xfs: repair inode btrees

Use the rmapbt to find inode chunks, query the chunks to compute hole
and free masks, and with that information rebuild the inobt and finobt.
Refer to the case study in
Documentation/filesystems/xfs-online-fsck-design.rst for more details.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This commit is contained in:
Darrick J. Wong 2023-12-15 10:03:32 -08:00
parent 4bdfd7d157
commit dbfbf3bdf6
11 changed files with 1022 additions and 51 deletions

View File

@ -183,6 +183,7 @@ ifeq ($(CONFIG_XFS_ONLINE_REPAIR),y)
xfs-y += $(addprefix scrub/, \
agheader_repair.o \
alloc_repair.o \
ialloc_repair.o \
newbt.o \
reap.o \
repair.o \

View File

@ -95,18 +95,28 @@ xfs_inobt_btrec_to_irec(
irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
}
/* Compute the freecount of an incore inode record. */
uint8_t
xfs_inobt_rec_freecount(
const struct xfs_inobt_rec_incore *irec)
{
uint64_t realfree = irec->ir_free;
if (xfs_inobt_issparse(irec->ir_holemask))
realfree &= xfs_inobt_irec_to_allocmask(irec);
return hweight64(realfree);
}
/* Simple checks for inode records. */
xfs_failaddr_t
xfs_inobt_check_irec(
struct xfs_btree_cur *cur,
struct xfs_perag *pag,
const struct xfs_inobt_rec_incore *irec)
{
uint64_t realfree;
/* Record has to be properly aligned within the AG. */
if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino))
if (!xfs_verify_agino(pag, irec->ir_startino))
return __this_address;
if (!xfs_verify_agino(cur->bc_ag.pag,
if (!xfs_verify_agino(pag,
irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
return __this_address;
if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
@ -115,12 +125,7 @@ xfs_inobt_check_irec(
if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
return __this_address;
/* if there are no holes, return the first available offset */
if (!xfs_inobt_issparse(irec->ir_holemask))
realfree = irec->ir_free;
else
realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
if (hweight64(realfree) != irec->ir_freecount)
if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
return __this_address;
return NULL;
@ -164,7 +169,7 @@ xfs_inobt_get_rec(
return error;
xfs_inobt_btrec_to_irec(mp, rec, irec);
fa = xfs_inobt_check_irec(cur, irec);
fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
if (fa)
return xfs_inobt_complain_bad_rec(cur, fa, irec);
@ -2740,7 +2745,7 @@ xfs_ialloc_count_inodes_rec(
xfs_failaddr_t fa;
xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
fa = xfs_inobt_check_irec(cur, &irec);
fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
if (fa)
return xfs_inobt_complain_bad_rec(cur, fa, &irec);

View File

@ -79,6 +79,7 @@ int xfs_inobt_lookup(struct xfs_btree_cur *cur, xfs_agino_t ino,
*/
int xfs_inobt_get_rec(struct xfs_btree_cur *cur,
xfs_inobt_rec_incore_t *rec, int *stat);
uint8_t xfs_inobt_rec_freecount(const struct xfs_inobt_rec_incore *irec);
/*
* Inode chunk initialisation routine
@ -93,7 +94,7 @@ union xfs_btree_rec;
void xfs_inobt_btrec_to_irec(struct xfs_mount *mp,
const union xfs_btree_rec *rec,
struct xfs_inobt_rec_incore *irec);
xfs_failaddr_t xfs_inobt_check_irec(struct xfs_btree_cur *cur,
xfs_failaddr_t xfs_inobt_check_irec(struct xfs_perag *pag,
const struct xfs_inobt_rec_incore *irec);
int xfs_ialloc_has_inodes_at_extent(struct xfs_btree_cur *cur,
xfs_agblock_t bno, xfs_extlen_t len,

View File

@ -604,6 +604,7 @@ xchk_ag_free(
struct xchk_ag *sa)
{
xchk_ag_btcur_free(sa);
xrep_reset_perag_resv(sc);
if (sa->agf_bp) {
xfs_trans_brelse(sc->tp, sa->agf_bp);
sa->agf_bp = NULL;

View File

@ -585,7 +585,7 @@ xchk_iallocbt_rec(
uint16_t holemask;
xfs_inobt_btrec_to_irec(mp, rec, &irec);
if (xfs_inobt_check_irec(bs->cur, &irec) != NULL) {
if (xfs_inobt_check_irec(bs->cur->bc_ag.pag, &irec) != NULL) {
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
return 0;
}

