P-state software coordination for speedstep-centrino

http://bugzilla.kernel.org/show_bug.cgi?id=5737

Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This commit is contained in:
Venkatesh Pallipadi 2005-12-14 15:05:00 -05:00 committed by Len Brown
parent 09b4d1ee88
commit c52851b60c

View file

@ -351,7 +351,36 @@ static unsigned int get_cur_freq(unsigned int cpu)
#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
static struct acpi_processor_performance p; static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
/*
* centrino_cpu_early_init_acpi - Do the preregistering with ACPI P-States
* library
*
* Before doing the actual init, we need to do _PSD related setup whenever
* supported by the BIOS. These are handled by this early_init routine.
*/
static int centrino_cpu_early_init_acpi(void)
{
unsigned int i, j;
struct acpi_processor_performance *data;
for_each_cpu(i) {
data = kzalloc(sizeof(struct acpi_processor_performance),
GFP_KERNEL);
if (!data) {
for_each_cpu(j) {
kfree(acpi_perf_data[j]);
acpi_perf_data[j] = NULL;
}
return (-ENOMEM);
}
acpi_perf_data[i] = data;
}
acpi_processor_preregister_performance(acpi_perf_data);
return 0;
}
/* /*
* centrino_cpu_init_acpi - register with ACPI P-States library * centrino_cpu_init_acpi - register with ACPI P-States library
@ -365,46 +394,51 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy)
unsigned long cur_freq; unsigned long cur_freq;
int result = 0, i; int result = 0, i;
unsigned int cpu = policy->cpu; unsigned int cpu = policy->cpu;
struct acpi_processor_performance *p;
p = acpi_perf_data[cpu];
/* register with ACPI core */ /* register with ACPI core */
if (acpi_processor_register_performance(&p, cpu)) { if (acpi_processor_register_performance(p, cpu)) {
dprintk(KERN_INFO PFX "obtaining ACPI data failed\n"); dprintk(KERN_INFO PFX "obtaining ACPI data failed\n");
return -EIO; return -EIO;
} }
policy->cpus = p->shared_cpu_map;
policy->shared_type = p->shared_type;
/* verify the acpi_data */ /* verify the acpi_data */
if (p.state_count <= 1) { if (p->state_count <= 1) {
dprintk("No P-States\n"); dprintk("No P-States\n");
result = -ENODEV; result = -ENODEV;
goto err_unreg; goto err_unreg;
} }
if ((p.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) || if ((p->control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
(p.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) { (p->status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
dprintk("Invalid control/status registers (%x - %x)\n", dprintk("Invalid control/status registers (%x - %x)\n",
p.control_register.space_id, p.status_register.space_id); p->control_register.space_id, p->status_register.space_id);
result = -EIO; result = -EIO;
goto err_unreg; goto err_unreg;
} }
for (i=0; i<p.state_count; i++) { for (i=0; i<p->state_count; i++) {
if (p.states[i].control != p.states[i].status) { if (p->states[i].control != p->states[i].status) {
dprintk("Different control (%llu) and status values (%llu)\n", dprintk("Different control (%llu) and status values (%llu)\n",
p.states[i].control, p.states[i].status); p->states[i].control, p->states[i].status);
result = -EINVAL; result = -EINVAL;
goto err_unreg; goto err_unreg;
} }
if (!p.states[i].core_frequency) { if (!p->states[i].core_frequency) {
dprintk("Zero core frequency for state %u\n", i); dprintk("Zero core frequency for state %u\n", i);
result = -EINVAL; result = -EINVAL;
goto err_unreg; goto err_unreg;
} }
if (p.states[i].core_frequency > p.states[0].core_frequency) { if (p->states[i].core_frequency > p->states[0].core_frequency) {
dprintk("P%u has larger frequency (%llu) than P0 (%llu), skipping\n", i, dprintk("P%u has larger frequency (%llu) than P0 (%llu), skipping\n", i,
p.states[i].core_frequency, p.states[0].core_frequency); p->states[i].core_frequency, p->states[0].core_frequency);
p.states[i].core_frequency = 0; p->states[i].core_frequency = 0;
continue; continue;
} }
} }
@ -416,26 +450,26 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy)
} }
centrino_model[cpu]->model_name=NULL; centrino_model[cpu]->model_name=NULL;
centrino_model[cpu]->max_freq = p.states[0].core_frequency * 1000; centrino_model[cpu]->max_freq = p->states[0].core_frequency * 1000;
centrino_model[cpu]->op_points = kmalloc(sizeof(struct cpufreq_frequency_table) * centrino_model[cpu]->op_points = kmalloc(sizeof(struct cpufreq_frequency_table) *
(p.state_count + 1), GFP_KERNEL); (p->state_count + 1), GFP_KERNEL);
