RISC-V: Atomic and Locking Code

This contains all the code that directly interfaces with the RISC-V
memory model.  While this code corforms to the current RISC-V ISA
specifications (user 2.2 and priv 1.10), the memory model is somewhat
underspecified in those documents.  There is a working group that hopes
to produce a formal memory model by the end of the year, but my
understanding is that the basic definitions we're relying on here won't
change significantly.

Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Palmer Dabbelt <palmer@dabbelt.com>
This commit is contained in:
Palmer Dabbelt 2017-07-10 18:02:19 -07:00
parent 76d2a0493a
commit fab957c11e
10 changed files with 1423 additions and 0 deletions

View File

@ -0,0 +1,375 @@
/*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Copyright (C) 2012 Regents of the University of California
* Copyright (C) 2017 SiFive
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#ifndef _ASM_RISCV_ATOMIC_H
#define _ASM_RISCV_ATOMIC_H
#ifdef CONFIG_GENERIC_ATOMIC64
# include <asm-generic/atomic64.h>
#else
# if (__riscv_xlen < 64)
# error "64-bit atomics require XLEN to be at least 64"
# endif
#endif
#include <asm/cmpxchg.h>
#include <asm/barrier.h>
#define ATOMIC_INIT(i) { (i) }
static __always_inline int atomic_read(const atomic_t *v)
{
return READ_ONCE(v->counter);
}
static __always_inline void atomic_set(atomic_t *v, int i)
{
WRITE_ONCE(v->counter, i);
}
#ifndef CONFIG_GENERIC_ATOMIC64
#define ATOMIC64_INIT(i) { (i) }
static __always_inline long atomic64_read(const atomic64_t *v)
{
return READ_ONCE(v->counter);
}
static __always_inline void atomic64_set(atomic64_t *v, long i)
{
WRITE_ONCE(v->counter, i);
}
#endif
/*
* First, the atomic ops that have no ordering constraints and therefor don't
* have the AQ or RL bits set. These don't return anything, so there's only
* one version to worry about.
*/
#define ATOMIC_OP(op, asm_op, c_op, I, asm_type, c_type, prefix) \
static __always_inline void atomic##prefix##_##op(c_type i, atomic##prefix##_t *v) \
{ \
__asm__ __volatile__ ( \
"amo" #asm_op "." #asm_type " zero, %1, %0" \
: "+A" (v->counter) \
: "r" (I) \
: "memory"); \
}
#ifdef CONFIG_GENERIC_ATOMIC64
#define ATOMIC_OPS(op, asm_op, c_op, I) \
ATOMIC_OP (op, asm_op, c_op, I, w, int, )
#else
#define ATOMIC_OPS(op, asm_op, c_op, I) \
ATOMIC_OP (op, asm_op, c_op, I, w, int, ) \
ATOMIC_OP (op, asm_op, c_op, I, d, long, 64)
#endif
ATOMIC_OPS(add, add, +, i)
ATOMIC_OPS(sub, add, +, -i)
ATOMIC_OPS(and, and, &, i)
ATOMIC_OPS( or, or, |, i)
ATOMIC_OPS(xor, xor, ^, i)
#undef ATOMIC_OP
#undef ATOMIC_OPS
/*
* Atomic ops that have ordered, relaxed, acquire, and relese variants.
* There's two flavors of these: the arithmatic ops have both fetch and return
* versions, while the logical ops only have fetch versions.
