perf/x86/amd/uncore: Refactor uncore management

Since struct amd_uncore is used to manage per-cpu contexts, rename it to
amd_uncore_ctx in order to better reflect its purpose. Add a new struct
amd_uncore_pmu to encapsulate all attributes which are shared by per-cpu
contexts for a corresponding PMU. These include the number of counters,
active mask, MSR and RDPMC base addresses, etc. Since the struct pmu is
now embedded, the corresponding amd_uncore_pmu for a given event can be
found by simply using container_of().

Finally, move all PMU-specific code to separate functions. While the
original event management functions continue to provide the base
functionality, all PMU-specific quirks and customizations are applied in
separate functions.

The motivation is to simplify the management of uncore PMUs.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/24b38c49a5dae65d8c96e5d75a2b96ae97aaa651.1696425185.git.sandipan.das@amd.com
This commit is contained in:
Sandipan Das 2023-10-05 10:53:11 +05:30 committed by Peter Zijlstra
parent 1765bb61bb
commit d6389d3ccc

View file

@ -27,56 +27,41 @@
#define COUNTER_SHIFT 16
#define NUM_UNCORES_MAX 2 /* DF (or NB) and L3 (or L2) */
#define UNCORE_NAME_LEN 16
#undef pr_fmt
#define pr_fmt(fmt) "amd_uncore: " fmt
static int pmu_version;
static int num_counters_llc;
static int num_counters_nb;
static bool l3_mask;
static HLIST_HEAD(uncore_unused_list);
struct amd_uncore {
struct amd_uncore_ctx {
int id;
int refcnt;
int cpu;
int num_counters;
int rdpmc_base;
u32 msr_base;
cpumask_t *active_mask;
struct pmu *pmu;
struct perf_event **events;
struct hlist_node node;
};
static struct amd_uncore * __percpu *amd_uncore_nb;
static struct amd_uncore * __percpu *amd_uncore_llc;
struct amd_uncore_pmu {
char name[UNCORE_NAME_LEN];
int num_counters;
int rdpmc_base;
u32 msr_base;
cpumask_t active_mask;
struct pmu pmu;
struct amd_uncore_ctx * __percpu *ctx;
int (*id)(unsigned int cpu);
};
static struct pmu amd_nb_pmu;
static struct pmu amd_llc_pmu;
static struct amd_uncore_pmu pmus[NUM_UNCORES_MAX];
static int num_pmus __read_mostly;
static cpumask_t amd_nb_active_mask;
static cpumask_t amd_llc_active_mask;
static bool is_nb_event(struct perf_event *event)
static struct amd_uncore_pmu *event_to_amd_uncore_pmu(struct perf_event *event)
{
return event->pmu->type == amd_nb_pmu.type;
}
static bool is_llc_event(struct perf_event *event)
{
return event->pmu->type == amd_llc_pmu.type;
}
static struct amd_uncore *event_to_amd_uncore(struct perf_event *event)
{
if (is_nb_event(event) && amd_uncore_nb)
return *per_cpu_ptr(amd_uncore_nb, event->cpu);
else if (is_llc_event(event) && amd_uncore_llc)
return *per_cpu_ptr(amd_uncore_llc, event->cpu);
return NULL;
return container_of(event->pmu, struct amd_uncore_pmu, pmu);
}
static void amd_uncore_read(struct perf_event *event)
@ -118,7 +103,7 @@ static void amd_uncore_stop(struct perf_event *event, int flags)
hwc->state |= PERF_HES_STOPPED;
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
amd_uncore_read(event);
event->pmu->read(event);
hwc->state |= PERF_HES_UPTODATE;
}
}
@ -126,15 +111,16 @@ static void amd_uncore_stop(struct perf_event *event, int flags)