if (!centrino_model[cpu]->op_points) { if (!centrino_model[cpu]->op_points) {
result = -ENOMEM; result = -ENOMEM;
goto err_kfree; goto err_kfree;
} }
for (i=0; i<p.state_count; i++) { for (i=0; i<p->state_count; i++) {
centrino_model[cpu]->op_points[i].index = p.states[i].control; centrino_model[cpu]->op_points[i].index = p->states[i].control;
centrino_model[cpu]->op_points[i].frequency = p.states[i].core_frequency * 1000; centrino_model[cpu]->op_points[i].frequency = p->states[i].core_frequency * 1000;
dprintk("adding state %i with frequency %u and control value %04x\n", dprintk("adding state %i with frequency %u and control value %04x\n",
i, centrino_model[cpu]->op_points[i].frequency, centrino_model[cpu]->op_points[i].index); i, centrino_model[cpu]->op_points[i].frequency, centrino_model[cpu]->op_points[i].index);
} }
centrino_model[cpu]->op_points[p.state_count].frequency = CPUFREQ_TABLE_END; centrino_model[cpu]->op_points[p->state_count].frequency = CPUFREQ_TABLE_END;
cur_freq = get_cur_freq(cpu); cur_freq = get_cur_freq(cpu);
for (i=0; i<p.state_count; i++) { for (i=0; i<p->state_count; i++) {
if (!p.states[i].core_frequency) { if (!p->states[i].core_frequency) {
dprintk("skipping state %u\n", i); dprintk("skipping state %u\n", i);
centrino_model[cpu]->op_points[i].frequency = CPUFREQ_ENTRY_INVALID; centrino_model[cpu]->op_points[i].frequency = CPUFREQ_ENTRY_INVALID;
continue; continue;
@ -451,7 +485,7 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy)
} }
if (cur_freq == centrino_model[cpu]->op_points[i].frequency) if (cur_freq == centrino_model[cpu]->op_points[i].frequency)
p.state = i; p->state = i;
} }
/* notify BIOS that we exist */ /* notify BIOS that we exist */
@ -464,12 +498,13 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy)
err_kfree: err_kfree:
kfree(centrino_model[cpu]); kfree(centrino_model[cpu]);
err_unreg: err_unreg:
acpi_processor_unregister_performance(&p, cpu); acpi_processor_unregister_performance(p, cpu);
dprintk(KERN_INFO PFX "invalid ACPI data\n"); dprintk(KERN_INFO PFX "invalid ACPI data\n");
return (result); return (result);
} }
#else #else
static inline int centrino_cpu_init_acpi(struct cpufreq_policy *policy) { return -ENODEV; } static inline int centrino_cpu_init_acpi(struct cpufreq_policy *policy) { return -ENODEV; }
static inline int centrino_cpu_early_init_acpi(void) { return 0; }
#endif #endif
static int centrino_cpu_init(struct cpufreq_policy *policy) static int centrino_cpu_init(struct cpufreq_policy *policy)
@ -557,10 +592,15 @@ static int centrino_cpu_exit(struct cpufreq_policy *policy)
#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
if (!centrino_model[cpu]->model_name) { if (!centrino_model[cpu]->model_name) {
dprintk("unregistering and freeing ACPI data\n"); static struct acpi_processor_performance *p;
acpi_processor_unregister_performance(&p, cpu);
kfree(centrino_model[cpu]->op_points); if (acpi_perf_data[cpu]) {
kfree(centrino_model[cpu]); p = acpi_perf_data[cpu];
dprintk("unregistering and freeing ACPI data\n");
acpi_processor_unregister_performance(p, cpu);
kfree(centrino_model[cpu]->op_points);
kfree(centrino_model[cpu]);
}
} }
#endif #endif
@ -594,63 +634,124 @@ static int centrino_target (struct cpufreq_policy *policy,
unsigned int relation) unsigned int relation)
{ {
unsigned int newstate = 0; unsigned int newstate = 0;
unsigned int msr, oldmsr, h, cpu = policy->cpu; unsigned int msr, oldmsr = 0, h = 0, cpu = policy->cpu;
struct cpufreq_freqs freqs; struct cpufreq_freqs freqs;
cpumask_t online_policy_cpus;
cpumask_t saved_mask; cpumask_t saved_mask;
int retval; cpumask_t set_mask;
cpumask_t covered_cpus;
int retval = 0;
unsigned int j, k, first_cpu, tmp;
if (centrino_model[cpu] == NULL) if (unlikely(centrino_model[cpu] == NULL))
return -ENODEV; return -ENODEV;
/* if (unlikely(cpufreq_frequency_table_target(policy,
* Support for SMP systems. centrino_model[cpu]->op_points,
* Make sure we are running on the CPU that wants to change frequency target_freq,
*/ relation,
&newstate))) {
return -EINVAL;
}
/* cpufreq holds the hotplug lock, so we are safe from here on */
cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
saved_mask = current->cpus_allowed; saved_mask = current->cpus_allowed;
set_cpus_allowed(current, policy->cpus); first_cpu = 1;
if (!cpu_isset(smp_processor_id(), policy->cpus)) { cpus_clear(covered_cpus);
dprintk("couldn't limit to CPUs in this domain\n"); for_each_cpu_mask(j, online_policy_cpus) {
return(-EAGAIN); /*
* Support for SMP systems.