View File

@ -0,0 +1,884 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2018-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_icache.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_log.h"
#include "xfs_trans_priv.h"
#include "xfs_error.h"
#include "xfs_health.h"
#include "xfs_ag.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/btree.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/agb_bitmap.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/newbt.h"
#include "scrub/reap.h"
/*
* Inode Btree Repair
* ==================
*
* A quick refresher of inode btrees on a v5 filesystem:
*
* - Inode records are read into memory in units of 'inode clusters'. However
* many inodes fit in a cluster buffer is the smallest number of inodes that
* can be allocated or freed. Clusters are never smaller than one fs block
* though they can span multiple blocks. The size (in fs blocks) is
* computed with xfs_icluster_size_fsb(). The fs block alignment of a
* cluster is computed with xfs_ialloc_cluster_alignment().
*
* - Each inode btree record can describe a single 'inode chunk'. The chunk
* size is defined to be 64 inodes. If sparse inodes are enabled, every
* inobt record must be aligned to the chunk size; if not, every record must
* be aligned to the start of a cluster. It is possible to construct an XFS
* geometry where one inobt record maps to multiple inode clusters; it is
* also possible to construct a geometry where multiple inobt records map to
* different parts of one inode cluster.
*
* - If sparse inodes are not enabled, the smallest unit of allocation for
* inode records is enough to contain one inode chunk's worth of inodes.
*
* - If sparse inodes are enabled, the holemask field will be active. Each
* bit of the holemask represents 4 potential inodes; if set, the
* corresponding space does *not* contain inodes and must be left alone.
* Clusters cannot be smaller than 4 inodes. The smallest unit of allocation
* of inode records is one inode cluster.
*
* So what's the rebuild algorithm?
*
* Iterate the reverse mapping records looking for OWN_INODES and OWN_INOBT
* records. The OWN_INOBT records are the old inode btree blocks and will be
* cleared out after we've rebuilt the tree. Each possible inode cluster
* within an OWN_INODES record will be read in; for each possible inobt record
* associated with that cluster, compute the freemask calculated from the
* i_mode data in the inode chunk. For sparse inodes the holemask will be
* calculated by creating the properly aligned inobt record and punching out
* any chunk that's missing. Inode allocations and frees grab the AGI first,
* so repair protects itself from concurrent access by locking the AGI.
*
* Once we've reconstructed all the inode records, we can create new inode
* btree roots and reload the btrees. We rebuild both inode trees at the same
* time because they have the same rmap owner and it would be more complex to
* figure out if the other tree isn't in need of a rebuild and which OWN_INOBT
* blocks it owns. We have all the data we need to build both, so dump
* everything and start over.
*
* We use the prefix 'xrep_ibt' because we rebuild both inode btrees at once.
*/
struct xrep_ibt {
/* Record under construction. */
struct xfs_inobt_rec_incore rie;
/* new inobt information */
struct xrep_newbt new_inobt;
/* new finobt information */
struct xrep_newbt new_finobt;
/* Old inode btree blocks we found in the rmap. */
struct xagb_bitmap old_iallocbt_blocks;
/* Reconstructed inode records. */
struct xfarray *inode_records;
struct xfs_scrub *sc;
/* Number of inodes assigned disk space. */
unsigned int icount;
/* Number of inodes in use. */
unsigned int iused;
/* Number of finobt records needed. */
unsigned int finobt_recs;
/* get_records()'s position in the inode record array. */
xfarray_idx_t array_cur;
};
/*
* Is this inode in use? If the inode is in memory we can tell from i_mode,
* otherwise we have to check di_mode in the on-disk buffer. We only care
* that the high (i.e. non-permission) bits of _mode are zero. This should be
* safe because repair keeps all AG headers locked until the end, and process
* trying to perform an inode allocation/free must lock the AGI.
*
* @cluster_ag_base is the inode offset of the cluster within the AG.
* @cluster_bp is the cluster buffer.
* @cluster_index is the inode offset within the inode cluster.
*/
STATIC int
xrep_ibt_check_ifree(
struct xrep_ibt *ri,
xfs_agino_t cluster_ag_base,
struct xfs_buf *cluster_bp,
unsigned int cluster_index,
bool *inuse)
{
struct xfs_scrub *sc = ri->sc;