*/
#define ATOMIC_FETCH_OP(op, asm_op, c_op, I, asm_or, c_or, asm_type, c_type, prefix) \
static __always_inline c_type atomic##prefix##_fetch_##op##c_or(c_type i, atomic##prefix##_t *v) \
{ \
register c_type ret; \
__asm__ __volatile__ ( \
"amo" #asm_op "." #asm_type #asm_or " %1, %2, %0" \
: "+A" (v->counter), "=r" (ret) \
: "r" (I) \
: "memory"); \
return ret; \
}
#define ATOMIC_OP_RETURN(op, asm_op, c_op, I, asm_or, c_or, asm_type, c_type, prefix) \
static __always_inline c_type atomic##prefix##_##op##_return##c_or(c_type i, atomic##prefix##_t *v) \
{ \
return atomic##prefix##_fetch_##op##c_or(i, v) c_op I; \
}
#ifdef CONFIG_GENERIC_ATOMIC64
#define ATOMIC_OPS(op, asm_op, c_op, I, asm_or, c_or) \
ATOMIC_FETCH_OP (op, asm_op, c_op, I, asm_or, c_or, w, int, ) \
ATOMIC_OP_RETURN(op, asm_op, c_op, I, asm_or, c_or, w, int, )
#else
#define ATOMIC_OPS(op, asm_op, c_op, I, asm_or, c_or) \
ATOMIC_FETCH_OP (op, asm_op, c_op, I, asm_or, c_or, w, int, ) \
ATOMIC_OP_RETURN(op, asm_op, c_op, I, asm_or, c_or, w, int, ) \
ATOMIC_FETCH_OP (op, asm_op, c_op, I, asm_or, c_or, d, long, 64) \
ATOMIC_OP_RETURN(op, asm_op, c_op, I, asm_or, c_or, d, long, 64)
#endif
ATOMIC_OPS(add, add, +, i, , _relaxed)
ATOMIC_OPS(add, add, +, i, .aq , _acquire)
ATOMIC_OPS(add, add, +, i, .rl , _release)
ATOMIC_OPS(add, add, +, i, .aqrl, )
ATOMIC_OPS(sub, add, +, -i, , _relaxed)
ATOMIC_OPS(sub, add, +, -i, .aq , _acquire)
ATOMIC_OPS(sub, add, +, -i, .rl , _release)
ATOMIC_OPS(sub, add, +, -i, .aqrl, )
#undef ATOMIC_OPS
#ifdef CONFIG_GENERIC_ATOMIC64
#define ATOMIC_OPS(op, asm_op, c_op, I, asm_or, c_or) \
ATOMIC_FETCH_OP(op, asm_op, c_op, I, asm_or, c_or, w, int, )
#else
#define ATOMIC_OPS(op, asm_op, c_op, I, asm_or, c_or) \
ATOMIC_FETCH_OP(op, asm_op, c_op, I, asm_or, c_or, w, int, ) \
ATOMIC_FETCH_OP(op, asm_op, c_op, I, asm_or, c_or, d, long, 64)
#endif
ATOMIC_OPS(and, and, &, i, , _relaxed)
ATOMIC_OPS(and, and, &, i, .aq , _acquire)
ATOMIC_OPS(and, and, &, i, .rl , _release)
ATOMIC_OPS(and, and, &, i, .aqrl, )
ATOMIC_OPS( or, or, |, i, , _relaxed)
ATOMIC_OPS( or, or, |, i, .aq , _acquire)
ATOMIC_OPS( or, or, |, i, .rl , _release)
ATOMIC_OPS( or, or, |, i, .aqrl, )
ATOMIC_OPS(xor, xor, ^, i, , _relaxed)
ATOMIC_OPS(xor, xor, ^, i, .aq , _acquire)
ATOMIC_OPS(xor, xor, ^, i, .rl , _release)
ATOMIC_OPS(xor, xor, ^, i, .aqrl, )
#undef ATOMIC_OPS
#undef ATOMIC_FETCH_OP
#undef ATOMIC_OP_RETURN
/*
* The extra atomic operations that are constructed from one of the core
* AMO-based operations above (aside from sub, which is easier to fit above).
* These are required to perform a barrier, but they're OK this way because
* atomic_*_return is also required to perform a barrier.