static int amd_uncore_add(struct perf_event *event, int flags)
{
int i;
struct amd_uncore *uncore = event_to_amd_uncore(event);
struct amd_uncore_pmu *pmu = event_to_amd_uncore_pmu(event);
struct amd_uncore_ctx *ctx = *per_cpu_ptr(pmu->ctx, event->cpu);
struct hw_perf_event *hwc = &event->hw;
/* are we already assigned? */
if (hwc->idx != -1 && uncore->events[hwc->idx] == event)
if (hwc->idx != -1 && ctx->events[hwc->idx] == event)
goto out;
for (i = 0; i < uncore->num_counters; i++) {
if (uncore->events[i] == event) {
for (i = 0; i < pmu->num_counters; i++) {
if (ctx->events[i] == event) {
hwc->idx = i;
goto out;
}
@ -142,8 +128,8 @@ static int amd_uncore_add(struct perf_event *event, int flags)
/* if not, take the first available counter */
hwc->idx = -1;
for (i = 0; i < uncore->num_counters; i++) {
if (cmpxchg(&uncore->events[i], NULL, event) == NULL) {
for (i = 0; i < pmu->num_counters; i++) {
if (cmpxchg(&ctx->events[i], NULL, event) == NULL) {
hwc->idx = i;
break;
}
@ -153,23 +139,13 @@ static int amd_uncore_add(struct perf_event *event, int flags)
if (hwc->idx == -1)
return -EBUSY;
hwc->config_base = uncore->msr_base + (2 * hwc->idx);
hwc->event_base = uncore->msr_base + 1 + (2 * hwc->idx);
hwc->event_base_rdpmc = uncore->rdpmc_base + hwc->idx;
hwc->config_base = pmu->msr_base + (2 * hwc->idx);
hwc->event_base = pmu->msr_base + 1 + (2 * hwc->idx);
hwc->event_base_rdpmc = pmu->rdpmc_base + hwc->idx;
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
/*
* The first four DF counters are accessible via RDPMC index 6 to 9
* followed by the L3 counters from index 10 to 15. For processors
* with more than four DF counters, the DF RDPMC assignments become
* discontiguous as the additional counters are accessible starting
* from index 16.
*/
if (is_nb_event(event) && hwc->idx >= NUM_COUNTERS_NB)
hwc->event_base_rdpmc += NUM_COUNTERS_L3;
if (flags & PERF_EF_START)
amd_uncore_start(event, PERF_EF_RELOAD);
event->pmu->start(event, PERF_EF_RELOAD);
return 0;
}
@ -177,55 +153,36 @@ static int amd_uncore_add(struct perf_event *event, int flags)
static void amd_uncore_del(struct perf_event *event, int flags)
{
int i;
struct amd_uncore *uncore = event_to_amd_uncore(event);
struct amd_uncore_pmu *pmu = event_to_amd_uncore_pmu(event);
struct amd_uncore_ctx *ctx = *per_cpu_ptr(pmu->ctx, event->cpu);
struct hw_perf_event *hwc = &event->hw;
amd_uncore_stop(event, PERF_EF_UPDATE);
event->pmu->stop(event, PERF_EF_UPDATE);
for (i = 0; i < uncore->num_counters; i++) {
if (cmpxchg(&uncore->events[i], event, NULL) == event)
for (i = 0; i < pmu->num_counters; i++) {
if (cmpxchg(&ctx->events[i], event, NULL) == event)
break;
}
hwc->idx = -1;
}
/*
* Return a full thread and slice mask unless user
* has provided them
*/
static u64 l3_thread_slice_mask(u64 config)
{
if (boot_cpu_data.x86 <= 0x18)
return ((config & AMD64_L3_SLICE_MASK) ? : AMD64_L3_SLICE_MASK) |
((config & AMD64_L3_THREAD_MASK) ? : AMD64_L3_THREAD_MASK);
/*
* If the user doesn't specify a threadmask, they're not trying to
* count core 0, so we enable all cores & threads.
* We'll also assume that they want to count slice 0 if they specify
* a threadmask and leave sliceid and enallslices unpopulated.