struct xfs_mount *mp = sc->mp;
struct xfs_dinode *dip;
xfs_ino_t fsino;
xfs_agino_t agino;
xfs_agnumber_t agno = ri->sc->sa.pag->pag_agno;
unsigned int cluster_buf_base;
unsigned int offset;
int error;
agino = cluster_ag_base + cluster_index;
fsino = XFS_AGINO_TO_INO(mp, agno, agino);
/* Inode uncached or half assembled, read disk buffer */
cluster_buf_base = XFS_INO_TO_OFFSET(mp, cluster_ag_base);
offset = (cluster_buf_base + cluster_index) * mp->m_sb.sb_inodesize;
if (offset >= BBTOB(cluster_bp->b_length))
return -EFSCORRUPTED;
dip = xfs_buf_offset(cluster_bp, offset);
if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)
return -EFSCORRUPTED;
if (dip->di_version >= 3 && be64_to_cpu(dip->di_ino) != fsino)
return -EFSCORRUPTED;
/* Will the in-core inode tell us if it's in use? */
error = xchk_inode_is_allocated(sc, agino, inuse);
if (!error)
return 0;
*inuse = dip->di_mode != 0;
return 0;
}
/* Stash the accumulated inobt record for rebuilding. */
STATIC int
xrep_ibt_stash(
struct xrep_ibt *ri)
{
int error = 0;
if (xchk_should_terminate(ri->sc, &error))
return error;
ri->rie.ir_freecount = xfs_inobt_rec_freecount(&ri->rie);
if (xfs_inobt_check_irec(ri->sc->sa.pag, &ri->rie) != NULL)
return -EFSCORRUPTED;
if (ri->rie.ir_freecount > 0)
ri->finobt_recs++;
trace_xrep_ibt_found(ri->sc->mp, ri->sc->sa.pag->pag_agno, &ri->rie);
error = xfarray_append(ri->inode_records, &ri->rie);
if (error)
return error;
ri->rie.ir_startino = NULLAGINO;
return 0;
}
/*
* Given an extent of inodes and an inode cluster buffer, calculate the
* location of the corresponding inobt record (creating it if necessary),
* then update the parts of the holemask and freemask of that record that
* correspond to the inode extent we were given.
*
* @cluster_ir_startino is the AG inode number of an inobt record that we're
* proposing to create for this inode cluster. If sparse inodes are enabled,
* we must round down to a chunk boundary to find the actual sparse record.
* @cluster_bp is the buffer of the inode cluster.
* @nr_inodes is the number of inodes to check from the cluster.
*/
STATIC int
xrep_ibt_cluster_record(
struct xrep_ibt *ri,
xfs_agino_t cluster_ir_startino,
struct xfs_buf *cluster_bp,
unsigned int nr_inodes)
{
struct xfs_scrub *sc = ri->sc;
struct xfs_mount *mp = sc->mp;
xfs_agino_t ir_startino;
unsigned int cluster_base;
unsigned int cluster_index;
int error = 0;
ir_startino = cluster_ir_startino;
if (xfs_has_sparseinodes(mp))
ir_startino = rounddown(ir_startino, XFS_INODES_PER_CHUNK);
cluster_base = cluster_ir_startino - ir_startino;
/*
* If the accumulated inobt record doesn't map this cluster, add it to
* the list and reset it.
*/
if (ri->rie.ir_startino != NULLAGINO &&
ri->rie.ir_startino + XFS_INODES_PER_CHUNK <= ir_startino) {
error = xrep_ibt_stash(ri);
if (error)
return error;
}
if (ri->rie.ir_startino == NULLAGINO) {
ri->rie.ir_startino = ir_startino;
ri->rie.ir_free = XFS_INOBT_ALL_FREE;
ri->rie.ir_holemask = 0xFFFF;
ri->rie.ir_count = 0;
}
/* Record the whole cluster. */
ri->icount += nr_inodes;
ri->rie.ir_count += nr_inodes;
ri->rie.ir_holemask &= ~xfs_inobt_maskn(
cluster_base / XFS_INODES_PER_HOLEMASK_BIT,
nr_inodes / XFS_INODES_PER_HOLEMASK_BIT);
/* Which inodes within this cluster are free? */
for (cluster_index = 0; cluster_index < nr_inodes; cluster_index++) {
bool inuse = false;
error = xrep_ibt_check_ifree(ri, cluster_ir_startino,
cluster_bp, cluster_index, &inuse);
if (error)
return error;
if (!inuse)
continue;
ri->iused++;
ri->rie.ir_free &= ~XFS_INOBT_MASK(cluster_base +
cluster_index);
}
return 0;
}
/*
* For each inode cluster covering the physical extent recorded by the rmapbt,
* we must calculate the properly aligned startino of that cluster, then
* iterate each cluster to fill in used and filled masks appropriately. We
* then use the (startino, used, filled) information to construct the
* appropriate inode records.
*/
STATIC int
xrep_ibt_process_cluster(
struct xrep_ibt *ri,
xfs_agblock_t cluster_bno)
{
struct xfs_imap imap;
struct xfs_buf *cluster_bp;
struct xfs_scrub *sc = ri->sc;
struct xfs_mount *mp = sc->mp;
struct xfs_ino_geometry *igeo = M_IGEO(mp);
xfs_agino_t cluster_ag_base;
xfs_agino_t irec_index;
unsigned int nr_inodes;
int error;
nr_inodes = min_t(unsigned int, igeo->inodes_per_cluster,
XFS_INODES_PER_CHUNK);
/*
* Grab the inode cluster buffer. This is safe to do with a broken
* inobt because imap_to_bp directly maps the buffer without touching
* either inode btree.
*/
imap.im_blkno = XFS_AGB_TO_DADDR(mp, sc->sa.pag->pag_agno, cluster_bno);
imap.im_len = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster);
