scsi: mpt3sas: fix dma_addr_t casts

The newly added base_make_prp_nvme function triggers a build warning on
some 32-bit configurations:

drivers/scsi/mpt3sas/mpt3sas_base.c: In function 'base_make_prp_nvme':
drivers/scsi/mpt3sas/mpt3sas_base.c:1664:13: error: cast from pointer to integer of different size [-Werror=pointer-to-int-cast]
  msg_phys = (dma_addr_t)mpt3sas_base_get_pcie_sgl_dma(ioc, smid);

After taking a closer look, I found that the problem is that the new
code mixes up pointers and dma_addr_t values unnecessarily.

This changes it to use the correct types consistently, which lets us get
rid of a lot of type casts in the process. I'm also renaming some
variables to avoid confusion between physical and dma address spaces
that are often distinct.

Fixes: 016d5c35e2 ("scsi: mpt3sas: SGL to PRP Translation for I/Os to NVMe devices")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Sathya Prakash Veerichetty <sathya.prakash@broadcom.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
This commit is contained in:
Arnd Bergmann 2017-11-06 14:35:16 +01:00 committed by Martin K. Petersen
parent d38c9a803b
commit d8335ae2b4
2 changed files with 30 additions and 34 deletions

View file

@ -1437,11 +1437,11 @@ _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
size_t data_in_sz)
{
int prp_size = NVME_PRP_SIZE;
__le64 *prp_entry, *prp1_entry, *prp2_entry, *prp_entry_phys;
__le64 *prp_page, *prp_page_phys;
__le64 *prp_entry, *prp1_entry, *prp2_entry;
__le64 *prp_page;
dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
u32 offset, entry_len;
u32 page_mask_result, page_mask;
dma_addr_t paddr;
size_t length;
/*
@ -1465,7 +1465,7 @@ _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
* contiguous memory.
*/
prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
prp_page_phys = (__le64 *)mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
/*
* Check if we are within 1 entry of a page boundary we don't
@ -1476,21 +1476,21 @@ _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
if (!page_mask_result) {
/* Bump up to next page boundary. */
prp_page = (__le64 *)((u8 *)prp_page + prp_size);
prp_page_phys = (__le64 *)((u8 *)prp_page_phys + prp_size);
prp_page_dma = prp_page_dma + prp_size;
}
/*
* Set PRP physical pointer, which initially points to the current PRP
* DMA memory page.
*/
prp_entry_phys = prp_page_phys;
prp_entry_dma = prp_page_dma;
/* Get physical address and length of the data buffer. */
if (data_in_sz) {
paddr = data_in_dma;
dma_addr = data_in_dma;
length = data_in_sz;
} else {
paddr = data_out_dma;
dma_addr = data_out_dma;
length = data_out_sz;
}
@ -1500,8 +1500,7 @@ _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
* Check if we need to put a list pointer here if we are at
* page boundary - prp_size (8 bytes).
*/
page_mask_result =
(uintptr_t)((u8 *)prp_entry_phys + prp_size) & page_mask;
page_mask_result = (prp_entry_dma + prp_size) & page_mask;
if (!page_mask_result) {
/*
* This is the last entry in a PRP List, so we need to
@ -1515,13 +1514,13 @@ _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
* contiguous, no need to get a new page - it's
* just the next address.
*/
prp_entry_phys++;
*prp_entry = cpu_to_le64((uintptr_t)prp_entry_phys);
prp_entry_dma++;
*prp_entry = cpu_to_le64(prp_entry_dma);
prp_entry++;
}
/* Need to handle if entry will be part of a page. */
offset = (u32)paddr & page_mask;
offset = dma_addr & page_mask;
entry_len = ioc->page_size - offset;
if (prp_entry == prp1_entry) {
@ -1529,7 +1528,7 @@ _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
* Must fill in the first PRP pointer (PRP1) before
* moving on.
*/
*prp1_entry = cpu_to_le64((u64)paddr);
*prp1_entry = cpu_to_le64(dma_addr);
/*
* Now point to the second PRP entry within the
@ -1549,8 +1548,7 @@ _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
* list will start at the beginning of the
* contiguous buffer.
*/
*prp2_entry =
cpu_to_le64((uintptr_t)prp_entry_phys);
*prp2_entry = cpu_to_le64(prp_entry_dma);
/*
* The next PRP Entry will be the start of the
@ -1562,7 +1560,7 @@ _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
* After this, the PRP Entries are complete.
* This command uses 2 PRP's and no PRP list.
*/
*prp2_entry = cpu_to_le64((u64)paddr);
*prp2_entry = cpu_to_le64(dma_addr);
}
} else {
/*
@ -1572,16 +1570,16 @@ _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
* all remaining PRP entries in a PRP List, one per
* each time through the loop.
*/
*prp_entry = cpu_to_le64((u64)paddr);
*prp_entry = cpu_to_le64(dma_addr);
prp_entry++;
prp_entry_phys++;
prp_entry_dma++;
}
/*
* Bump the phys address of the command's data buffer by the
* entry_len.
*/
paddr += entry_len;
dma_addr += entry_len;
/* Decrement length accounting for last partial page. */
if (entry_len > length)
@ -1610,11 +1608,10 @@ base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
Mpi25SCSIIORequest_t *mpi_request,
u16 smid, int sge_count)
{
int sge_len, offset, num_prp_in_chain = 0;
int sge_len, num_prp_in_chain = 0;
Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
__le64 *curr_buff;
dma_addr_t msg_phys;
u64 sge_addr;
dma_addr_t msg_dma, sge_addr, offset;
u32 page_mask, page_mask_result;
struct scatterlist *sg_scmd;
u32 first_prp_len;
@ -1661,9 +1658,9 @@ base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
* page (4k).
*/
curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
msg_phys = (dma_addr_t)mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
main_chain_element->Address = cpu_to_le64(msg_phys);
main_chain_element->Address = cpu_to_le64(msg_dma);
main_chain_element->NextChainOffset = 0;
main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
@ -1675,7 +1672,7 @@ base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
offset = (u32)(sge_addr & page_mask);
offset = sge_addr & page_mask;
first_prp_len = nvme_pg_size - offset;
ptr_first_sgl->Address = cpu_to_le64(sge_addr);
@ -1693,7 +1690,7 @@ base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
}
for (;;) {
offset = (u32)(sge_addr & page_mask);
offset = sge_addr & page_mask;
/* Put PRP pointer due to page boundary*/
page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
@ -1701,15 +1698,15 @@ base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
scmd_printk(KERN_NOTICE,
scmd, "page boundary curr_buff: 0x%p\n",
curr_buff);
msg_phys += 8;
*curr_buff = cpu_to_le64(msg_phys);
msg_dma += 8;
*curr_buff = cpu_to_le64(msg_dma);
curr_buff++;
num_prp_in_chain++;
}
*curr_buff = cpu_to_le64(sge_addr);
curr_buff++;
msg_phys += 8;
msg_dma += 8;
num_prp_in_chain++;
sge_addr += nvme_pg_size;
@ -2755,11 +2752,10 @@ mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
*
* Returns phys pointer to the address of the PCIe buffer.
*/
void *
dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(uintptr_t)
(ioc->scsi_lookup[smid - 1].pcie_sg_list.pcie_sgl_dma);
return ioc->scsi_lookup[smid - 1].pcie_sg_list.pcie_sgl_dma;
}
/**

View file

@ -1395,7 +1395,7 @@ void *mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid);
__le32 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc,
u16 smid);
void *mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid);
void *mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid);
dma_addr_t mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid);
void mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc);
/* hi-priority queue */