*/
if (!(config & AMD64_L3_F19H_THREAD_MASK))
return AMD64_L3_F19H_THREAD_MASK | AMD64_L3_EN_ALL_SLICES |
AMD64_L3_EN_ALL_CORES;
return config & (AMD64_L3_F19H_THREAD_MASK | AMD64_L3_SLICEID_MASK |
AMD64_L3_EN_ALL_CORES | AMD64_L3_EN_ALL_SLICES |
AMD64_L3_COREID_MASK);
}
static int amd_uncore_event_init(struct perf_event *event)
{
struct amd_uncore *uncore;
struct amd_uncore_pmu *pmu;
struct amd_uncore_ctx *ctx;
struct hw_perf_event *hwc = &event->hw;
u64 event_mask = AMD64_RAW_EVENT_MASK_NB;
if (event->attr.type != event->pmu->type)
return -ENOENT;
if (pmu_version >= 2 && is_nb_event(event))
event_mask = AMD64_PERFMON_V2_RAW_EVENT_MASK_NB;
if (event->cpu < 0)
return -EINVAL;
pmu = event_to_amd_uncore_pmu(event);
ctx = *per_cpu_ptr(pmu->ctx, event->cpu);
if (!ctx)
return -ENODEV;
/*
* NB and Last level cache counters (MSRs) are shared across all cores
@ -235,28 +192,14 @@ static int amd_uncore_event_init(struct perf_event *event)
* out. So we do not support sampling and per-thread events via
* CAP_NO_INTERRUPT, and we do not enable counter overflow interrupts:
*/
hwc->config = event->attr.config & event_mask;
hwc->config = event->attr.config;
hwc->idx = -1;
if (event->cpu < 0)
return -EINVAL;
/*
* SliceMask and ThreadMask need to be set for certain L3 events.
* For other events, the two fields do not affect the count.
*/
if (l3_mask && is_llc_event(event))
hwc->config |= l3_thread_slice_mask(event->attr.config);
uncore = event_to_amd_uncore(event);
if (!uncore)
return -ENODEV;
/*
* since request can come in to any of the shared cores, we will remap
* to a single common cpu.
*/
event->cpu = uncore->cpu;
event->cpu = ctx->cpu;
return 0;
}
@ -278,17 +221,10 @@ static ssize_t amd_uncore_attr_show_cpumask(struct device *dev,
struct device_attribute *attr,
char *buf)
{
cpumask_t *active_mask;
struct pmu *pmu = dev_get_drvdata(dev);
struct pmu *ptr = dev_get_drvdata(dev);
struct amd_uncore_pmu *pmu = container_of(ptr, struct amd_uncore_pmu, pmu);
if (pmu->type == amd_nb_pmu.type)
active_mask = &amd_nb_active_mask;
else if (pmu->type == amd_llc_pmu.type)
active_mask = &amd_llc_active_mask;
else
return 0;
return cpumap_print_to_pagebuf(true, buf, active_mask);
return cpumap_print_to_pagebuf(true, buf, &pmu->active_mask);
}
static DEVICE_ATTR(cpumask, S_IRUGO, amd_uncore_attr_show_cpumask, NULL);
@ -396,113 +332,57 @@ static const struct attribute_group *amd_uncore_l3_attr_update[] = {
NULL,
};
static struct pmu amd_nb_pmu = {
.task_ctx_nr = perf_invalid_context,
.attr_groups = amd_uncore_df_attr_groups,
.name = "amd_nb",
.event_init = amd_uncore_event_init,
.add = amd_uncore_add,
.del = amd_uncore_del,
.start = amd_uncore_start,
.stop = amd_uncore_stop,
.read = amd_uncore_read,
.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT,
.module = THIS_MODULE,
};
static struct pmu amd_llc_pmu = {
.task_ctx_nr = perf_invalid_context,
.attr_groups = amd_uncore_l3_attr_groups,
.attr_update = amd_uncore_l3_attr_update,
.name = "amd_l2",
.event_init = amd_uncore_event_init,
.add = amd_uncore_add,
.del = amd_uncore_del,
.start = amd_uncore_start,
.stop = amd_uncore_stop,
.read = amd_uncore_read,
.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT,
.module = THIS_MODULE,
};
static struct amd_uncore *amd_uncore_alloc(unsigned int cpu)
{
