Merge branch kvm-arm64/selftest/memslot-fixes into kvmarm-master/next

* kvm-arm64/selftest/memslot-fixes:
  : .
  : KVM memslot selftest fixes for non-4kB page sizes, courtesy
  : of Gavin Shan. From the cover letter:
  :
  : "kvm/selftests/memslots_perf_test doesn't work with 64KB-page-size-host
  : and 4KB-page-size-guest on aarch64. In the implementation, the host and
  : guest page size have been hardcoded to 4KB. It's ovbiously not working
  : on aarch64 which supports 4KB, 16KB, 64KB individually on host and guest.
  :
  : This series tries to fix it. After the series is applied, the test runs
  : successfully with 64KB-page-size-host and 4KB-page-size-guest."
  : .
  KVM: selftests: memslot_perf_test: Report optimal memory slots
  KVM: selftests: memslot_perf_test: Consolidate memory
  KVM: selftests: memslot_perf_test: Support variable guest page size
  KVM: selftests: memslot_perf_test: Probe memory slots for once
  KVM: selftests: memslot_perf_test: Consolidate loop conditions in prepare_vm()
  KVM: selftests: memslot_perf_test: Use data->nslots in prepare_vm()

Signed-off-by: Marc Zyngier <maz@kernel.org>
This commit is contained in:
Marc Zyngier 2022-12-05 14:16:07 +00:00
commit f8faf02fb3

View file

@ -20,20 +20,20 @@
#include <unistd.h>
#include <linux/compiler.h>
#include <linux/sizes.h>
#include <test_util.h>
#include <kvm_util.h>
#include <processor.h>
#define MEM_SIZE ((512U << 20) + 4096)
#define MEM_SIZE_PAGES (MEM_SIZE / 4096)
#define MEM_GPA 0x10000000UL
#define MEM_EXTRA_SIZE SZ_64K
#define MEM_SIZE (SZ_512M + MEM_EXTRA_SIZE)
#define MEM_GPA SZ_256M
#define MEM_AUX_GPA MEM_GPA
#define MEM_SYNC_GPA MEM_AUX_GPA
#define MEM_TEST_GPA (MEM_AUX_GPA + 4096)
#define MEM_TEST_SIZE (MEM_SIZE - 4096)
static_assert(MEM_SIZE % 4096 == 0, "invalid mem size");
static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size");
#define MEM_TEST_GPA (MEM_AUX_GPA + MEM_EXTRA_SIZE)
#define MEM_TEST_SIZE (MEM_SIZE - MEM_EXTRA_SIZE)
/*
* 32 MiB is max size that gets well over 100 iterations on 509 slots.
@ -41,44 +41,38 @@ static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size");
* 8194 slots in use can then be tested (although with slightly
* limited resolution).
*/
#define MEM_SIZE_MAP ((32U << 20) + 4096)
#define MEM_SIZE_MAP_PAGES (MEM_SIZE_MAP / 4096)
#define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - 4096)
#define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096)
static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size");
static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size");
static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size");
static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size");
#define MEM_SIZE_MAP (SZ_32M + MEM_EXTRA_SIZE)
#define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - MEM_EXTRA_SIZE)
/*
* 128 MiB is min size that fills 32k slots with at least one page in each
* while at the same time gets 100+ iterations in such test
*
* 2 MiB chunk size like a typical huge page
*/
#define MEM_TEST_UNMAP_SIZE (128U << 20)
#define MEM_TEST_UNMAP_SIZE_PAGES (MEM_TEST_UNMAP_SIZE / 4096)
/* 2 MiB chunk size like a typical huge page */
#define MEM_TEST_UNMAP_CHUNK_PAGES (2U << (20 - 12))
static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE,
"invalid unmap test region size");
static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0,
"invalid unmap test region size");
static_assert(MEM_TEST_UNMAP_SIZE_PAGES %
(2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0,
"invalid unmap test region size");
#define MEM_TEST_UNMAP_SIZE SZ_128M
#define MEM_TEST_UNMAP_CHUNK_SIZE SZ_2M
/*
* For the move active test the middle of the test area is placed on
* a memslot boundary: half lies in the memslot being moved, half in
* other memslot(s).
*
* When running this test with 32k memslots (32764, really) each memslot
* contains 4 pages.
* The last one additionally contains the remaining 21 pages of memory,
* for the total size of 25 pages.
* Hence, the maximum size here is 50 pages.