imap.im_boffset = 0;
error = xfs_imap_to_bp(mp, sc->tp, &imap, &cluster_bp);
if (error)
return error;
/*
* Record the contents of each possible inobt record mapping this
* cluster.
*/
cluster_ag_base = XFS_AGB_TO_AGINO(mp, cluster_bno);
for (irec_index = 0;
irec_index < igeo->inodes_per_cluster;
irec_index += XFS_INODES_PER_CHUNK) {
error = xrep_ibt_cluster_record(ri,
cluster_ag_base + irec_index, cluster_bp,
nr_inodes);
if (error)
break;
}
xfs_trans_brelse(sc->tp, cluster_bp);
return error;
}
/* Check for any obvious conflicts in the inode chunk extent. */
STATIC int
xrep_ibt_check_inode_ext(
struct xfs_scrub *sc,
xfs_agblock_t agbno,
xfs_extlen_t len)
{
struct xfs_mount *mp = sc->mp;
struct xfs_ino_geometry *igeo = M_IGEO(mp);
xfs_agino_t agino;
enum xbtree_recpacking outcome;
int error;
/* Inode records must be within the AG. */
if (!xfs_verify_agbext(sc->sa.pag, agbno, len))
return -EFSCORRUPTED;
/* The entire record must align to the inode cluster size. */
if (!IS_ALIGNED(agbno, igeo->blocks_per_cluster) ||
!IS_ALIGNED(agbno + len, igeo->blocks_per_cluster))
return -EFSCORRUPTED;
/*
* The entire record must also adhere to the inode cluster alignment
* size if sparse inodes are not enabled.
*/
if (!xfs_has_sparseinodes(mp) &&
(!IS_ALIGNED(agbno, igeo->cluster_align) ||
!IS_ALIGNED(agbno + len, igeo->cluster_align)))
return -EFSCORRUPTED;
/*
* On a sparse inode fs, this cluster could be part of a sparse chunk.
* Sparse clusters must be aligned to sparse chunk alignment.
*/
if (xfs_has_sparseinodes(mp) &&
(!IS_ALIGNED(agbno, mp->m_sb.sb_spino_align) ||
!IS_ALIGNED(agbno + len, mp->m_sb.sb_spino_align)))
return -EFSCORRUPTED;
/* Make sure the entire range of blocks are valid AG inodes. */
agino = XFS_AGB_TO_AGINO(mp, agbno);
if (!xfs_verify_agino(sc->sa.pag, agino))
return -EFSCORRUPTED;
agino = XFS_AGB_TO_AGINO(mp, agbno + len) - 1;
if (!xfs_verify_agino(sc->sa.pag, agino))
return -EFSCORRUPTED;
/* Make sure this isn't free space. */
error = xfs_alloc_has_records(sc->sa.bno_cur, agbno, len, &outcome);
if (error)
return error;
if (outcome != XBTREE_RECPACKING_EMPTY)
return -EFSCORRUPTED;
return 0;
}
/* Found a fragment of the old inode btrees; dispose of them later. */
STATIC int
xrep_ibt_record_old_btree_blocks(
struct xrep_ibt *ri,
const struct xfs_rmap_irec *rec)
{
if (!xfs_verify_agbext(ri->sc->sa.pag, rec->rm_startblock,
rec->rm_blockcount))
return -EFSCORRUPTED;
return xagb_bitmap_set(&ri->old_iallocbt_blocks, rec->rm_startblock,
rec->rm_blockcount);
}
/* Record extents that belong to inode cluster blocks. */
STATIC int
xrep_ibt_record_inode_blocks(
struct xrep_ibt *ri,
const struct xfs_rmap_irec *rec)
{
struct xfs_mount *mp = ri->sc->mp;
struct xfs_ino_geometry *igeo = M_IGEO(mp);
xfs_agblock_t cluster_base;
int error;
error = xrep_ibt_check_inode_ext(ri->sc, rec->rm_startblock,
rec->rm_blockcount);
if (error)
return error;
trace_xrep_ibt_walk_rmap(mp, ri->sc->sa.pag->pag_agno,
rec->rm_startblock, rec->rm_blockcount, rec->rm_owner,
rec->rm_offset, rec->rm_flags);
/*
* Record the free/hole masks for each inode cluster that could be
* mapped by this rmap record.
*/
for (cluster_base = 0;
cluster_base < rec->rm_blockcount;
cluster_base += igeo->blocks_per_cluster) {
error = xrep_ibt_process_cluster(ri,
rec->rm_startblock + cluster_base);
if (error)
return error;
}
return 0;
}
STATIC int
xrep_ibt_walk_rmap(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_ibt *ri = priv;
int error = 0;
if (xchk_should_terminate(ri->sc, &error))
return error;
switch (rec->rm_owner) {
case XFS_RMAP_OWN_INOBT:
return xrep_ibt_record_old_btree_blocks(ri, rec);
case XFS_RMAP_OWN_INODES:
return xrep_ibt_record_inode_blocks(ri, rec);
}
return 0;
}
/*
* Iterate all reverse mappings to find the inodes (OWN_INODES) and the inode
* btrees (OWN_INOBT). Figure out if we have enough free space to reconstruct
* the inode btrees. The caller must clean up the lists if anything goes
* wrong.
*/
STATIC int
xrep_ibt_find_inodes(
struct xrep_ibt *ri)
{
struct xfs_scrub *sc = ri->sc;
int error;
ri->rie.ir_startino = NULLAGINO;
/* Collect all reverse mappings for inode blocks. */
xrep_ag_btcur_init(sc, &sc->sa);
error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_ibt_walk_rmap, ri);
xchk_ag_btcur_free(&sc->sa);
if (error)
return error;
/* If we have a record ready to go, add it to the array. */
if (ri->rie.ir_startino != NULLAGINO)
return xrep_ibt_stash(ri);
return 0;
}
/* Update the AGI counters. */
STATIC int
xrep_ibt_reset_counters(
struct xrep_ibt *ri)
{
struct xfs_scrub *sc = ri->sc;