return kzalloc_node(sizeof(struct amd_uncore), GFP_KERNEL,
cpu_to_node(cpu));
}
static inline struct perf_event **
amd_uncore_events_alloc(unsigned int num, unsigned int cpu)
{
return kzalloc_node(sizeof(struct perf_event *) * num, GFP_KERNEL,
cpu_to_node(cpu));
}
static int amd_uncore_cpu_up_prepare(unsigned int cpu)
{
struct amd_uncore *uncore_nb = NULL, *uncore_llc = NULL;
struct amd_uncore_pmu *pmu;
struct amd_uncore_ctx *ctx;
int node = cpu_to_node(cpu), i;
if (amd_uncore_nb) {
*per_cpu_ptr(amd_uncore_nb, cpu) = NULL;
uncore_nb = amd_uncore_alloc(cpu);
if (!uncore_nb)
for (i = 0; i < num_pmus; i++) {
pmu = &pmus[i];
*per_cpu_ptr(pmu->ctx, cpu) = NULL;
ctx = kzalloc_node(sizeof(struct amd_uncore_ctx), GFP_KERNEL,
node);
if (!ctx)
goto fail;
uncore_nb->cpu = cpu;
uncore_nb->num_counters = num_counters_nb;
uncore_nb->rdpmc_base = RDPMC_BASE_NB;
uncore_nb->msr_base = MSR_F15H_NB_PERF_CTL;
uncore_nb->active_mask = &amd_nb_active_mask;
uncore_nb->pmu = &amd_nb_pmu;
uncore_nb->events = amd_uncore_events_alloc(num_counters_nb, cpu);
if (!uncore_nb->events)
goto fail;
uncore_nb->id = -1;
*per_cpu_ptr(amd_uncore_nb, cpu) = uncore_nb;
}
if (amd_uncore_llc) {
*per_cpu_ptr(amd_uncore_llc, cpu) = NULL;
uncore_llc = amd_uncore_alloc(cpu);
if (!uncore_llc)
ctx->cpu = cpu;
ctx->events = kzalloc_node(sizeof(struct perf_event *) *
pmu->num_counters, GFP_KERNEL,
node);
if (!ctx->events)
goto fail;
uncore_llc->cpu = cpu;
uncore_llc->num_counters = num_counters_llc;
uncore_llc->rdpmc_base = RDPMC_BASE_LLC;
uncore_llc->msr_base = MSR_F16H_L2I_PERF_CTL;
uncore_llc->active_mask = &amd_llc_active_mask;
uncore_llc->pmu = &amd_llc_pmu;
uncore_llc->events = amd_uncore_events_alloc(num_counters_llc, cpu);
if (!uncore_llc->events)
goto fail;
uncore_llc->id = -1;
*per_cpu_ptr(amd_uncore_llc, cpu) = uncore_llc;
ctx->id = -1;
*per_cpu_ptr(pmu->ctx, cpu) = ctx;
}
return 0;
fail:
if (uncore_nb) {
kfree(uncore_nb->events);
kfree(uncore_nb);
}
/* Rollback */
for (; i >= 0; i--) {
pmu = &pmus[i];
ctx = *per_cpu_ptr(pmu->ctx, cpu);
if (!ctx)
continue;
if (uncore_llc) {
kfree(uncore_llc->events);
kfree(uncore_llc);
kfree(ctx->events);
kfree(ctx);
}
return -ENOMEM;
}
static struct amd_uncore *
amd_uncore_find_online_sibling(struct amd_uncore *this,
struct amd_uncore * __percpu *uncores)
static struct amd_uncore_ctx *
amd_uncore_find_online_sibling(struct amd_uncore_ctx *this,
struct amd_uncore_pmu *pmu)
{
unsigned int cpu;
struct amd_uncore *that;
struct amd_uncore_ctx *that;
for_each_online_cpu(cpu) {
that = *per_cpu_ptr(uncores, cpu);
that = *per_cpu_ptr(pmu->ctx, cpu);
if (!that)
continue;
@ -523,24 +403,16 @@ amd_uncore_find_online_sibling(struct amd_uncore *this,
static int amd_uncore_cpu_starting(unsigned int cpu)
{
unsigned int eax, ebx, ecx, edx;
struct amd_uncore *uncore;
struct amd_uncore_pmu *pmu;
struct amd_uncore_ctx *ctx;
int i;
if (amd_uncore_nb) {
uncore = *per_cpu_ptr(amd_uncore_nb, cpu);
cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
uncore->id = ecx & 0xff;
uncore = amd_uncore_find_online_sibling(uncore, amd_uncore_nb);
*per_cpu_ptr(amd_uncore_nb, cpu) = uncore;
}
if (amd_uncore_llc) {
uncore = *per_cpu_ptr(amd_uncore_llc, cpu);
uncore->id = get_llc_id(cpu);
uncore = amd_uncore_find_online_sibling(uncore, amd_uncore_llc);
*per_cpu_ptr(amd_uncore_llc, cpu) = uncore;