* We have different number of memory slots, excluding the reserved
* memory slot 0, on various architectures and configurations. The
* memory size in this test is calculated by picking the maximal
* last memory slot's memory size, with alignment to the largest
* supported page size (64KB). In this way, the selected memory
* size for this test is compatible with test_memslot_move_prepare().
*
* architecture slots memory-per-slot memory-on-last-slot
* --------------------------------------------------------------
* x86-4KB 32763 16KB 160KB
* arm64-4KB 32766 16KB 112KB
* arm64-16KB 32766 16KB 112KB
* arm64-64KB 8192 64KB 128KB
*/
#define MEM_TEST_MOVE_SIZE_PAGES (50)
#define MEM_TEST_MOVE_SIZE (MEM_TEST_MOVE_SIZE_PAGES * 4096)
#define MEM_TEST_MOVE_SIZE (3 * SZ_64K)
#define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE)
static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE,
"invalid move test region size");
@ -100,6 +94,7 @@ struct vm_data {
};
struct sync_area {
uint32_t guest_page_size;
atomic_bool start_flag;
atomic_bool exit_flag;
atomic_bool sync_flag;
@ -192,14 +187,15 @@ static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
uint64_t gpage, pgoffs;
uint32_t slot, slotoffs;
void *base;
uint32_t guest_page_size = data->vm->page_size;
TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate");
TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096,
TEST_ASSERT(gpa < MEM_GPA + data->npages * guest_page_size,
"Too high gpa to translate");
gpa -= MEM_GPA;
gpage = gpa / 4096;
pgoffs = gpa % 4096;
gpage = gpa / guest_page_size;
pgoffs = gpa % guest_page_size;
slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1);
slotoffs = gpage - (slot * data->pages_per_slot);
@ -217,14 +213,16 @@ static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
}
base = data->hva_slots[slot];
return (uint8_t *)base + slotoffs * 4096 + pgoffs;
return (uint8_t *)base + slotoffs * guest_page_size + pgoffs;
}
static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot)
{
uint32_t guest_page_size = data->vm->page_size;
TEST_ASSERT(slot < data->nslots, "Too high slot number");
return MEM_GPA + slot * data->pages_per_slot * 4096;
return MEM_GPA + slot * data->pages_per_slot * guest_page_size;
}
static struct vm_data *alloc_vm(void)
@ -241,82 +239,110 @@ static struct vm_data *alloc_vm(void)
return data;
}
static bool check_slot_pages(uint32_t host_page_size, uint32_t guest_page_size,
uint64_t pages_per_slot, uint64_t rempages)
{
if (!pages_per_slot)
return false;
if ((pages_per_slot * guest_page_size) % host_page_size)
return false;
if ((rempages * guest_page_size) % host_page_size)
return false;
return true;
}
static uint64_t get_max_slots(struct vm_data *data, uint32_t host_page_size)
{
uint32_t guest_page_size = data->vm->page_size;
uint64_t mempages, pages_per_slot, rempages;
uint64_t slots;
mempages = data->npages;
slots = data->nslots;
while (--slots > 1) {
pages_per_slot = mempages / slots;
rempages = mempages % pages_per_slot;
if (check_slot_pages(host_page_size, guest_page_size,
pages_per_slot, rempages))
return slots + 1; /* slot 0 is reserved */
}
return 0;
}
static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots,
void *guest_code, uint64_t mempages,
void *guest_code, uint64_t mem_size,
struct timespec *slot_runtime)
{
uint32_t max_mem_slots;
uint64_t rempages;
uint64_t mempages, rempages;
uint64_t guest_addr;
uint32_t slot;
uint32_t slot, host_page_size, guest_page_size;
struct timespec tstart;
struct sync_area *sync;
max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
TEST_ASSERT(max_mem_slots > 1,
"KVM_CAP_NR_MEMSLOTS should be greater than 1");
TEST_ASSERT(nslots > 1 || nslots == -1,
"Slot count cap should be greater than 1");
if (nslots != -1)
max_mem_slots = min(max_mem_slots, (uint32_t)nslots);
pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots);
TEST_ASSERT(mempages > 1,
"Can't test without any memory");
data->npages = mempages;
data->nslots = max_mem_slots - 1;
data->pages_per_slot = mempages / data->nslots;
if (!data->pages_per_slot) {
*maxslots = mempages + 1;
return false;
}
rempages = mempages % data->nslots;
data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
TEST_ASSERT(data->hva_slots, "malloc() fail");
host_page_size = getpagesize();
guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size;