*/
#define ATOMIC_OP(op, func_op, comp_op, I, c_type, prefix) \
static __always_inline bool atomic##prefix##_##op(c_type i, atomic##prefix##_t *v) \
{ \
return atomic##prefix##_##func_op##_return(i, v) comp_op I; \
}
#ifdef CONFIG_GENERIC_ATOMIC64
#define ATOMIC_OPS(op, func_op, comp_op, I) \
ATOMIC_OP (op, func_op, comp_op, I, int, )
#else
#define ATOMIC_OPS(op, func_op, comp_op, I) \
ATOMIC_OP (op, func_op, comp_op, I, int, ) \
ATOMIC_OP (op, func_op, comp_op, I, long, 64)
#endif
ATOMIC_OPS(add_and_test, add, ==, 0)
ATOMIC_OPS(sub_and_test, sub, ==, 0)
ATOMIC_OPS(add_negative, add, <, 0)
#undef ATOMIC_OP
#undef ATOMIC_OPS
#define ATOMIC_OP(op, func_op, c_op, I, c_type, prefix) \
static __always_inline void atomic##prefix##_##op(atomic##prefix##_t *v) \
{ \
atomic##prefix##_##func_op(I, v); \
}
#define ATOMIC_FETCH_OP(op, func_op, c_op, I, c_type, prefix) \
static __always_inline c_type atomic##prefix##_fetch_##op(atomic##prefix##_t *v) \
{ \
return atomic##prefix##_fetch_##func_op(I, v); \
}
#define ATOMIC_OP_RETURN(op, asm_op, c_op, I, c_type, prefix) \
static __always_inline c_type atomic##prefix##_##op##_return(atomic##prefix##_t *v) \
{ \
return atomic##prefix##_fetch_##op(v) c_op I; \
}
#ifdef CONFIG_GENERIC_ATOMIC64
#define ATOMIC_OPS(op, asm_op, c_op, I) \
ATOMIC_OP (op, asm_op, c_op, I, int, ) \
ATOMIC_FETCH_OP (op, asm_op, c_op, I, int, ) \
ATOMIC_OP_RETURN(op, asm_op, c_op, I, int, )
#else
#define ATOMIC_OPS(op, asm_op, c_op, I) \
ATOMIC_OP (op, asm_op, c_op, I, int, ) \
ATOMIC_FETCH_OP (op, asm_op, c_op, I, int, ) \
ATOMIC_OP_RETURN(op, asm_op, c_op, I, int, ) \
ATOMIC_OP (op, asm_op, c_op, I, long, 64) \
ATOMIC_FETCH_OP (op, asm_op, c_op, I, long, 64) \
ATOMIC_OP_RETURN(op, asm_op, c_op, I, long, 64)
#endif
ATOMIC_OPS(inc, add, +, 1)
ATOMIC_OPS(dec, add, +, -1)
#undef ATOMIC_OPS
#undef ATOMIC_OP
#undef ATOMIC_FETCH_OP
#undef ATOMIC_OP_RETURN
#define ATOMIC_OP(op, func_op, comp_op, I, prefix) \
static __always_inline bool atomic##prefix##_##op(atomic##prefix##_t *v) \
{ \
return atomic##prefix##_##func_op##_return(v) comp_op I; \
}
ATOMIC_OP(inc_and_test, inc, ==, 0, )
ATOMIC_OP(dec_and_test, dec, ==, 0, )
#ifndef CONFIG_GENERIC_ATOMIC64
ATOMIC_OP(inc_and_test, inc, ==, 0, 64)
ATOMIC_OP(dec_and_test, dec, ==, 0, 64)
#endif
#undef ATOMIC_OP
/* This is required to provide a barrier on success. */
static __always_inline int __atomic_add_unless(atomic_t *v, int a, int u)
{
int prev, rc;
__asm__ __volatile__ (
"0:\n\t"
"lr.w.aqrl %[p], %[c]\n\t"
"beq %[p], %[u], 1f\n\t"
"add %[rc], %[p], %[a]\n\t"
"sc.w.aqrl %[rc], %[rc], %[c]\n\t"
"bnez %[rc], 0b\n\t"
"1:"
: [p]"=&r" (prev), [rc]"=&r" (rc), [c]"+A" (v->counter)
: [a]"r" (a), [u]"r" (u)
: "memory");
return prev;
}
#ifndef CONFIG_GENERIC_ATOMIC64
static __always_inline long __atomic64_add_unless(atomic64_t *v, long a, long u)
{
long prev, rc;
__asm__ __volatile__ (
"0:\n\t"
"lr.d.aqrl %[p], %[c]\n\t"
"beq %[p], %[u], 1f\n\t"
"add %[rc], %[p], %[a]\n\t"
"sc.d.aqrl %[rc], %[rc], %[c]\n\t"
"bnez %[rc], 0b\n\t"
"1:"
: [p]"=&r" (prev), [rc]"=&r" (rc), [c]"+A" (v->counter)
: [a]"r" (a), [u]"r" (u)
: "memory");
return prev;
}
static __always_inline int atomic64_add_unless(atomic64_t *v, long a, long u)
{
return __atomic64_add_unless(v, a, u) != u;
}
#endif
/*
* The extra atomic operations that are constructed from one of the core
* LR/SC-based operations above.