struct xfs_agi *agi = sc->sa.agi_bp->b_addr;
unsigned int freecount = ri->icount - ri->iused;
/* Trigger inode count recalculation */
xfs_force_summary_recalc(sc->mp);
/*
* The AGI header contains extra information related to the inode
* btrees, so we must update those fields here.
*/
agi->agi_count = cpu_to_be32(ri->icount);
agi->agi_freecount = cpu_to_be32(freecount);
xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp,
XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
/* Reinitialize with the values we just logged. */
return xrep_reinit_pagi(sc);
}
/* Retrieve finobt data for bulk load. */
STATIC int
xrep_fibt_get_records(
struct xfs_btree_cur *cur,
unsigned int idx,
struct xfs_btree_block *block,
unsigned int nr_wanted,
void *priv)
{
struct xfs_inobt_rec_incore *irec = &cur->bc_rec.i;
struct xrep_ibt *ri = priv;
union xfs_btree_rec *block_rec;
unsigned int loaded;
int error;
for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
do {
error = xfarray_load(ri->inode_records,
ri->array_cur++, irec);
} while (error == 0 && xfs_inobt_rec_freecount(irec) == 0);
if (error)
return error;
block_rec = xfs_btree_rec_addr(cur, idx, block);
cur->bc_ops->init_rec_from_cur(cur, block_rec);
}
return loaded;
}
/* Retrieve inobt data for bulk load. */
STATIC int
xrep_ibt_get_records(
struct xfs_btree_cur *cur,
unsigned int idx,
struct xfs_btree_block *block,
unsigned int nr_wanted,
void *priv)
{
struct xfs_inobt_rec_incore *irec = &cur->bc_rec.i;
struct xrep_ibt *ri = priv;
union xfs_btree_rec *block_rec;
unsigned int loaded;
int error;
for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
error = xfarray_load(ri->inode_records, ri->array_cur++, irec);
if (error)
return error;
block_rec = xfs_btree_rec_addr(cur, idx, block);
cur->bc_ops->init_rec_from_cur(cur, block_rec);
}
return loaded;
}
/* Feed one of the new inobt blocks to the bulk loader. */
STATIC int
xrep_ibt_claim_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
void *priv)
{
struct xrep_ibt *ri = priv;
return xrep_newbt_claim_block(cur, &ri->new_inobt, ptr);
}
/* Feed one of the new finobt blocks to the bulk loader. */
STATIC int
xrep_fibt_claim_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
void *priv)
{
struct xrep_ibt *ri = priv;
return xrep_newbt_claim_block(cur, &ri->new_finobt, ptr);
}
/* Make sure the records do not overlap in inumber address space. */
STATIC int
xrep_ibt_check_overlap(
struct xrep_ibt *ri)
{
struct xfs_inobt_rec_incore irec;
xfarray_idx_t cur;
xfs_agino_t next_agino = 0;
int error = 0;
foreach_xfarray_idx(ri->inode_records, cur) {
if (xchk_should_terminate(ri->sc, &error))
return error;
error = xfarray_load(ri->inode_records, cur, &irec);
if (error)
return error;
if (irec.ir_startino < next_agino)
return -EFSCORRUPTED;
next_agino = irec.ir_startino + XFS_INODES_PER_CHUNK;
}
return error;
}
/* Build new inode btrees and dispose of the old one. */
STATIC int
xrep_ibt_build_new_trees(
struct xrep_ibt *ri)
{
struct xfs_scrub *sc = ri->sc;
struct xfs_btree_cur *ino_cur;
struct xfs_btree_cur *fino_cur = NULL;
xfs_fsblock_t fsbno;
bool need_finobt;
int error;
need_finobt = xfs_has_finobt(sc->mp);
/*
* Create new btrees for staging all the inobt records we collected
* earlier. The records were collected in order of increasing agino,
* so we do not have to sort them. Ensure there are no overlapping
* records.
*/
error = xrep_ibt_check_overlap(ri);
if (error)
return error;
/*
* The new inode btrees will not be rooted in the AGI until we've
* successfully rebuilt the tree.
*
* Start by setting up the inobt staging cursor.
*/
fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno,
XFS_IBT_BLOCK(sc->mp)),
xrep_newbt_init_ag(&ri->new_inobt, sc, &XFS_RMAP_OINFO_INOBT, fsbno,
XFS_AG_RESV_NONE);
ri->new_inobt.bload.claim_block = xrep_ibt_claim_block;
ri->new_inobt.bload.get_records = xrep_ibt_get_records;
ino_cur = xfs_inobt_stage_cursor(sc->sa.pag, &ri->new_inobt.afake,
XFS_BTNUM_INO);
error = xfs_btree_bload_compute_geometry(ino_cur, &ri->new_inobt.bload,
xfarray_length(ri->inode_records));
if (error)
goto err_inocur;
/* Set up finobt staging cursor. */
if (need_finobt) {
enum xfs_ag_resv_type resv = XFS_AG_RESV_METADATA;
if (sc->mp->m_finobt_nores)
resv = XFS_AG_RESV_NONE;
fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno,
XFS_FIBT_BLOCK(sc->mp)),
xrep_newbt_init_ag(&ri->new_finobt, sc, &XFS_RMAP_OINFO_INOBT,
fsbno, resv);
ri->new_finobt.bload.claim_block = xrep_fibt_claim_block;
ri->new_finobt.bload.get_records = xrep_fibt_get_records;
fino_cur = xfs_inobt_stage_cursor(sc->sa.pag,