* Make sure we are running on CPU that wants to change freq
*/
cpus_clear(set_mask);
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
cpus_or(set_mask, set_mask, online_policy_cpus);
else
cpu_set(j, set_mask);
set_cpus_allowed(current, set_mask);
if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
dprintk("couldn't limit to CPUs in this domain\n");
retval = -EAGAIN;
if (first_cpu) {
/* We haven't started the transition yet. */
goto migrate_end;
}
break;
}
msr = centrino_model[cpu]->op_points[newstate].index;
if (first_cpu) {
rdmsr(MSR_IA32_PERF_CTL, oldmsr, h);
if (msr == (oldmsr & 0xffff)) {
dprintk("no change needed - msr was and needs "
"to be %x\n", oldmsr);
retval = 0;
goto migrate_end;
}
freqs.old = extract_clock(oldmsr, cpu, 0);
freqs.new = extract_clock(msr, cpu, 0);
dprintk("target=%dkHz old=%d new=%d msr=%04x\n",
target_freq, freqs.old, freqs.new, msr);
for_each_cpu_mask(k, online_policy_cpus) {
freqs.cpu = k;
cpufreq_notify_transition(&freqs,
CPUFREQ_PRECHANGE);
}
first_cpu = 0;
/* all but 16 LSB are reserved, treat them with care */
oldmsr &= ~0xffff;
msr &= 0xffff;
oldmsr |= msr;
}
wrmsr(MSR_IA32_PERF_CTL, oldmsr, h);
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
break;
cpu_set(j, covered_cpus);
} }
if (cpufreq_frequency_table_target(policy, centrino_model[cpu]->op_points, target_freq, for_each_cpu_mask(k, online_policy_cpus) {
relation, &newstate)) { freqs.cpu = k;
retval = -EINVAL; cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
goto migrate_end;
} }
msr = centrino_model[cpu]->op_points[newstate].index; if (unlikely(retval)) {
rdmsr(MSR_IA32_PERF_CTL, oldmsr, h); /*
* We have failed halfway through the frequency change.
* We have sent callbacks to policy->cpus and
* MSRs have already been written on coverd_cpus.
* Best effort undo..
*/
if (msr == (oldmsr & 0xffff)) { if (!cpus_empty(covered_cpus)) {
retval = 0; for_each_cpu_mask(j, covered_cpus) {
dprintk("no change needed - msr was and needs to be %x\n", oldmsr); set_cpus_allowed(current, cpumask_of_cpu(j));
goto migrate_end; wrmsr(MSR_IA32_PERF_CTL, oldmsr, h);
}
}
tmp = freqs.new;
freqs.new = freqs.old;
freqs.old = tmp;
for_each_cpu_mask(j, online_policy_cpus) {
freqs.cpu = j;
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
}
} }
freqs.cpu = cpu;
freqs.old = extract_clock(oldmsr, cpu, 0);
freqs.new = extract_clock(msr, cpu, 0);
dprintk("target=%dkHz old=%d new=%d msr=%04x\n",
target_freq, freqs.old, freqs.new, msr);
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
/* all but 16 LSB are "reserved", so treat them with
care */
oldmsr &= ~0xffff;
msr &= 0xffff;
oldmsr |= msr;
wrmsr(MSR_IA32_PERF_CTL, oldmsr, h);
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
retval = 0;
migrate_end: migrate_end:
set_cpus_allowed(current, saved_mask); set_cpus_allowed(current, saved_mask);
return (retval); return 0;
} }
static struct freq_attr* centrino_attr[] = { static struct freq_attr* centrino_attr[] = {
@ -692,12 +793,25 @@ static int __init centrino_init(void)
if (!cpu_has(cpu, X86_FEATURE_EST)) if (!cpu_has(cpu, X86_FEATURE_EST))
return -ENODEV; return -ENODEV;
centrino_cpu_early_init_acpi();
return cpufreq_register_driver(&centrino_driver); return cpufreq_register_driver(&centrino_driver);
} }
static void __exit centrino_exit(void) static void __exit centrino_exit(void)
{ {
#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
unsigned int j;
#endif
cpufreq_unregister_driver(&centrino_driver); cpufreq_unregister_driver(&centrino_driver);
#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
for_each_cpu(j) {
kfree(acpi_perf_data[j]);
acpi_perf_data[j] = NULL;
}
#endif
} }
MODULE_AUTHOR ("Jeremy Fitzhardinge <jeremy@goop.org>"); MODULE_AUTHOR ("Jeremy Fitzhardinge <jeremy@goop.org>");