;
if (protocol == IPPROTO_FRAGMENT) {
return TC_ACT_SHOT;
} else if (protocol == IPPROTO_ICMPV6) {
action = parse_icmpv6(skb_ptr, off, &pckt);
if (action >= 0)
return action;
off += IPV6_PLUS_ICMP_HDR;
} else {
memcpy(pckt.srcv6, ip6h->saddr.s6_addr32, 16);
memcpy(pckt.dstv6, ip6h->daddr.s6_addr32, 16);
}
} else {
__u8 buffer[sizeof(struct iphdr)] = {};
iph = bpf_dynptr_slice(skb_ptr, off, buffer, sizeof(buffer));
if (!iph || iph->ihl != 5)
return TC_ACT_SHOT;
protocol = iph->protocol;
pckt.proto = protocol;
pkt_bytes = bpf_ntohs(iph->tot_len);
off += IPV4_HDR_LEN_NO_OPT;
if (iph->frag_off & PCKT_FRAGMENTED)
return TC_ACT_SHOT;
if (protocol == IPPROTO_ICMP) {
action = parse_icmp(skb_ptr, off, &pckt);
if (action >= 0)
return action;
off += IPV4_PLUS_ICMP_HDR;
} else {
pckt.src = iph->saddr;
pckt.dst = iph->daddr;
}
}
protocol = pckt.proto;
if (protocol == IPPROTO_TCP) {
if (!parse_tcp(skb_ptr, off, &pckt))
return TC_ACT_SHOT;
} else if (protocol == IPPROTO_UDP) {
if (!parse_udp(skb_ptr, off, &pckt))
return TC_ACT_SHOT;
} else {
return TC_ACT_SHOT;
}
if (is_ipv6)
memcpy(vip.daddr.v6, pckt.dstv6, 16);
else
vip.daddr.v4 = pckt.dst;
vip.dport = pckt.port16[1];
vip.protocol = pckt.proto;
vip_info = bpf_map_lookup_elem(&vip_map, &vip);
if (!vip_info) {
vip.dport = 0;
vip_info = bpf_map_lookup_elem(&vip_map, &vip);
if (!vip_info)
return TC_ACT_SHOT;
pckt.port16[1] = 0;
}
if (vip_info->flags & F_HASH_NO_SRC_PORT)
pckt.port16[0] = 0;
if (!get_packet_dst(&dst, &pckt, vip_info, is_ipv6))
return TC_ACT_SHOT;
if (dst->flags & F_IPV6) {
cval = bpf_map_lookup_elem(&ctl_array, &v6_intf_pos);
if (!cval)
return TC_ACT_SHOT;
ifindex = cval->ifindex;
memcpy(tkey.remote_ipv6, dst->dstv6, 16);
tun_flag = BPF_F_TUNINFO_IPV6;
} else {
cval = bpf_map_lookup_elem(&ctl_array, &v4_intf_pos);
if (!cval)
return TC_ACT_SHOT;
ifindex = cval->ifindex;
tkey.remote_ipv4 = dst->dst;
}
vip_num = vip_info->vip_num;
data_stats = bpf_map_lookup_elem(&stats, &vip_num);
if (!data_stats)
return TC_ACT_SHOT;
data_stats->pkts++;
data_stats->bytes += pkt_bytes;
bpf_skb_set_tunnel_key(skb, &tkey, sizeof(tkey), tun_flag);
*(u32 *)eth->eth_dest = tkey.remote_ipv4;
return bpf_redirect(ifindex, 0);
}
SEC("tc")
int balancer_ingress(struct __sk_buff *ctx)
{
__u8 buffer[sizeof(struct eth_hdr)] = {};
struct bpf_dynptr ptr;
struct eth_hdr *eth;
__u32 eth_proto;
__u32 nh_off;
int err;
nh_off = sizeof(struct eth_hdr);
bpf_dynptr_from_skb(ctx, 0, &ptr);
eth = bpf_dynptr_slice_rdwr(&ptr, 0, buffer, sizeof(buffer));
if (!eth)
return TC_ACT_SHOT;
eth_proto = eth->eth_proto;
if (eth_proto == bpf_htons(ETH_P_IP))
err = process_packet(&ptr, eth, nh_off, false, ctx);
else if (eth_proto == bpf_htons(ETH_P_IPV6))
err = process_packet(&ptr, eth, nh_off, true, ctx);
else
return TC_ACT_SHOT;
if (eth == buffer)
bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
return err;
}
char _license[] SEC("license") = "GPL";

View File

@ -0,0 +1,119 @@
// SPDX-License-Identifier: GPL-2.0
/* This parsing logic is taken from the open source library katran, a layer 4
* load balancer.