&ri->new_finobt.afake, XFS_BTNUM_FINO);
error = xfs_btree_bload_compute_geometry(fino_cur,
&ri->new_finobt.bload, ri->finobt_recs);
if (error)
goto err_finocur;
}
/* Last chance to abort before we start committing fixes. */
if (xchk_should_terminate(sc, &error))
goto err_finocur;
/* Reserve all the space we need to build the new btrees. */
error = xrep_newbt_alloc_blocks(&ri->new_inobt,
ri->new_inobt.bload.nr_blocks);
if (error)
goto err_finocur;
if (need_finobt) {
error = xrep_newbt_alloc_blocks(&ri->new_finobt,
ri->new_finobt.bload.nr_blocks);
if (error)
goto err_finocur;
}
/* Add all inobt records. */
ri->array_cur = XFARRAY_CURSOR_INIT;
error = xfs_btree_bload(ino_cur, &ri->new_inobt.bload, ri);
if (error)
goto err_finocur;
/* Add all finobt records. */
if (need_finobt) {
ri->array_cur = XFARRAY_CURSOR_INIT;
error = xfs_btree_bload(fino_cur, &ri->new_finobt.bload, ri);
if (error)
goto err_finocur;
}
/*
* Install the new btrees in the AG header. After this point the old
* btrees are no longer accessible and the new trees are live.
*/
xfs_inobt_commit_staged_btree(ino_cur, sc->tp, sc->sa.agi_bp);
xfs_btree_del_cursor(ino_cur, 0);
if (fino_cur) {
xfs_inobt_commit_staged_btree(fino_cur, sc->tp, sc->sa.agi_bp);
xfs_btree_del_cursor(fino_cur, 0);
}
/* Reset the AGI counters now that we've changed the inode roots. */
error = xrep_ibt_reset_counters(ri);
if (error)
goto err_finobt;
/* Free unused blocks and bitmap. */
if (need_finobt) {
error = xrep_newbt_commit(&ri->new_finobt);
if (error)
goto err_inobt;
}
error = xrep_newbt_commit(&ri->new_inobt);
if (error)
return error;
return xrep_roll_ag_trans(sc);
err_finocur:
if (need_finobt)
xfs_btree_del_cursor(fino_cur, error);
err_inocur:
xfs_btree_del_cursor(ino_cur, error);
err_finobt:
if (need_finobt)
xrep_newbt_cancel(&ri->new_finobt);
err_inobt:
xrep_newbt_cancel(&ri->new_inobt);
return error;
}
/*
* Now that we've logged the roots of the new btrees, invalidate all of the
* old blocks and free them.
*/
STATIC int
xrep_ibt_remove_old_trees(
struct xrep_ibt *ri)
{
struct xfs_scrub *sc = ri->sc;
int error;
/*
* Free the old inode btree blocks if they're not in use. It's ok to
* reap with XFS_AG_RESV_NONE even if the finobt had a per-AG
* reservation because we reset the reservation before releasing the
* AGI and AGF header buffer locks.
*/
error = xrep_reap_agblocks(sc, &ri->old_iallocbt_blocks,
&XFS_RMAP_OINFO_INOBT, XFS_AG_RESV_NONE);
if (error)
return error;
/*
* If the finobt is enabled and has a per-AG reservation, make sure we
* reinitialize the per-AG reservations.
*/
if (xfs_has_finobt(sc->mp) && !sc->mp->m_finobt_nores)
sc->flags |= XREP_RESET_PERAG_RESV;
return 0;
}
/* Repair both inode btrees. */
int
xrep_iallocbt(
struct xfs_scrub *sc)
{
struct xrep_ibt *ri;
struct xfs_mount *mp = sc->mp;
char *descr;
xfs_agino_t first_agino, last_agino;
int error = 0;
/* We require the rmapbt to rebuild anything. */
if (!xfs_has_rmapbt(mp))
return -EOPNOTSUPP;
ri = kzalloc(sizeof(struct xrep_ibt), XCHK_GFP_FLAGS);
if (!ri)
return -ENOMEM;
ri->sc = sc;
/* We rebuild both inode btrees. */
sc->sick_mask = XFS_SICK_AG_INOBT | XFS_SICK_AG_FINOBT;
/* Set up enough storage to handle an AG with nothing but inodes. */
xfs_agino_range(mp, sc->sa.pag->pag_agno, &first_agino, &last_agino);
last_agino /= XFS_INODES_PER_CHUNK;
descr = xchk_xfile_ag_descr(sc, "inode index records");
error = xfarray_create(descr, last_agino,
sizeof(struct xfs_inobt_rec_incore),
&ri->inode_records);
kfree(descr);
if (error)
goto out_ri;
/* Collect the inode data and find the old btree blocks. */
xagb_bitmap_init(&ri->old_iallocbt_blocks);
error = xrep_ibt_find_inodes(ri);
if (error)
goto out_bitmap;
/* Rebuild the inode indexes. */
error = xrep_ibt_build_new_trees(ri);
if (error)
goto out_bitmap;
/* Kill the old tree. */
error = xrep_ibt_remove_old_trees(ri);
if (error)
goto out_bitmap;
out_bitmap:
xagb_bitmap_destroy(&ri->old_iallocbt_blocks);
xfarray_destroy(ri->inode_records);
out_ri:
kfree(ri);
return error;
}
/* Make sure both btrees are ok after we've rebuilt them. */
int
xrep_revalidate_iallocbt(
struct xfs_scrub *sc)
{
__u32 old_type = sc->sm->sm_type;
int error;
/*
* We must update sm_type temporarily so that the tree-to-tree cross
* reference checks will work in the correct direction, and also so
* that tracing will report correctly if there are more errors.
*/
sc->sm->sm_type = XFS_SCRUB_TYPE_INOBT;
error = xchk_iallocbt(sc);
if (error)
goto out;
if (xfs_has_finobt(sc->mp)) {
sc->sm->sm_type = XFS_SCRUB_TYPE_FINOBT;
error = xchk_iallocbt(sc);
}
out:
sc->sm->sm_type = old_type;
return error;
}