mempages = mem_size / guest_page_size;
data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code);
ucall_init(data->vm, NULL);
TEST_ASSERT(data->vm->page_size == guest_page_size, "Invalid VM page size");
data->npages = mempages;
TEST_ASSERT(data->npages > 1, "Can't test without any memory");
data->nslots = nslots;
data->pages_per_slot = data->npages / data->nslots;
rempages = data->npages % data->nslots;
if (!check_slot_pages(host_page_size, guest_page_size,
data->pages_per_slot, rempages)) {
*maxslots = get_max_slots(data, host_page_size);
return false;
}
data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
TEST_ASSERT(data->hva_slots, "malloc() fail");
pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n",
max_mem_slots - 1, data->pages_per_slot, rempages);
data->nslots, data->pages_per_slot, rempages);
clock_gettime(CLOCK_MONOTONIC, &tstart);
for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) {
for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) {
uint64_t npages;
npages = data->pages_per_slot;
if (slot == max_mem_slots - 1)
if (slot == data->nslots)
npages += rempages;
vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS,
guest_addr, slot, npages,
0);
guest_addr += npages * 4096;
guest_addr += npages * guest_page_size;
}
*slot_runtime = timespec_elapsed(tstart);
for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) {
for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) {
uint64_t npages;
uint64_t gpa;
npages = data->pages_per_slot;
if (slot == max_mem_slots - 2)
if (slot == data->nslots)
npages += rempages;
gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr,
slot + 1);
gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, slot);
TEST_ASSERT(gpa == guest_addr,
"vm_phy_pages_alloc() failed\n");
data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr);
memset(data->hva_slots[slot], 0, npages * 4096);
data->hva_slots[slot - 1] = addr_gpa2hva(data->vm, guest_addr);
memset(data->hva_slots[slot - 1], 0, npages * guest_page_size);
guest_addr += npages * 4096;
guest_addr += npages * guest_page_size;
}
virt_map(data->vm, MEM_GPA, MEM_GPA, mempages);
virt_map(data->vm, MEM_GPA, MEM_GPA, data->npages);
sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
atomic_init(&sync->start_flag, false);
@ -415,6 +441,7 @@ static bool guest_perform_sync(void)
static void guest_code_test_memslot_move(void)
{
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr);
GUEST_SYNC(0);
@ -425,7 +452,7 @@ static void guest_code_test_memslot_move(void)
uintptr_t ptr;
for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE;
ptr += 4096)
ptr += page_size)
*(uint64_t *)ptr = MEM_TEST_VAL_1;
/*
@ -443,6 +470,7 @@ static void guest_code_test_memslot_move(void)
static void guest_code_test_memslot_map(void)
{
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
GUEST_SYNC(0);
@ -452,14 +480,16 @@ static void guest_code_test_memslot_map(void)
uintptr_t ptr;
for (ptr = MEM_TEST_GPA;
ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096)
ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
ptr += page_size)
*(uint64_t *)ptr = MEM_TEST_VAL_1;
if (!guest_perform_sync())
break;
for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096)
ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE;
ptr += page_size)
*(uint64_t *)ptr = MEM_TEST_VAL_2;
if (!guest_perform_sync())
@ -506,6 +536,9 @@ static void guest_code_test_memslot_unmap(void)
static void guest_code_test_memslot_rw(void)
{
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
GUEST_SYNC(0);
guest_spin_until_start();
@ -514,14 +547,14 @@ static void guest_code_test_memslot_rw(void)
uintptr_t ptr;
for (ptr = MEM_TEST_GPA;
ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096)
ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size)
*(uint64_t *)ptr = MEM_TEST_VAL_1;
if (!guest_perform_sync())
break;
for (ptr = MEM_TEST_GPA + 4096 / 2;
ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) {
for (ptr = MEM_TEST_GPA + page_size / 2;
ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) {
uint64_t val = *(uint64_t *)ptr;
GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val);
@ -539,6 +572,7 @@ static bool test_memslot_move_prepare(struct vm_data *data,
struct sync_area *sync,
uint64_t *maxslots, bool isactive)
{
uint32_t guest_page_size = data->vm->page_size;
uint64_t movesrcgpa, movetestgpa;
movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
@ -547,7 +581,7 @@ static bool test_memslot_move_prepare(struct vm_data *data,
uint64_t lastpages;
vm_gpa2hva(data, movesrcgpa, &lastpages);
if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) {
if (lastpages * guest_page_size < MEM_TEST_MOVE_SIZE / 2) {
*maxslots = 0;
return false;
}
@ -593,8 +627,9 @@ static void test_memslot_do_unmap(struct vm_data *data,
uint64_t offsp, uint64_t count)
{
uint64_t gpa, ctr;
uint32_t guest_page_size = data->vm->page_size;
for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) {
for (gpa = MEM_TEST_GPA + offsp * guest_page_size, ctr = 0; ctr < count; ) {
uint64_t npages;
void *hva;
int ret;
@ -602,12 +637,12 @@ static void test_memslot_do_unmap(struct vm_data *data,
hva = vm_gpa2hva(data, gpa, &npages);
TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa);
npages = min(npages, count - ctr);
ret = madvise(hva, npages * 4096, MADV_DONTNEED);
ret = madvise(hva, npages * guest_page_size, MADV_DONTNEED);
TEST_ASSERT(!ret,
"madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64,
hva, gpa);
ctr += npages;
gpa += npages * 4096;
gpa += npages * guest_page_size;
}
TEST_ASSERT(ctr == count,
"madvise(MADV_DONTNEED) should exactly cover all of the requested area");
@ -618,11 +653,12 @@ static void test_memslot_map_unmap_check(struct vm_data *data,
{
uint64_t gpa;
uint64_t *val;
uint32_t guest_page_size = data->vm->page_size;
if (!map_unmap_verify)
return;
gpa = MEM_TEST_GPA + offsp * 4096;
gpa = MEM_TEST_GPA + offsp * guest_page_size;
val = (typeof(val))vm_gpa2hva(data, gpa, NULL);
TEST_ASSERT(*val == valexp,
"Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")",
@ -632,12 +668,14 @@ static void test_memslot_map_unmap_check(struct vm_data *data,
static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
{
uint32_t guest_page_size = data->vm->page_size;
uint64_t guest_pages = MEM_TEST_MAP_SIZE / guest_page_size;
/*
* Unmap the second half of the test area while guest writes to (maps)
* the first half.
*/
test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2,
MEM_TEST_MAP_SIZE_PAGES / 2);
test_memslot_do_unmap(data, guest_pages / 2, guest_pages / 2);
/*
* Wait for the guest to finish writing the first half of the test
@ -648,10 +686,8 @@ static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
*/
host_perform_sync(sync);
test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
test_memslot_map_unmap_check(data,
MEM_TEST_MAP_SIZE_PAGES / 2 - 1,
MEM_TEST_VAL_1);
test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2);
test_memslot_map_unmap_check(data, guest_pages / 2 - 1, MEM_TEST_VAL_1);
test_memslot_do_unmap(data, 0, guest_pages / 2);
/*
@ -664,16 +700,16 @@ static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
* the test area.
*/
host_perform_sync(sync);
test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2,
MEM_TEST_VAL_2);
test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1,
MEM_TEST_VAL_2);
test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2);
test_memslot_map_unmap_check(data, guest_pages - 1, MEM_TEST_VAL_2);
}
static void test_memslot_unmap_loop_common(struct vm_data *data,
struct sync_area *sync,
uint64_t chunk)
{
uint32_t guest_page_size = data->vm->page_size;
uint64_t guest_pages = MEM_TEST_UNMAP_SIZE / guest_page_size;
uint64_t ctr;
/*
@ -685,42 +721,49 @@ static void test_memslot_unmap_loop_common(struct vm_data *data,
*/
host_perform_sync(sync);
test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk)
for (ctr = 0; ctr < guest_pages / 2; ctr += chunk)
test_memslot_do_unmap(data, ctr, chunk);
/* Likewise, but for the opposite host / guest areas */
host_perform_sync(sync);
test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2,
MEM_TEST_VAL_2);
for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2;
ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk)
test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2);
for (ctr = guest_pages / 2; ctr < guest_pages; ctr += chunk)
test_memslot_do_unmap(data, ctr, chunk);
}
static void test_memslot_unmap_loop(struct vm_data *data,
struct sync_area *sync)
{
test_memslot_unmap_loop_common(data, sync, 1);
uint32_t host_page_size = getpagesize();
uint32_t guest_page_size = data->vm->page_size;
uint64_t guest_chunk_pages = guest_page_size >= host_page_size ?