*
* This code logic using dynptrs can be found in test_parse_tcp_hdr_opt_dynptr.c
*
* https://github.com/facebookincubator/katran/blob/main/katran/lib/bpf/pckt_parsing.h
*/
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include <linux/tcp.h>
#include <stdbool.h>
#include <linux/ipv6.h>
#include <linux/if_ether.h>
#include "test_tcp_hdr_options.h"
char _license[] SEC("license") = "GPL";
/* Kind number used for experiments */
const __u32 tcp_hdr_opt_kind_tpr = 0xFD;
/* Length of the tcp header option */
const __u32 tcp_hdr_opt_len_tpr = 6;
/* maximum number of header options to check to lookup server_id */
const __u32 tcp_hdr_opt_max_opt_checks = 15;
__u32 server_id;
struct hdr_opt_state {
__u32 server_id;
__u8 byte_offset;
__u8 hdr_bytes_remaining;
};
static int parse_hdr_opt(const struct xdp_md *xdp, struct hdr_opt_state *state)
{
const void *data = (void *)(long)xdp->data;
const void *data_end = (void *)(long)xdp->data_end;
__u8 *tcp_opt, kind, hdr_len;
tcp_opt = (__u8 *)(data + state->byte_offset);
if (tcp_opt + 1 > data_end)
return -1;
kind = tcp_opt[0];
if (kind == TCPOPT_EOL)
return -1;
if (kind == TCPOPT_NOP) {
state->hdr_bytes_remaining--;
state->byte_offset++;
return 0;
}
if (state->hdr_bytes_remaining < 2 ||
tcp_opt + sizeof(__u8) + sizeof(__u8) > data_end)
return -1;
hdr_len = tcp_opt[1];
if (hdr_len > state->hdr_bytes_remaining)
return -1;
if (kind == tcp_hdr_opt_kind_tpr) {
if (hdr_len != tcp_hdr_opt_len_tpr)
return -1;
if (tcp_opt + tcp_hdr_opt_len_tpr > data_end)
return -1;
state->server_id = *(__u32 *)&tcp_opt[2];
return 1;
}
state->hdr_bytes_remaining -= hdr_len;
state->byte_offset += hdr_len;
return 0;
}
SEC("xdp")
int xdp_ingress_v6(struct xdp_md *xdp)
{
const void *data = (void *)(long)xdp->data;
const void *data_end = (void *)(long)xdp->data_end;
struct hdr_opt_state opt_state = {};
__u8 tcp_hdr_opt_len = 0;
struct tcphdr *tcp_hdr;
__u64 tcp_offset = 0;
__u32 off;
int err;
tcp_offset = sizeof(struct ethhdr) + sizeof(struct ipv6hdr);
tcp_hdr = (struct tcphdr *)(data + tcp_offset);
if (tcp_hdr + 1 > data_end)
return XDP_DROP;
tcp_hdr_opt_len = (tcp_hdr->doff * 4) - sizeof(struct tcphdr);
if (tcp_hdr_opt_len < tcp_hdr_opt_len_tpr)
return XDP_DROP;
opt_state.hdr_bytes_remaining = tcp_hdr_opt_len;
opt_state.byte_offset = sizeof(struct tcphdr) + tcp_offset;
/* max number of bytes of options in tcp header is 40 bytes */
for (int i = 0; i < tcp_hdr_opt_max_opt_checks; i++) {
err = parse_hdr_opt(xdp, &opt_state);
if (err || !opt_state.hdr_bytes_remaining)
break;
}
if (!opt_state.server_id)
return XDP_DROP;
server_id = opt_state.server_id;
return XDP_PASS;
}

View File

@ -0,0 +1,114 @@
// SPDX-License-Identifier: GPL-2.0
/* This logic is lifted from a real-world use case of packet parsing, used in
* the open source library katran, a layer 4 load balancer.