*/
static __always_inline int atomic_inc_not_zero(atomic_t *v)
{
return __atomic_add_unless(v, 1, 0);
}
#ifndef CONFIG_GENERIC_ATOMIC64
static __always_inline long atomic64_inc_not_zero(atomic64_t *v)
{
return atomic64_add_unless(v, 1, 0);
}
#endif
/*
* atomic_{cmp,}xchg is required to have exactly the same ordering semantics as
* {cmp,}xchg and the operations that return, so they need a barrier. We just
* use the other implementations directly.
*/
#define ATOMIC_OP(c_t, prefix, c_or, size, asm_or) \
static __always_inline c_t atomic##prefix##_cmpxchg##c_or(atomic##prefix##_t *v, c_t o, c_t n) \
{ \
return __cmpxchg(&(v->counter), o, n, size, asm_or, asm_or); \
} \
static __always_inline c_t atomic##prefix##_xchg##c_or(atomic##prefix##_t *v, c_t n) \
{ \
return __xchg(n, &(v->counter), size, asm_or); \
}
#ifdef CONFIG_GENERIC_ATOMIC64
#define ATOMIC_OPS(c_or, asm_or) \
ATOMIC_OP( int, , c_or, 4, asm_or)
#else
#define ATOMIC_OPS(c_or, asm_or) \
ATOMIC_OP( int, , c_or, 4, asm_or) \
ATOMIC_OP(long, 64, c_or, 8, asm_or)
#endif
ATOMIC_OPS( , .aqrl)
ATOMIC_OPS(_acquire, .aq)
ATOMIC_OPS(_release, .rl)
ATOMIC_OPS(_relaxed, )
#undef ATOMIC_OPS
#undef ATOMIC_OP
static __always_inline int atomic_sub_if_positive(atomic_t *v, int offset)
{
int prev, rc;
__asm__ __volatile__ (
"0:\n\t"
"lr.w.aqrl %[p], %[c]\n\t"
"sub %[rc], %[p], %[o]\n\t"
"bltz %[rc], 1f\n\t"
"sc.w.aqrl %[rc], %[rc], %[c]\n\t"
"bnez %[rc], 0b\n\t"
"1:"
: [p]"=&r" (prev), [rc]"=&r" (rc), [c]"+A" (v->counter)
: [o]"r" (offset)
: "memory");
return prev - offset;
}
#define atomic_dec_if_positive(v) atomic_sub_if_positive(v, 1)
#ifndef CONFIG_GENERIC_ATOMIC64
static __always_inline long atomic64_sub_if_positive(atomic64_t *v, int offset)
{
long prev, rc;
__asm__ __volatile__ (
"0:\n\t"
"lr.d.aqrl %[p], %[c]\n\t"
"sub %[rc], %[p], %[o]\n\t"
"bltz %[rc], 1f\n\t"
"sc.d.aqrl %[rc], %[rc], %[c]\n\t"
"bnez %[rc], 0b\n\t"
"1:"
: [p]"=&r" (prev), [rc]"=&r" (rc), [c]"+A" (v->counter)
: [o]"r" (offset)
: "memory");
return prev - offset;
}
#define atomic64_dec_if_positive(v) atomic64_sub_if_positive(v, 1)
#endif
#endif /* _ASM_RISCV_ATOMIC_H */

View File

@ -0,0 +1,68 @@
/*
* Based on arch/arm/include/asm/barrier.h
*
* Copyright (C) 2012 ARM Ltd.
