mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-31 16:38:12 +00:00
HWPOISON: Add brief hwpoison description to Documentation
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This commit is contained in:
parent
1087e9b4ff
commit
f58ee00f15
1 changed files with 136 additions and 0 deletions
136
Documentation/vm/hwpoison.txt
Normal file
136
Documentation/vm/hwpoison.txt
Normal file
|
@ -0,0 +1,136 @@
|
|||
What is hwpoison?
|
||||
|
||||
Upcoming Intel CPUs have support for recovering from some memory errors
|
||||
(``MCA recovery''). This requires the OS to declare a page "poisoned",
|
||||
kill the processes associated with it and avoid using it in the future.
|
||||
|
||||
This patchkit implements the necessary infrastructure in the VM.
|
||||
|
||||
To quote the overview comment:
|
||||
|
||||
* High level machine check handler. Handles pages reported by the
|
||||
* hardware as being corrupted usually due to a 2bit ECC memory or cache
|
||||
* failure.
|
||||
*
|
||||
* This focusses on pages detected as corrupted in the background.
|
||||
* When the current CPU tries to consume corruption the currently
|
||||
* running process can just be killed directly instead. This implies
|
||||
* that if the error cannot be handled for some reason it's safe to
|
||||
* just ignore it because no corruption has been consumed yet. Instead
|
||||
* when that happens another machine check will happen.
|
||||
*
|
||||
* Handles page cache pages in various states. The tricky part
|
||||
* here is that we can access any page asynchronous to other VM
|
||||
* users, because memory failures could happen anytime and anywhere,
|
||||
* possibly violating some of their assumptions. This is why this code
|
||||
* has to be extremely careful. Generally it tries to use normal locking
|
||||
* rules, as in get the standard locks, even if that means the
|
||||
* error handling takes potentially a long time.
|
||||
*
|
||||
* Some of the operations here are somewhat inefficient and have non
|
||||
* linear algorithmic complexity, because the data structures have not
|
||||
* been optimized for this case. This is in particular the case
|
||||
* for the mapping from a vma to a process. Since this case is expected
|
||||
* to be rare we hope we can get away with this.
|
||||
|
||||
The code consists of a the high level handler in mm/memory-failure.c,
|
||||
a new page poison bit and various checks in the VM to handle poisoned
|
||||
pages.
|
||||
|
||||
The main target right now is KVM guests, but it works for all kinds
|
||||
of applications. KVM support requires a recent qemu-kvm release.
|
||||
|
||||
For the KVM use there was need for a new signal type so that
|
||||
KVM can inject the machine check into the guest with the proper
|
||||
address. This in theory allows other applications to handle
|
||||
memory failures too. The expection is that near all applications
|
||||
won't do that, but some very specialized ones might.
|
||||
|
||||
---
|
||||
|
||||
There are two (actually three) modi memory failure recovery can be in:
|
||||
|
||||
vm.memory_failure_recovery sysctl set to zero:
|
||||
All memory failures cause a panic. Do not attempt recovery.
|
||||
(on x86 this can be also affected by the tolerant level of the
|
||||
MCE subsystem)
|
||||
|
||||
early kill
|
||||
(can be controlled globally and per process)
|
||||
Send SIGBUS to the application as soon as the error is detected
|
||||
This allows applications who can process memory errors in a gentle
|
||||
way (e.g. drop affected object)
|
||||
This is the mode used by KVM qemu.
|
||||
|
||||
late kill
|
||||
Send SIGBUS when the application runs into the corrupted page.
|
||||
This is best for memory error unaware applications and default
|
||||
Note some pages are always handled as late kill.
|
||||
|
||||
---
|
||||
|
||||
User control:
|
||||
|
||||
vm.memory_failure_recovery
|
||||
See sysctl.txt
|
||||
|
||||
vm.memory_failure_early_kill
|
||||
Enable early kill mode globally
|
||||
|
||||
PR_MCE_KILL
|
||||
Set early/late kill mode/revert to system default
|
||||
arg1: PR_MCE_KILL_CLEAR: Revert to system default
|
||||
arg1: PR_MCE_KILL_SET: arg2 defines thread specific mode
|
||||
PR_MCE_KILL_EARLY: Early kill
|
||||
PR_MCE_KILL_LATE: Late kill
|
||||
PR_MCE_KILL_DEFAULT: Use system global default
|
||||
PR_MCE_KILL_GET
|
||||
return current mode
|
||||
|
||||
|
||||
---
|
||||
|
||||
Testing:
|
||||
|
||||
madvise(MADV_POISON, ....)
|
||||
(as root)
|
||||
Poison a page in the process for testing
|
||||
|
||||
|
||||
hwpoison-inject module through debugfs
|
||||
/sys/debug/hwpoison/corrupt-pfn
|
||||
|
||||
Inject hwpoison fault at PFN echoed into this file
|
||||
|
||||
|
||||
Architecture specific MCE injector
|
||||
|
||||
x86 has mce-inject, mce-test
|
||||
|
||||
Some portable hwpoison test programs in mce-test, see blow.
|
||||
|
||||
---
|
||||
|
||||
References:
|
||||
|
||||
http://halobates.de/mce-lc09-2.pdf
|
||||
Overview presentation from LinuxCon 09
|
||||
|
||||
git://git.kernel.org/pub/scm/utils/cpu/mce/mce-test.git
|
||||
Test suite (hwpoison specific portable tests in tsrc)
|
||||
|
||||
git://git.kernel.org/pub/scm/utils/cpu/mce/mce-inject.git
|
||||
x86 specific injector
|
||||
|
||||
|
||||
---
|
||||
|
||||
Limitations:
|
||||
|
||||
- Not all page types are supported and never will. Most kernel internal
|
||||
objects cannot be recovered, only LRU pages for now.
|
||||
- Right now hugepage support is missing.
|
||||
|
||||
---
|
||||
Andi Kleen, Oct 2009
|
||||
|
Loading…
Reference in a new issue