*
* This test demonstrates how to parse packet contents using dynptrs. The
* original code (parsing without dynptrs) can be found in test_parse_tcp_hdr_opt.c
*/
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include <linux/tcp.h>
#include <stdbool.h>
#include <linux/ipv6.h>
#include <linux/if_ether.h>
#include "test_tcp_hdr_options.h"
#include "bpf_kfuncs.h"
char _license[] SEC("license") = "GPL";
/* Kind number used for experiments */
const __u32 tcp_hdr_opt_kind_tpr = 0xFD;
/* Length of the tcp header option */
const __u32 tcp_hdr_opt_len_tpr = 6;
/* maximum number of header options to check to lookup server_id */
const __u32 tcp_hdr_opt_max_opt_checks = 15;
__u32 server_id;
static int parse_hdr_opt(struct bpf_dynptr *ptr, __u32 *off, __u8 *hdr_bytes_remaining,
__u32 *server_id)
{
__u8 *tcp_opt, kind, hdr_len;
__u8 buffer[sizeof(kind) + sizeof(hdr_len) + sizeof(*server_id)];
__u8 *data;
__builtin_memset(buffer, 0, sizeof(buffer));
data = bpf_dynptr_slice(ptr, *off, buffer, sizeof(buffer));
if (!data)
return -1;
kind = data[0];
if (kind == TCPOPT_EOL)
return -1;
if (kind == TCPOPT_NOP) {
*off += 1;
*hdr_bytes_remaining -= 1;
return 0;
}
if (*hdr_bytes_remaining < 2)
return -1;
hdr_len = data[1];
if (hdr_len > *hdr_bytes_remaining)
return -1;
if (kind == tcp_hdr_opt_kind_tpr) {
if (hdr_len != tcp_hdr_opt_len_tpr)
return -1;
__builtin_memcpy(server_id, (__u32 *)(data + 2), sizeof(*server_id));
return 1;
}
*off += hdr_len;
*hdr_bytes_remaining -= hdr_len;
return 0;
}
SEC("xdp")
int xdp_ingress_v6(struct xdp_md *xdp)
{
__u8 buffer[sizeof(struct tcphdr)] = {};
__u8 hdr_bytes_remaining;
struct tcphdr *tcp_hdr;
__u8 tcp_hdr_opt_len;
int err = 0;
__u32 off;
struct bpf_dynptr ptr;
bpf_dynptr_from_xdp(xdp, 0, &ptr);
off = sizeof(struct ethhdr) + sizeof(struct ipv6hdr);
tcp_hdr = bpf_dynptr_slice(&ptr, off, buffer, sizeof(buffer));
if (!tcp_hdr)
return XDP_DROP;
tcp_hdr_opt_len = (tcp_hdr->doff * 4) - sizeof(struct tcphdr);
if (tcp_hdr_opt_len < tcp_hdr_opt_len_tpr)
return XDP_DROP;
hdr_bytes_remaining = tcp_hdr_opt_len;
off += sizeof(struct tcphdr);
/* max number of bytes of options in tcp header is 40 bytes */
for (int i = 0; i < tcp_hdr_opt_max_opt_checks; i++) {
err = parse_hdr_opt(&ptr, &off, &hdr_bytes_remaining, &server_id);
if (err || !hdr_bytes_remaining)
break;
}
if (!server_id)
return XDP_DROP;
return XDP_PASS;
}

View File

@ -0,0 +1,257 @@
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2022 Meta */
#include <stddef.h>
#include <string.h>
#include <linux/bpf.h>
#include <linux/if_ether.h>
#include <linux/if_packet.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/in.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <linux/pkt_cls.h>
#include <sys/socket.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_endian.h>
#include "test_iptunnel_common.h"
#include "bpf_kfuncs.h"
const size_t tcphdr_sz = sizeof(struct tcphdr);
const size_t udphdr_sz = sizeof(struct udphdr);
const size_t ethhdr_sz = sizeof(struct ethhdr);