for (i = 0; i < num_pmus; i++) {
pmu = &pmus[i];
ctx = *per_cpu_ptr(pmu->ctx, cpu);
ctx->id = pmu->id(cpu);
ctx = amd_uncore_find_online_sibling(ctx, pmu);
*per_cpu_ptr(pmu->ctx, cpu) = ctx;
}
return 0;
@ -548,107 +420,333 @@ static int amd_uncore_cpu_starting(unsigned int cpu)
static void uncore_clean_online(void)
{
struct amd_uncore *uncore;
struct amd_uncore_ctx *ctx;
struct hlist_node *n;
hlist_for_each_entry_safe(uncore, n, &uncore_unused_list, node) {
hlist_del(&uncore->node);
kfree(uncore->events);
kfree(uncore);
hlist_for_each_entry_safe(ctx, n, &uncore_unused_list, node) {
hlist_del(&ctx->node);
kfree(ctx->events);
kfree(ctx);
}
}
static void uncore_online(unsigned int cpu,
struct amd_uncore * __percpu *uncores)
{
struct amd_uncore *uncore = *per_cpu_ptr(uncores, cpu);
uncore_clean_online();
if (cpu == uncore->cpu)
cpumask_set_cpu(cpu, uncore->active_mask);
}
static int amd_uncore_cpu_online(unsigned int cpu)
{
if (amd_uncore_nb)
uncore_online(cpu, amd_uncore_nb);
struct amd_uncore_pmu *pmu;
struct amd_uncore_ctx *ctx;
int i;
if (amd_uncore_llc)
uncore_online(cpu, amd_uncore_llc);
uncore_clean_online();
for (i = 0; i < num_pmus; i++) {
pmu = &pmus[i];
ctx = *per_cpu_ptr(pmu->ctx, cpu);
if (cpu == ctx->cpu)
cpumask_set_cpu(cpu, &pmu->active_mask);
}
return 0;
}
static void uncore_down_prepare(unsigned int cpu,
struct amd_uncore * __percpu *uncores)
{
unsigned int i;
struct amd_uncore *this = *per_cpu_ptr(uncores, cpu);
if (this->cpu != cpu)
return;
/* this cpu is going down, migrate to a shared sibling if possible */
for_each_online_cpu(i) {
struct amd_uncore *that = *per_cpu_ptr(uncores, i);
if (cpu == i)
continue;
if (this == that) {
perf_pmu_migrate_context(this->pmu, cpu, i);
cpumask_clear_cpu(cpu, that->active_mask);
cpumask_set_cpu(i, that->active_mask);
that->cpu = i;
break;
}
}
}
static int amd_uncore_cpu_down_prepare(unsigned int cpu)
{
if (amd_uncore_nb)
uncore_down_prepare(cpu, amd_uncore_nb);
struct amd_uncore_ctx *this, *that;
struct amd_uncore_pmu *pmu;
int i, j;
if (amd_uncore_llc)
uncore_down_prepare(cpu, amd_uncore_llc);
for (i = 0; i < num_pmus; i++) {
pmu = &pmus[i];
this = *per_cpu_ptr(pmu->ctx, cpu);
return 0;
}
/* this cpu is going down, migrate to a shared sibling if possible */
for_each_online_cpu(j) {
that = *per_cpu_ptr(pmu->ctx, j);
static void uncore_dead(unsigned int cpu, struct amd_uncore * __percpu *uncores)
{
struct amd_uncore *uncore = *per_cpu_ptr(uncores, cpu);
if (cpu == j)
continue;
if (cpu == uncore->cpu)
cpumask_clear_cpu(cpu, uncore->active_mask);
if (!--uncore->refcnt) {
kfree(uncore->events);
kfree(uncore);
if (this == that) {
perf_pmu_migrate_context(&pmu->pmu, cpu, j);
cpumask_clear_cpu(cpu, &pmu->active_mask);
cpumask_set_cpu(j, &pmu->active_mask);
that->cpu = j;
break;
}
}
}
*per_cpu_ptr(uncores, cpu) = NULL;
return 0;
}
static int amd_uncore_cpu_dead(unsigned int cpu)
{
if (amd_uncore_nb)
uncore_dead(cpu, amd_uncore_nb);
struct amd_uncore_ctx *ctx;
struct amd_uncore_pmu *pmu;
int i;
if (amd_uncore_llc)
uncore_dead(cpu, amd_uncore_llc);
for (i = 0; i < num_pmus; i++) {
pmu = &pmus[i];
ctx = *per_cpu_ptr(pmu->ctx, cpu);
if (cpu == ctx->cpu)
cpumask_clear_cpu(cpu, &pmu->active_mask);
if (!--ctx->refcnt) {
kfree(ctx->events);
kfree(ctx);
}
*per_cpu_ptr(pmu->ctx, cpu) = NULL;