* Copyright (C) 2013 Regents of the University of California
* Copyright (C) 2017 SiFive
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _ASM_RISCV_BARRIER_H
#define _ASM_RISCV_BARRIER_H
#ifndef __ASSEMBLY__
#define nop() __asm__ __volatile__ ("nop")
#define RISCV_FENCE(p, s) \
__asm__ __volatile__ ("fence " #p "," #s : : : "memory")
/* These barriers need to enforce ordering on both devices or memory. */
#define mb() RISCV_FENCE(iorw,iorw)
#define rmb() RISCV_FENCE(ir,ir)
#define wmb() RISCV_FENCE(ow,ow)
/* These barriers do not need to enforce ordering on devices, just memory. */
#define smp_mb() RISCV_FENCE(rw,rw)
#define smp_rmb() RISCV_FENCE(r,r)
#define smp_wmb() RISCV_FENCE(w,w)
/*
* These fences exist to enforce ordering around the relaxed AMOs. The
* documentation defines that
* "
* atomic_fetch_add();
* is equivalent to:
* smp_mb__before_atomic();
* atomic_fetch_add_relaxed();
* smp_mb__after_atomic();
* "
* So we emit full fences on both sides.
*/
#define __smb_mb__before_atomic() smp_mb()
#define __smb_mb__after_atomic() smp_mb()
/*
* These barriers prevent accesses performed outside a spinlock from being moved
* inside a spinlock. Since RISC-V sets the aq/rl bits on our spinlock only
* enforce release consistency, we need full fences here.
*/
#define smb_mb__before_spinlock() smp_mb()
#define smb_mb__after_spinlock() smp_mb()
#include <asm-generic/barrier.h>
#endif /* __ASSEMBLY__ */
#endif /* _ASM_RISCV_BARRIER_H */

View File

@ -0,0 +1,218 @@
/*
* Copyright (C) 2012 Regents of the University of California
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _ASM_RISCV_BITOPS_H
#define _ASM_RISCV_BITOPS_H
#ifndef _LINUX_BITOPS_H
#error "Only <linux/bitops.h> can be included directly"
#endif /* _LINUX_BITOPS_H */
#include <linux/compiler.h>
#include <linux/irqflags.h>
#include <asm/barrier.h>
#include <asm/bitsperlong.h>
#ifndef smp_mb__before_clear_bit
#define smp_mb__before_clear_bit() smp_mb()
#define smp_mb__after_clear_bit() smp_mb()
#endif /* smp_mb__before_clear_bit */
#include <asm-generic/bitops/__ffs.h>
#include <asm-generic/bitops/ffz.h>
#include <asm-generic/bitops/fls.h>
#include <asm-generic/bitops/__fls.h>
#include <asm-generic/bitops/fls64.h>
#include <asm-generic/bitops/find.h>
#include <asm-generic/bitops/sched.h>
#include <asm-generic/bitops/ffs.h>
#include <asm-generic/bitops/hweight.h>
#if (BITS_PER_LONG == 64)
#define __AMO(op) "amo" #op ".d"
#elif (BITS_PER_LONG == 32)
#define __AMO(op) "amo" #op ".w"
#else
#error "Unexpected BITS_PER_LONG"
#endif
#define __test_and_op_bit_ord(op, mod, nr, addr, ord) \
({ \
unsigned long __res, __mask; \
__mask = BIT_MASK(nr); \
__asm__ __volatile__ ( \
__AMO(op) #ord " %0, %2, %1" \
: "=r" (__res), "+A" (addr[BIT_WORD(nr)]) \
: "r" (mod(__mask)) \
: "memory"); \
((__res & __mask) != 0); \
})
#define __op_bit_ord(op, mod, nr, addr, ord) \
__asm__ __volatile__ ( \
__AMO(op) #ord " zero, %1, %0" \
: "+A" (addr[BIT_WORD(nr)]) \
: "r" (mod(BIT_MASK(nr))) \
: "memory");
#define __test_and_op_bit(op, mod, nr, addr) \
__test_and_op_bit_ord(op, mod, nr, addr, )
#define __op_bit(op, mod, nr, addr) \
__op_bit_ord(op, mod, nr, addr, )
/* Bitmask modifiers */
#define __NOP(x) (x)
#define __NOT(x) (~(x))
/**
* test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation may be reordered on other architectures than x86.