1 : host_page_size / guest_page_size;
test_memslot_unmap_loop_common(data, sync, guest_chunk_pages);
}
static void test_memslot_unmap_loop_chunked(struct vm_data *data,
struct sync_area *sync)
{
test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES);
uint32_t guest_page_size = data->vm->page_size;
uint64_t guest_chunk_pages = MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size;
test_memslot_unmap_loop_common(data, sync, guest_chunk_pages);
}
static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync)
{
uint64_t gptr;
uint32_t guest_page_size = data->vm->page_size;
for (gptr = MEM_TEST_GPA + 4096 / 2;
gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096)
for (gptr = MEM_TEST_GPA + guest_page_size / 2;
gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size)
*(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2;
host_perform_sync(sync);
for (gptr = MEM_TEST_GPA;
gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) {
gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) {
uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL);
uint64_t val = *vptr;
@ -749,7 +792,7 @@ static bool test_execute(int nslots, uint64_t *maxslots,
struct timespec *slot_runtime,
struct timespec *guest_runtime)
{
uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES;
uint64_t mem_size = tdata->mem_size ? : MEM_SIZE;
struct vm_data *data;
struct sync_area *sync;
struct timespec tstart;
@ -764,6 +807,7 @@ static bool test_execute(int nslots, uint64_t *maxslots,
sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
sync->guest_page_size = data->vm->page_size;
if (tdata->prepare &&
!tdata->prepare(data, sync, maxslots)) {
ret = false;
@ -797,19 +841,19 @@ static bool test_execute(int nslots, uint64_t *maxslots,
static const struct test_data tests[] = {
{
.name = "map",
.mem_size = MEM_SIZE_MAP_PAGES,
.mem_size = MEM_SIZE_MAP,
.guest_code = guest_code_test_memslot_map,
.loop = test_memslot_map_loop,
},
{
.name = "unmap",
.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
.mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE,
.guest_code = guest_code_test_memslot_unmap,
.loop = test_memslot_unmap_loop,
},
{
.name = "unmap chunked",
.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
.mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE,
.guest_code = guest_code_test_memslot_unmap,
.loop = test_memslot_unmap_loop_chunked,
},
@ -867,9 +911,46 @@ static void help(char *name, struct test_args *targs)
pr_info("%d: %s\n", ctr, tests[ctr].name);
}
static bool check_memory_sizes(void)
{
uint32_t host_page_size = getpagesize();
uint32_t guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size;
if (host_page_size > SZ_64K || guest_page_size > SZ_64K) {
pr_info("Unsupported page size on host (0x%x) or guest (0x%x)\n",
host_page_size, guest_page_size);
return false;
}
if (MEM_SIZE % guest_page_size ||
MEM_TEST_SIZE % guest_page_size) {
pr_info("invalid MEM_SIZE or MEM_TEST_SIZE\n");
return false;
}
if (MEM_SIZE_MAP % guest_page_size ||
MEM_TEST_MAP_SIZE % guest_page_size ||
(MEM_TEST_MAP_SIZE / guest_page_size) <= 2 ||
(MEM_TEST_MAP_SIZE / guest_page_size) % 2) {
pr_info("invalid MEM_SIZE_MAP or MEM_TEST_MAP_SIZE\n");
return false;
}
if (MEM_TEST_UNMAP_SIZE > MEM_TEST_SIZE ||
MEM_TEST_UNMAP_SIZE % guest_page_size ||
(MEM_TEST_UNMAP_SIZE / guest_page_size) %
(2 * MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size)) {
pr_info("invalid MEM_TEST_UNMAP_SIZE or MEM_TEST_UNMAP_CHUNK_SIZE\n");
return false;
}
return true;
}
static bool parse_args(int argc, char *argv[],
struct test_args *targs)
{
uint32_t max_mem_slots;
int opt;
while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) {
@ -886,8 +967,8 @@ static bool parse_args(int argc, char *argv[],
break;
case 's':
targs->nslots = atoi(optarg);
if (targs->nslots <= 0 && targs->nslots != -1) {
pr_info("Slot count cap has to be positive or -1 for no cap\n");
if (targs->nslots <= 1 && targs->nslots != -1) {
pr_info("Slot count cap must be larger than 1 or -1 for no cap\n");
return false;
}
break;
@ -933,6 +1014,21 @@ static bool parse_args(int argc, char *argv[],
return false;
}
max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
if (max_mem_slots <= 1) {
pr_info("KVM_CAP_NR_MEMSLOTS should be greater than 1\n");
return false;
}
/* Memory slot 0 is reserved */
if (targs->nslots == -1)
targs->nslots = max_mem_slots - 1;
else
targs->nslots = min_t(int, targs->nslots, max_mem_slots) - 1;
pr_info_v("Allowed Number of memory slots: %"PRIu32"\n",
targs->nslots + 1);
return true;
}
@ -1010,6 +1106,9 @@ int main(int argc, char *argv[])
/* Tell stdout not to buffer its content */
setbuf(stdout, NULL);
if (!check_memory_sizes())
return -1;
if (!parse_args(argc, argv, &targs))
return -1;