}
return 0;
}
static int __init amd_uncore_init(void)
static int amd_uncore_df_id(unsigned int cpu)
{
unsigned int eax, ebx, ecx, edx;
cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
return ecx & 0xff;
}
static int amd_uncore_df_event_init(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
int ret = amd_uncore_event_init(event);
if (ret || pmu_version < 2)
return ret;
hwc->config = event->attr.config &
(pmu_version >= 2 ? AMD64_PERFMON_V2_RAW_EVENT_MASK_NB :
AMD64_RAW_EVENT_MASK_NB);
return 0;
}
static int amd_uncore_df_add(struct perf_event *event, int flags)
{
int ret = amd_uncore_add(event, flags & ~PERF_EF_START);
struct hw_perf_event *hwc = &event->hw;
if (ret)
return ret;
/*
* The first four DF counters are accessible via RDPMC index 6 to 9
* followed by the L3 counters from index 10 to 15. For processors
* with more than four DF counters, the DF RDPMC assignments become
* discontiguous as the additional counters are accessible starting
* from index 16.
*/
if (hwc->idx >= NUM_COUNTERS_NB)
hwc->event_base_rdpmc += NUM_COUNTERS_L3;
/* Delayed start after rdpmc base update */
if (flags & PERF_EF_START)
amd_uncore_start(event, PERF_EF_RELOAD);
return 0;
}
static int amd_uncore_df_init(void)
{
struct attribute **df_attr = amd_uncore_df_format_attr;
struct attribute **l3_attr = amd_uncore_l3_format_attr;
struct amd_uncore_pmu *pmu = &pmus[num_pmus];
union cpuid_0x80000022_ebx ebx;
int ret = -ENODEV;
int ret;
if (!boot_cpu_has(X86_FEATURE_PERFCTR_NB))
return 0;
/*
* For Family 17h and above, the Northbridge counters are repurposed
* as Data Fabric counters. The PMUs are exported based on family as
* either NB or DF.
*/
strscpy(pmu->name, boot_cpu_data.x86 >= 0x17 ? "amd_df" : "amd_nb",
sizeof(pmu->name));
pmu->num_counters = NUM_COUNTERS_NB;
pmu->msr_base = MSR_F15H_NB_PERF_CTL;
pmu->rdpmc_base = RDPMC_BASE_NB;
pmu->id = amd_uncore_df_id;
if (pmu_version >= 2) {
*df_attr++ = &format_attr_event14v2.attr;
*df_attr++ = &format_attr_umask12.attr;
ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
pmu->num_counters = ebx.split.num_df_pmc;
} else if (boot_cpu_data.x86 >= 0x17) {
*df_attr = &format_attr_event14.attr;
}
pmu->ctx = alloc_percpu(struct amd_uncore_ctx *);
if (!pmu->ctx)
return -ENOMEM;
pmu->pmu = (struct pmu) {
.task_ctx_nr = perf_invalid_context,
.attr_groups = amd_uncore_df_attr_groups,
.name = pmu->name,
.event_init = amd_uncore_df_event_init,
.add = amd_uncore_df_add,
.del = amd_uncore_del,
.start = amd_uncore_start,
.stop = amd_uncore_stop,
.read = amd_uncore_read,
.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT,
.module = THIS_MODULE,
};
ret = perf_pmu_register(&pmu->pmu, pmu->pmu.name, -1);
if (ret) {
free_percpu(pmu->ctx);
pmu->ctx = NULL;
return ret;
}
pr_info("%d %s %s counters detected\n", pmu->num_counters,
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ? "HYGON" : "",
pmu->pmu.name);
num_pmus++;
return 0;
}
static int amd_uncore_l3_id(unsigned int cpu)
{
return get_llc_id(cpu);
}
static int amd_uncore_l3_event_init(struct perf_event *event)
{
int ret = amd_uncore_event_init(event);
struct hw_perf_event *hwc = &event->hw;
u64 config = event->attr.config;
u64 mask;
hwc->config = config & AMD64_RAW_EVENT_MASK_NB;
/*
* SliceMask and ThreadMask need to be set for certain L3 events.