*/
static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
{
return __test_and_op_bit(or, __NOP, nr, addr);
}
/**
* test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation can be reordered on other architectures other than x86.
*/
static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
{
return __test_and_op_bit(and, __NOT, nr, addr);
}
/**
* test_and_change_bit - Change a bit and return its old value
* @nr: Bit to change
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
{
return __test_and_op_bit(xor, __NOP, nr, addr);
}
/**
* set_bit - Atomically set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Note: there are no guarantees that this function will not be reordered
* on non x86 architectures, so if you are writing portable code,
* make sure not to rely on its reordering guarantees.
*
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static inline void set_bit(int nr, volatile unsigned long *addr)
{
__op_bit(or, __NOP, nr, addr);
}
/**
* clear_bit - Clears a bit in memory
* @nr: Bit to clear
* @addr: Address to start counting from
*
* Note: there are no guarantees that this function will not be reordered
* on non x86 architectures, so if you are writing portable code,
* make sure not to rely on its reordering guarantees.
*/
static inline void clear_bit(int nr, volatile unsigned long *addr)
{
__op_bit(and, __NOT, nr, addr);
}
/**
* change_bit - Toggle a bit in memory
* @nr: Bit to change
* @addr: Address to start counting from
*
* change_bit() may be reordered on other architectures than x86.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static inline void change_bit(int nr, volatile unsigned long *addr)
{
__op_bit(xor, __NOP, nr, addr);
}
/**
* test_and_set_bit_lock - Set a bit and return its old value, for lock
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and provides acquire barrier semantics.
* It can be used to implement bit locks.
*/
static inline int test_and_set_bit_lock(
unsigned long nr, volatile unsigned long *addr)
{
return __test_and_op_bit_ord(or, __NOP, nr, addr, .aq);
}
/**
* clear_bit_unlock - Clear a bit in memory, for unlock
* @nr: the bit to set
* @addr: the address to start counting from
*
* This operation is atomic and provides release barrier semantics.
*/
static inline void clear_bit_unlock(
unsigned long nr, volatile unsigned long *addr)
{
__op_bit_ord(and, __NOT, nr, addr, .rl);
}
/**
* __clear_bit_unlock - Clear a bit in memory, for unlock
* @nr: the bit to set
* @addr: the address to start counting from
*
* This operation is like clear_bit_unlock, however it is not atomic.
* It does provide release barrier semantics so it can be used to unlock
* a bit lock, however it would only be used if no other CPU can modify
* any bits in the memory until the lock is released (a good example is
* if the bit lock itself protects access to the other bits in the word).
*
* On RISC-V systems there seems to be no benefit to taking advantage of the
* non-atomic property here: it's a lot more instructions and we still have to
* provide release semantics anyway.
*/
static inline void __clear_bit_unlock(
unsigned long nr, volatile unsigned long *addr)
{
clear_bit_unlock(nr, addr);
}
#undef __test_and_op_bit
#undef __op_bit
#undef __NOP
#undef __NOT
#undef __AMO
#include <asm-generic/bitops/non-atomic.h>
#include <asm-generic/bitops/le.h>
#include <asm-generic/bitops/ext2-atomic.h>
#endif /* _ASM_RISCV_BITOPS_H */

View File

@ -0,0 +1,39 @@
/*
* Copyright (C) 2015 Regents of the University of California