const size_t iphdr_sz = sizeof(struct iphdr);
const size_t ipv6hdr_sz = sizeof(struct ipv6hdr);
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(max_entries, 256);
__type(key, __u32);
__type(value, __u64);
} rxcnt SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, MAX_IPTNL_ENTRIES);
__type(key, struct vip);
__type(value, struct iptnl_info);
} vip2tnl SEC(".maps");
static __always_inline void count_tx(__u32 protocol)
{
__u64 *rxcnt_count;
rxcnt_count = bpf_map_lookup_elem(&rxcnt, &protocol);
if (rxcnt_count)
*rxcnt_count += 1;
}
static __always_inline int get_dport(void *trans_data, __u8 protocol)
{
struct tcphdr *th;
struct udphdr *uh;
switch (protocol) {
case IPPROTO_TCP:
th = (struct tcphdr *)trans_data;
return th->dest;
case IPPROTO_UDP:
uh = (struct udphdr *)trans_data;
return uh->dest;
default:
return 0;
}
}
static __always_inline void set_ethhdr(struct ethhdr *new_eth,
const struct ethhdr *old_eth,
const struct iptnl_info *tnl,
__be16 h_proto)
{
memcpy(new_eth->h_source, old_eth->h_dest, sizeof(new_eth->h_source));
memcpy(new_eth->h_dest, tnl->dmac, sizeof(new_eth->h_dest));
new_eth->h_proto = h_proto;
}
static __always_inline int handle_ipv4(struct xdp_md *xdp, struct bpf_dynptr *xdp_ptr)
{
__u8 eth_buffer[ethhdr_sz + iphdr_sz + ethhdr_sz];
__u8 iph_buffer_tcp[iphdr_sz + tcphdr_sz];
__u8 iph_buffer_udp[iphdr_sz + udphdr_sz];
struct bpf_dynptr new_xdp_ptr;
struct iptnl_info *tnl;
struct ethhdr *new_eth;
struct ethhdr *old_eth;
__u32 transport_hdr_sz;
struct iphdr *iph;
__u16 *next_iph;
__u16 payload_len;
struct vip vip = {};
int dport;
__u32 csum = 0;
int i;
__builtin_memset(eth_buffer, 0, sizeof(eth_buffer));
__builtin_memset(iph_buffer_tcp, 0, sizeof(iph_buffer_tcp));
__builtin_memset(iph_buffer_udp, 0, sizeof(iph_buffer_udp));
if (ethhdr_sz + iphdr_sz + tcphdr_sz > xdp->data_end - xdp->data)
iph = bpf_dynptr_slice(xdp_ptr, ethhdr_sz, iph_buffer_udp, sizeof(iph_buffer_udp));
else
iph = bpf_dynptr_slice(xdp_ptr, ethhdr_sz, iph_buffer_tcp, sizeof(iph_buffer_tcp));
if (!iph)
return XDP_DROP;
dport = get_dport(iph + 1, iph->protocol);
if (dport == -1)
return XDP_DROP;
vip.protocol = iph->protocol;
vip.family = AF_INET;
vip.daddr.v4 = iph->daddr;
vip.dport = dport;
payload_len = bpf_ntohs(iph->tot_len);
tnl = bpf_map_lookup_elem(&vip2tnl, &vip);
/* It only does v4-in-v4 */
if (!tnl || tnl->family != AF_INET)
return XDP_PASS;
if (bpf_xdp_adjust_head(xdp, 0 - (int)iphdr_sz))
return XDP_DROP;
bpf_dynptr_from_xdp(xdp, 0, &new_xdp_ptr);
new_eth = bpf_dynptr_slice_rdwr(&new_xdp_ptr, 0, eth_buffer, sizeof(eth_buffer));
if (!new_eth)
return XDP_DROP;
iph = (struct iphdr *)(new_eth + 1);
old_eth = (struct ethhdr *)(iph + 1);
set_ethhdr(new_eth, old_eth, tnl, bpf_htons(ETH_P_IP));
if (new_eth == eth_buffer)
bpf_dynptr_write(&new_xdp_ptr, 0, eth_buffer, sizeof(eth_buffer), 0);
iph->version = 4;
iph->ihl = iphdr_sz >> 2;
iph->frag_off = 0;
iph->protocol = IPPROTO_IPIP;
iph->check = 0;
iph->tos = 0;
iph->tot_len = bpf_htons(payload_len + iphdr_sz);
iph->daddr = tnl->daddr.v4;