* For other events, the two fields do not affect the count.
*/
if (ret || boot_cpu_data.x86 < 0x17)
return ret;
mask = config & (AMD64_L3_F19H_THREAD_MASK | AMD64_L3_SLICEID_MASK |
AMD64_L3_EN_ALL_CORES | AMD64_L3_EN_ALL_SLICES |
AMD64_L3_COREID_MASK);
if (boot_cpu_data.x86 <= 0x18)
mask = ((config & AMD64_L3_SLICE_MASK) ? : AMD64_L3_SLICE_MASK) |
((config & AMD64_L3_THREAD_MASK) ? : AMD64_L3_THREAD_MASK);
/*
* If the user doesn't specify a ThreadMask, they're not trying to
* count core 0, so we enable all cores & threads.
* We'll also assume that they want to count slice 0 if they specify
* a ThreadMask and leave SliceId and EnAllSlices unpopulated.
*/
else if (!(config & AMD64_L3_F19H_THREAD_MASK))
mask = AMD64_L3_F19H_THREAD_MASK | AMD64_L3_EN_ALL_SLICES |
AMD64_L3_EN_ALL_CORES;
hwc->config |= mask;
return 0;
}
static int amd_uncore_l3_init(void)
{
struct attribute **l3_attr = amd_uncore_l3_format_attr;
struct amd_uncore_pmu *pmu = &pmus[num_pmus];
int ret;
if (!boot_cpu_has(X86_FEATURE_PERFCTR_LLC))
return 0;
/*
* For Family 17h and above, L3 cache counters are available instead
* of L2 cache counters. The PMUs are exported based on family as
* either L2 or L3.
*/
strscpy(pmu->name, boot_cpu_data.x86 >= 0x17 ? "amd_l3" : "amd_l2",
sizeof(pmu->name));
pmu->num_counters = NUM_COUNTERS_L2;
pmu->msr_base = MSR_F16H_L2I_PERF_CTL;
pmu->rdpmc_base = RDPMC_BASE_LLC;
pmu->id = amd_uncore_l3_id;
if (boot_cpu_data.x86 >= 0x17) {
*l3_attr++ = &format_attr_event8.attr;
*l3_attr++ = &format_attr_umask8.attr;
*l3_attr++ = boot_cpu_data.x86 >= 0x19 ?
&format_attr_threadmask2.attr :
&format_attr_threadmask8.attr;
pmu->num_counters = NUM_COUNTERS_L3;
}
pmu->ctx = alloc_percpu(struct amd_uncore_ctx *);
if (!pmu->ctx)
return -ENOMEM;
pmu->pmu = (struct pmu) {
.task_ctx_nr = perf_invalid_context,
.attr_groups = amd_uncore_l3_attr_groups,
.attr_update = amd_uncore_l3_attr_update,
.name = pmu->name,
.event_init = amd_uncore_l3_event_init,
.add = amd_uncore_add,
.del = amd_uncore_del,
.start = amd_uncore_start,
.stop = amd_uncore_stop,
.read = amd_uncore_read,
.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT,
.module = THIS_MODULE,
};
ret = perf_pmu_register(&pmu->pmu, pmu->pmu.name, -1);
if (ret) {
free_percpu(pmu->ctx);
pmu->ctx = NULL;
return ret;
}
pr_info("%d %s %s counters detected\n", pmu->num_counters,
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ? "HYGON" : "",
pmu->pmu.name);
num_pmus++;
return 0;
}
static void uncore_free(void)
{
struct amd_uncore_pmu *pmu;
int i;
for (i = 0; i < num_pmus; i++) {
pmu = &pmus[i];
if (!pmu->ctx)
continue;
perf_pmu_unregister(&pmu->pmu);
free_percpu(pmu->ctx);
pmu->ctx = NULL;
}
num_pmus = 0;
}
static int __init amd_uncore_init(void)
{
int ret;
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
@ -660,75 +758,13 @@ static int __init amd_uncore_init(void)
if (boot_cpu_has(X86_FEATURE_PERFMON_V2))
pmu_version = 2;
num_counters_nb = NUM_COUNTERS_NB;
num_counters_llc = NUM_COUNTERS_L2;
if (boot_cpu_data.x86 >= 0x17) {
/*
* For F17h and above, the Northbridge counters are
* repurposed as Data Fabric counters. Also, L3
* counters are supported too. The PMUs are exported
* based on family as either L2 or L3 and NB or DF.