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _ASM_RISCV_CACHEFLUSH_H
#define _ASM_RISCV_CACHEFLUSH_H
#include <asm-generic/cacheflush.h>
#undef flush_icache_range
#undef flush_icache_user_range
static inline void local_flush_icache_all(void)
{
asm volatile ("fence.i" ::: "memory");
}
#ifndef CONFIG_SMP
#define flush_icache_range(start, end) local_flush_icache_all()
#define flush_icache_user_range(vma, pg, addr, len) local_flush_icache_all()
#else /* CONFIG_SMP */
#define flush_icache_range(start, end) sbi_remote_fence_i(0)
#define flush_icache_user_range(vma, pg, addr, len) sbi_remote_fence_i(0)
#endif /* CONFIG_SMP */
#endif /* _ASM_RISCV_CACHEFLUSH_H */

View File

@ -0,0 +1,134 @@
/*
* Copyright (C) 2014 Regents of the University of California
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _ASM_RISCV_CMPXCHG_H
#define _ASM_RISCV_CMPXCHG_H
#include <linux/bug.h>
#include <asm/barrier.h>
#define __xchg(new, ptr, size, asm_or) \
({ \
__typeof__(ptr) __ptr = (ptr); \
__typeof__(new) __new = (new); \
__typeof__(*(ptr)) __ret; \
switch (size) { \
case 4: \
__asm__ __volatile__ ( \
"amoswap.w" #asm_or " %0, %2, %1" \
: "=r" (__ret), "+A" (*__ptr) \
: "r" (__new) \
: "memory"); \
break; \
case 8: \
__asm__ __volatile__ ( \
"amoswap.d" #asm_or " %0, %2, %1" \
: "=r" (__ret), "+A" (*__ptr) \
: "r" (__new) \
: "memory"); \
break; \
default: \
BUILD_BUG(); \
} \
__ret; \
})
#define xchg(ptr, x) (__xchg((x), (ptr), sizeof(*(ptr)), .aqrl))
#define xchg32(ptr, x) \
({ \
BUILD_BUG_ON(sizeof(*(ptr)) != 4); \
xchg((ptr), (x)); \
})
#define xchg64(ptr, x) \
({ \
BUILD_BUG_ON(sizeof(*(ptr)) != 8); \
xchg((ptr), (x)); \
})
/*
* Atomic compare and exchange. Compare OLD with MEM, if identical,
* store NEW in MEM. Return the initial value in MEM. Success is
* indicated by comparing RETURN with OLD.
*/
#define __cmpxchg(ptr, old, new, size, lrb, scb) \
({ \
__typeof__(ptr) __ptr = (ptr); \
__typeof__(*(ptr)) __old = (old); \
__typeof__(*(ptr)) __new = (new); \
__typeof__(*(ptr)) __ret; \
register unsigned int __rc; \
switch (size) { \
case 4: \
__asm__ __volatile__ ( \
"0:" \
"lr.w" #scb " %0, %2\n" \
"bne %0, %z3, 1f\n" \
"sc.w" #lrb " %1, %z4, %2\n" \
"bnez %1, 0b\n" \
"1:" \
: "=&r" (__ret), "=&r" (__rc), "+A" (*__ptr) \
: "rJ" (__old), "rJ" (__new) \
: "memory"); \
break; \
case 8: \
__asm__ __volatile__ ( \
"0:" \
"lr.d" #scb " %0, %2\n" \
"bne %0, %z3, 1f\n" \
"sc.d" #lrb " %1, %z4, %2\n" \
"bnez %1, 0b\n" \
"1:" \
: "=&r" (__ret), "=&r" (__rc), "+A" (*__ptr) \
: "rJ" (__old), "rJ" (__new) \
: "memory"); \
break; \
default: \
BUILD_BUG(); \
} \
__ret; \
})
#define cmpxchg(ptr, o, n) \
(__cmpxchg((ptr), (o), (n), sizeof(*(ptr)), .aqrl, .aqrl))
#define cmpxchg_local(ptr, o, n) \
(__cmpxchg((ptr), (o), (n), sizeof(*(ptr)), , ))
#define cmpxchg32(ptr, o, n) \
({ \
BUILD_BUG_ON(sizeof(*(ptr)) != 4); \
cmpxchg((ptr), (o), (n)); \
})
#define cmpxchg32_local(ptr, o, n) \
({ \
BUILD_BUG_ON(sizeof(*(ptr)) != 4); \
cmpxchg_local((ptr), (o), (n)); \
})
#define cmpxchg64(ptr, o, n) \
({ \
BUILD_BUG_ON(sizeof(*(ptr)) != 8); \
cmpxchg((ptr), (o), (n)); \
})
#define cmpxchg64_local(ptr, o, n) \
({ \
BUILD_BUG_ON(sizeof(*(ptr)) != 8); \
cmpxchg_local((ptr), (o), (n)); \
})
#endif /* _ASM_RISCV_CMPXCHG_H */

303
arch/riscv/include/asm/io.h Normal file
View File

@ -0,0 +1,303 @@
/*
* {read,write}{b,w,l,q} based on arch/arm64/include/asm/io.h
* which was based on arch/arm/include/io.h
*
* Copyright (C) 1996-2000 Russell King
* Copyright (C) 2012 ARM Ltd.