View File

@ -806,3 +806,62 @@ xrep_reinit_pagf(
return 0;
}
/*
* Reinitialize the in-core AG state after a repair by rereading the AGI
* buffer. We had better get the same AGI buffer as the one that's attached
* to the scrub context.
*/
int
xrep_reinit_pagi(
struct xfs_scrub *sc)
{
struct xfs_perag *pag = sc->sa.pag;
struct xfs_buf *bp;
int error;
ASSERT(pag);
ASSERT(xfs_perag_initialised_agi(pag));
clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
error = xfs_ialloc_read_agi(pag, sc->tp, &bp);
if (error)
return error;
if (bp != sc->sa.agi_bp) {
ASSERT(bp == sc->sa.agi_bp);
return -EFSCORRUPTED;
}
return 0;
}
/* Reinitialize the per-AG block reservation for the AG we just fixed. */
int
xrep_reset_perag_resv(
struct xfs_scrub *sc)
{
int error;
if (!(sc->flags & XREP_RESET_PERAG_RESV))
return 0;
ASSERT(sc->sa.pag != NULL);
ASSERT(sc->ops->type == ST_PERAG);
ASSERT(sc->tp);
sc->flags &= ~XREP_RESET_PERAG_RESV;
error = xfs_ag_resv_free(sc->sa.pag);
if (error)
goto out;
error = xfs_ag_resv_init(sc->sa.pag, sc->tp);
if (error == -ENOSPC) {
xfs_err(sc->mp,
"Insufficient free space to reset per-AG reservation for AG %u after repair.",
sc->sa.pag->pag_agno);
error = 0;
}
out:
return error;
}

View File

@ -59,6 +59,7 @@ int xrep_find_ag_btree_roots(struct xfs_scrub *sc, struct xfs_buf *agf_bp,
struct xrep_find_ag_btree *btree_info, struct xfs_buf *agfl_bp);
void xrep_force_quotacheck(struct xfs_scrub *sc, xfs_dqtype_t type);
int xrep_ino_dqattach(struct xfs_scrub *sc);
int xrep_reset_perag_resv(struct xfs_scrub *sc);
/* Repair setup functions */
int xrep_setup_ag_allocbt(struct xfs_scrub *sc);
@ -68,6 +69,7 @@ void xrep_ag_btcur_init(struct xfs_scrub *sc, struct xchk_ag *sa);
/* Metadata revalidators */
int xrep_revalidate_allocbt(struct xfs_scrub *sc);
int xrep_revalidate_iallocbt(struct xfs_scrub *sc);
/* Metadata repairers */
@ -77,8 +79,10 @@ int xrep_agf(struct xfs_scrub *sc);
int xrep_agfl(struct xfs_scrub *sc);
int xrep_agi(struct xfs_scrub *sc);
int xrep_allocbt(struct xfs_scrub *sc);
int xrep_iallocbt(struct xfs_scrub *sc);
int xrep_reinit_pagf(struct xfs_scrub *sc);
int xrep_reinit_pagi(struct xfs_scrub *sc);
#else
@ -99,6 +103,17 @@ xrep_calc_ag_resblks(
return 0;
}
static inline int
xrep_reset_perag_resv(
struct xfs_scrub *sc)
{
if (!(sc->flags & XREP_RESET_PERAG_RESV))
return 0;
ASSERT(0);
return -EOPNOTSUPP;
}
/* repair setup functions for no-repair */
static inline int
xrep_setup_nothing(
@ -109,6 +124,7 @@ xrep_setup_nothing(
#define xrep_setup_ag_allocbt xrep_setup_nothing
#define xrep_revalidate_allocbt (NULL)
#define xrep_revalidate_iallocbt (NULL)
#define xrep_probe xrep_notsupported
#define xrep_superblock xrep_notsupported
@ -116,6 +132,7 @@ xrep_setup_nothing(
#define xrep_agfl xrep_notsupported
#define xrep_agi xrep_notsupported
#define xrep_allocbt xrep_notsupported
#define xrep_iallocbt xrep_notsupported
#endif /* CONFIG_XFS_ONLINE_REPAIR */