*/
num_counters_llc = NUM_COUNTERS_L3;
amd_nb_pmu.name = "amd_df";
amd_llc_pmu.name = "amd_l3";
l3_mask = true;
}
ret = amd_uncore_df_init();
if (ret)
goto fail;
if (boot_cpu_has(X86_FEATURE_PERFCTR_NB)) {
if (pmu_version >= 2) {
*df_attr++ = &format_attr_event14v2.attr;
*df_attr++ = &format_attr_umask12.attr;
} else if (boot_cpu_data.x86 >= 0x17) {
*df_attr = &format_attr_event14.attr;
}
amd_uncore_nb = alloc_percpu(struct amd_uncore *);
if (!amd_uncore_nb) {
ret = -ENOMEM;
goto fail_nb;
}
ret = perf_pmu_register(&amd_nb_pmu, amd_nb_pmu.name, -1);
if (ret)
goto fail_nb;
if (pmu_version >= 2) {
ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
num_counters_nb = ebx.split.num_df_pmc;
}
pr_info("%d %s %s counters detected\n", num_counters_nb,
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ? "HYGON" : "",
amd_nb_pmu.name);
ret = 0;
}
if (boot_cpu_has(X86_FEATURE_PERFCTR_LLC)) {
if (boot_cpu_data.x86 >= 0x19) {
*l3_attr++ = &format_attr_event8.attr;
*l3_attr++ = &format_attr_umask8.attr;
*l3_attr++ = &format_attr_threadmask2.attr;
} else if (boot_cpu_data.x86 >= 0x17) {
*l3_attr++ = &format_attr_event8.attr;
*l3_attr++ = &format_attr_umask8.attr;
*l3_attr++ = &format_attr_threadmask8.attr;
}
amd_uncore_llc = alloc_percpu(struct amd_uncore *);
if (!amd_uncore_llc) {
ret = -ENOMEM;
goto fail_llc;
}
ret = perf_pmu_register(&amd_llc_pmu, amd_llc_pmu.name, -1);
if (ret)
goto fail_llc;
pr_info("%d %s %s counters detected\n", num_counters_llc,
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ? "HYGON" : "",
amd_llc_pmu.name);
ret = 0;
}
ret = amd_uncore_l3_init();
if (ret)
goto fail;
/*
* Install callbacks. Core will call them for each online cpu.
@ -736,7 +772,7 @@ static int __init amd_uncore_init(void)
if (cpuhp_setup_state(CPUHP_PERF_X86_AMD_UNCORE_PREP,
"perf/x86/amd/uncore:prepare",
amd_uncore_cpu_up_prepare, amd_uncore_cpu_dead))
goto fail_llc;
goto fail;
if (cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING,
"perf/x86/amd/uncore:starting",
@ -753,12 +789,8 @@ static int __init amd_uncore_init(void)
cpuhp_remove_state(CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING);
fail_prep:
cpuhp_remove_state(CPUHP_PERF_X86_AMD_UNCORE_PREP);
fail_llc:
if (boot_cpu_has(X86_FEATURE_PERFCTR_NB))
perf_pmu_unregister(&amd_nb_pmu);
free_percpu(amd_uncore_llc);
fail_nb:
free_percpu(amd_uncore_nb);
fail:
uncore_free();
return ret;
}
@ -768,18 +800,7 @@ static void __exit amd_uncore_exit(void)
cpuhp_remove_state(CPUHP_AP_PERF_X86_AMD_UNCORE_ONLINE);
cpuhp_remove_state(CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING);
cpuhp_remove_state(CPUHP_PERF_X86_AMD_UNCORE_PREP);
if (boot_cpu_has(X86_FEATURE_PERFCTR_LLC)) {
perf_pmu_unregister(&amd_llc_pmu);
free_percpu(amd_uncore_llc);
amd_uncore_llc = NULL;
}
if (boot_cpu_has(X86_FEATURE_PERFCTR_NB)) {
perf_pmu_unregister(&amd_nb_pmu);
free_percpu(amd_uncore_nb);
amd_uncore_nb = NULL;
}
uncore_free();
}
module_init(amd_uncore_init);