iph->saddr = tnl->saddr.v4;
iph->ttl = 8;
next_iph = (__u16 *)iph;
for (i = 0; i < iphdr_sz >> 1; i++)
csum += *next_iph++;
iph->check = ~((csum & 0xffff) + (csum >> 16));
count_tx(vip.protocol);
return XDP_TX;
}
static __always_inline int handle_ipv6(struct xdp_md *xdp, struct bpf_dynptr *xdp_ptr)
{
__u8 eth_buffer[ethhdr_sz + ipv6hdr_sz + ethhdr_sz];
__u8 ip6h_buffer_tcp[ipv6hdr_sz + tcphdr_sz];
__u8 ip6h_buffer_udp[ipv6hdr_sz + udphdr_sz];
struct bpf_dynptr new_xdp_ptr;
struct iptnl_info *tnl;
struct ethhdr *new_eth;
struct ethhdr *old_eth;
__u32 transport_hdr_sz;
struct ipv6hdr *ip6h;
__u16 payload_len;
struct vip vip = {};
int dport;
__builtin_memset(eth_buffer, 0, sizeof(eth_buffer));
__builtin_memset(ip6h_buffer_tcp, 0, sizeof(ip6h_buffer_tcp));
__builtin_memset(ip6h_buffer_udp, 0, sizeof(ip6h_buffer_udp));
if (ethhdr_sz + iphdr_sz + tcphdr_sz > xdp->data_end - xdp->data)
ip6h = bpf_dynptr_slice(xdp_ptr, ethhdr_sz, ip6h_buffer_udp, sizeof(ip6h_buffer_udp));
else
ip6h = bpf_dynptr_slice(xdp_ptr, ethhdr_sz, ip6h_buffer_tcp, sizeof(ip6h_buffer_tcp));
if (!ip6h)
return XDP_DROP;
dport = get_dport(ip6h + 1, ip6h->nexthdr);
if (dport == -1)
return XDP_DROP;
vip.protocol = ip6h->nexthdr;
vip.family = AF_INET6;
memcpy(vip.daddr.v6, ip6h->daddr.s6_addr32, sizeof(vip.daddr));
vip.dport = dport;
payload_len = ip6h->payload_len;
tnl = bpf_map_lookup_elem(&vip2tnl, &vip);
/* It only does v6-in-v6 */
if (!tnl || tnl->family != AF_INET6)
return XDP_PASS;
if (bpf_xdp_adjust_head(xdp, 0 - (int)ipv6hdr_sz))
return XDP_DROP;
bpf_dynptr_from_xdp(xdp, 0, &new_xdp_ptr);
new_eth = bpf_dynptr_slice_rdwr(&new_xdp_ptr, 0, eth_buffer, sizeof(eth_buffer));
if (!new_eth)
return XDP_DROP;
ip6h = (struct ipv6hdr *)(new_eth + 1);
old_eth = (struct ethhdr *)(ip6h + 1);
set_ethhdr(new_eth, old_eth, tnl, bpf_htons(ETH_P_IPV6));
if (new_eth == eth_buffer)
bpf_dynptr_write(&new_xdp_ptr, 0, eth_buffer, sizeof(eth_buffer), 0);
ip6h->version = 6;
ip6h->priority = 0;
memset(ip6h->flow_lbl, 0, sizeof(ip6h->flow_lbl));
ip6h->payload_len = bpf_htons(bpf_ntohs(payload_len) + ipv6hdr_sz);
ip6h->nexthdr = IPPROTO_IPV6;
ip6h->hop_limit = 8;
memcpy(ip6h->saddr.s6_addr32, tnl->saddr.v6, sizeof(tnl->saddr.v6));
memcpy(ip6h->daddr.s6_addr32, tnl->daddr.v6, sizeof(tnl->daddr.v6));
count_tx(vip.protocol);
return XDP_TX;
}
SEC("xdp")
int _xdp_tx_iptunnel(struct xdp_md *xdp)
{
__u8 buffer[ethhdr_sz];
struct bpf_dynptr ptr;
struct ethhdr *eth;
__u16 h_proto;
__builtin_memset(buffer, 0, sizeof(buffer));
bpf_dynptr_from_xdp(xdp, 0, &ptr);
eth = bpf_dynptr_slice(&ptr, 0, buffer, sizeof(buffer));
if (!eth)
return XDP_DROP;
h_proto = eth->h_proto;
if (h_proto == bpf_htons(ETH_P_IP))
return handle_ipv4(xdp, &ptr);
else if (h_proto == bpf_htons(ETH_P_IPV6))
return handle_ipv6(xdp, &ptr);
else
return XDP_DROP;
}
char _license[] SEC("license") = "GPL";

View File

@ -50,6 +50,7 @@ struct linum_err {
#define TCPOPT_EOL 0
#define TCPOPT_NOP 1
#define TCPOPT_MSS 2
#define TCPOPT_WINDOW 3
#define TCPOPT_EXP 254