View File

@ -253,14 +253,16 @@ static const struct xchk_meta_ops meta_scrub_ops[] = {
.type = ST_PERAG,
.setup = xchk_setup_ag_iallocbt,
.scrub = xchk_iallocbt,
.repair = xrep_notsupported,
.repair = xrep_iallocbt,
.repair_eval = xrep_revalidate_iallocbt,
},
[XFS_SCRUB_TYPE_FINOBT] = { /* finobt */
.type = ST_PERAG,
.setup = xchk_setup_ag_iallocbt,
.scrub = xchk_iallocbt,
.has = xfs_has_finobt,
.repair = xrep_notsupported,
.repair = xrep_iallocbt,
.repair_eval = xrep_revalidate_iallocbt,
},
[XFS_SCRUB_TYPE_RMAPBT] = { /* rmapbt */
.type = ST_PERAG,

View File

@ -121,6 +121,7 @@ struct xfs_scrub {
#define XCHK_HAVE_FREEZE_PROT (1U << 1) /* do we have freeze protection? */
#define XCHK_FSGATES_DRAIN (1U << 2) /* defer ops draining enabled */
#define XCHK_NEED_DRAIN (1U << 3) /* scrub needs to drain defer ops */
#define XREP_RESET_PERAG_RESV (1U << 30) /* must reset AG space reservation */
#define XREP_ALREADY_FIXED (1U << 31) /* checking our repair work */
/*

View File

@ -106,6 +106,7 @@ TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_FSCOUNTERS);
{ XCHK_HAVE_FREEZE_PROT, "nofreeze" }, \
{ XCHK_FSGATES_DRAIN, "fsgates_drain" }, \
{ XCHK_NEED_DRAIN, "need_drain" }, \
{ XREP_RESET_PERAG_RESV, "reset_perag_resv" }, \
{ XREP_ALREADY_FIXED, "already_fixed" }
DECLARE_EVENT_CLASS(xchk_class,
@ -1172,7 +1173,7 @@ DEFINE_EVENT(xrep_rmap_class, name, \
xfs_agblock_t agbno, xfs_extlen_t len, \
uint64_t owner, uint64_t offset, unsigned int flags), \
TP_ARGS(mp, agno, agbno, len, owner, offset, flags))
DEFINE_REPAIR_RMAP_EVENT(xrep_ialloc_extent_fn);
DEFINE_REPAIR_RMAP_EVENT(xrep_ibt_walk_rmap);
DEFINE_REPAIR_RMAP_EVENT(xrep_rmap_extent_fn);
DEFINE_REPAIR_RMAP_EVENT(xrep_bmap_extent_fn);
@ -1199,6 +1200,38 @@ TRACE_EVENT(xrep_abt_found,
__entry->blockcount)
)
TRACE_EVENT(xrep_ibt_found,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
const struct xfs_inobt_rec_incore *rec),
TP_ARGS(mp, agno, rec),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agino_t, startino)
__field(uint16_t, holemask)
__field(uint8_t, count)
__field(uint8_t, freecount)
__field(uint64_t, freemask)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->startino = rec->ir_startino;
__entry->holemask = rec->ir_holemask;
__entry->count = rec->ir_count;
__entry->freecount = rec->ir_freecount;
__entry->freemask = rec->ir_free;
),
TP_printk("dev %d:%d agno 0x%x agino 0x%x holemask 0x%x count 0x%x freecount 0x%x freemask 0x%llx",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->startino,
__entry->holemask,
__entry->count,
__entry->freecount,
__entry->freemask)
)
TRACE_EVENT(xrep_refcount_extent_fn,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
struct xfs_refcount_irec *irec),
@ -1321,39 +1354,6 @@ TRACE_EVENT(xrep_reset_counters,
MAJOR(__entry->dev), MINOR(__entry->dev))
)
TRACE_EVENT(xrep_ialloc_insert,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
xfs_agino_t startino, uint16_t holemask, uint8_t count,
uint8_t freecount, uint64_t freemask),
TP_ARGS(mp, agno, startino, holemask, count, freecount, freemask),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agino_t, startino)
__field(uint16_t, holemask)
__field(uint8_t, count)
__field(uint8_t, freecount)
__field(uint64_t, freemask)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->startino = startino;
__entry->holemask = holemask;
__entry->count = count;
__entry->freecount = freecount;
__entry->freemask = freemask;
),
TP_printk("dev %d:%d agno 0x%x startino 0x%x holemask 0x%x count %u freecount %u freemask 0x%llx",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->startino,
__entry->holemask,
__entry->count,
__entry->freecount,
__entry->freemask)
)
DECLARE_EVENT_CLASS(xrep_newbt_extent_class,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
xfs_agblock_t agbno, xfs_extlen_t len,