wifi: ath12k: propagate EHT capabilities to userspace

Propagate EHT capabilities to the userspace using a new member
'eht_cap' in structure ieee80211_sband_iftype_data.

MCS-NSS capabilities are copied depending on the supported bandwidths
for the given band.

Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
Signed-off-by: Aloka Dixit <quic_alokad@quicinc.com>
Signed-off-by: Pradeep Kumar Chitrapu<quic_pradeepc@quicinc.com>
Signed-off-by: Kalle Valo <quic_kvalo@quicinc.com>
Link: https://lore.kernel.org/r/20230725224034.14045-5-quic_alokad@quicinc.com
This commit is contained in:
Aloka Dixit 2023-08-02 20:04:02 +03:00 committed by Kalle Valo
parent 1476014fad
commit dbe90679bf

View file

@ -4275,6 +4275,115 @@ static void ath12k_mac_copy_he_cap(struct ath12k_band_cap *band_cap,
ath12k_gen_ppe_thresh(&band_cap->he_ppet, he_cap->ppe_thres);
}
static void
ath12k_mac_copy_eht_mcs_nss(struct ath12k_band_cap *band_cap,
struct ieee80211_eht_mcs_nss_supp *mcs_nss,
const struct ieee80211_he_cap_elem *he_cap,
const struct ieee80211_eht_cap_elem_fixed *eht_cap)
{
if ((he_cap->phy_cap_info[0] &
(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)) == 0)
memcpy(&mcs_nss->only_20mhz, &band_cap->eht_mcs_20_only,
sizeof(struct ieee80211_eht_mcs_nss_supp_20mhz_only));
if (he_cap->phy_cap_info[0] &
(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G))
memcpy(&mcs_nss->bw._80, &band_cap->eht_mcs_80,
sizeof(struct ieee80211_eht_mcs_nss_supp_bw));
if (he_cap->phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
memcpy(&mcs_nss->bw._160, &band_cap->eht_mcs_160,
sizeof(struct ieee80211_eht_mcs_nss_supp_bw));
if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
memcpy(&mcs_nss->bw._320, &band_cap->eht_mcs_320,
sizeof(struct ieee80211_eht_mcs_nss_supp_bw));
}
static void ath12k_mac_copy_eht_ppe_thresh(struct ath12k_wmi_ppe_threshold_arg *fw_ppet,
struct ieee80211_sta_eht_cap *cap)
{
u16 bit = IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
u8 i, nss, ru, ppet_bit_len_per_ru = IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2;
u8p_replace_bits(&cap->eht_ppe_thres[0], fw_ppet->numss_m1,
IEEE80211_EHT_PPE_THRES_NSS_MASK);
u16p_replace_bits((u16 *)&cap->eht_ppe_thres[0], fw_ppet->ru_bit_mask,
IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
for (nss = 0; nss <= fw_ppet->numss_m1; nss++) {
for (ru = 0;
ru < hweight16(IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
ru++) {
u32 val = 0;
if ((fw_ppet->ru_bit_mask & BIT(ru)) == 0)
continue;
u32p_replace_bits(&val, fw_ppet->ppet16_ppet8_ru3_ru0[nss] >>
(ru * ppet_bit_len_per_ru),
GENMASK(ppet_bit_len_per_ru - 1, 0));
for (i = 0; i < ppet_bit_len_per_ru; i++) {
cap->eht_ppe_thres[bit / 8] |=
(((val >> i) & 0x1) << ((bit % 8)));
bit++;
}
}
}
}
static void ath12k_mac_copy_eht_cap(struct ath12k_band_cap *band_cap,
struct ieee80211_he_cap_elem *he_cap_elem,
int iftype,
struct ieee80211_sta_eht_cap *eht_cap)
{
struct ieee80211_eht_cap_elem_fixed *eht_cap_elem = &eht_cap->eht_cap_elem;
memset(eht_cap, 0, sizeof(struct ieee80211_sta_eht_cap));
eht_cap->has_eht = true;
memcpy(eht_cap_elem->mac_cap_info, band_cap->eht_cap_mac_info,
sizeof(eht_cap_elem->mac_cap_info));
memcpy(eht_cap_elem->phy_cap_info, band_cap->eht_cap_phy_info,
sizeof(eht_cap_elem->phy_cap_info));
switch (iftype) {
case NL80211_IFTYPE_AP:
eht_cap_elem->phy_cap_info[0] &=
~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ;
eht_cap_elem->phy_cap_info[4] &=
~IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO;
eht_cap_elem->phy_cap_info[5] &=
~IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP;
break;
case NL80211_IFTYPE_STATION:
eht_cap_elem->phy_cap_info[7] &=
~(IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ);
eht_cap_elem->phy_cap_info[7] &=
~(IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ);
break;
default:
break;
}
ath12k_mac_copy_eht_mcs_nss(band_cap, &eht_cap->eht_mcs_nss_supp,
he_cap_elem, eht_cap_elem);
if (eht_cap_elem->phy_cap_info[5] &
IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT)
ath12k_mac_copy_eht_ppe_thresh(&band_cap->eht_ppet, eht_cap);
}
static int ath12k_mac_copy_sband_iftype_data(struct ath12k *ar,
struct ath12k_pdev_cap *cap,
struct ieee80211_sband_iftype_data *data,
@ -4303,6 +4412,8 @@ static int ath12k_mac_copy_sband_iftype_data(struct ath12k *ar,
data[idx].he_6ghz_capa.capa =
ath12k_mac_setup_he_6ghz_cap(cap, band_cap);
}
ath12k_mac_copy_eht_cap(band_cap, &he_cap->he_cap_elem, i,
&data[idx].eht_cap);
idx++;
}