* Copyright (C) 2014 Regents of the University of California
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _ASM_RISCV_IO_H
#define _ASM_RISCV_IO_H
#ifdef CONFIG_MMU
extern void __iomem *ioremap(phys_addr_t offset, unsigned long size);
/*
* The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
* change the properties of memory regions. This should be fixed by the
* upcoming platform spec.
*/
#define ioremap_nocache(addr, size) ioremap((addr), (size))
#define ioremap_wc(addr, size) ioremap((addr), (size))
#define ioremap_wt(addr, size) ioremap((addr), (size))
extern void iounmap(void __iomem *addr);
#endif /* CONFIG_MMU */
/* Generic IO read/write. These perform native-endian accesses. */
#define __raw_writeb __raw_writeb
static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
{
asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr));
}
#define __raw_writew __raw_writew
static inline void __raw_writew(u16 val, volatile void __iomem *addr)
{
asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr));
}
#define __raw_writel __raw_writel
static inline void __raw_writel(u32 val, volatile void __iomem *addr)
{
asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr));
}
#ifdef CONFIG_64BIT
#define __raw_writeq __raw_writeq
static inline void __raw_writeq(u64 val, volatile void __iomem *addr)
{
asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr));
}
#endif
#define __raw_readb __raw_readb
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
u8 val;
asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr));
return val;
}
#define __raw_readw __raw_readw
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
u16 val;
asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr));
return val;
}
#define __raw_readl __raw_readl
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
u32 val;
asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr));
return val;
}
#ifdef CONFIG_64BIT
#define __raw_readq __raw_readq
static inline u64 __raw_readq(const volatile void __iomem *addr)
{
u64 val;
asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr));
return val;
}
#endif
/*
* FIXME: I'm flip-flopping on whether or not we should keep this or enforce
* the ordering with I/O on spinlocks like PowerPC does. The worry is that
* drivers won't get this correct, but I also don't want to introduce a fence
* into the lock code that otherwise only uses AMOs (and is essentially defined
* by the ISA to be correct). For now I'm leaving this here: "o,w" is
* sufficient to ensure that all writes to the device have completed before the
* write to the spinlock is allowed to commit. I surmised this from reading
* "ACQUIRES VS I/O ACCESSES" in memory-barriers.txt.
*/
#define mmiowb() __asm__ __volatile__ ("fence o,w" : : : "memory");
/*
* Unordered I/O memory access primitives. These are even more relaxed than
* the relaxed versions, as they don't even order accesses between successive
* operations to the I/O regions.
*/
#define readb_cpu(c) ({ u8 __r = __raw_readb(c); __r; })
#define readw_cpu(c) ({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; })
#define readl_cpu(c) ({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; })
#define writeb_cpu(v,c) ((void)__raw_writeb((v),(c)))
#define writew_cpu(v,c) ((void)__raw_writew((__force u16)cpu_to_le16(v),(c)))
#define writel_cpu(v,c) ((void)__raw_writel((__force u32)cpu_to_le32(v),(c)))
#ifdef CONFIG_64BIT
#define readq_cpu(c) ({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; })
#define writeq_cpu(v,c) ((void)__raw_writeq((__force u64)cpu_to_le64(v),(c)))
#endif
/*
* Relaxed I/O memory access primitives. These follow the Device memory
* ordering rules but do not guarantee any ordering relative to Normal memory
* accesses. These are defined to order the indicated access (either a read or
* write) with all other I/O memory accesses. Since the platform specification
* defines that all I/O regions are strongly ordered on channel 2, no explicit
* fences are required to enforce this ordering.
*/
/* FIXME: These are now the same as asm-generic */
#define __io_rbr() do {} while (0)
#define __io_rar() do {} while (0)
#define __io_rbw() do {} while (0)
#define __io_raw() do {} while (0)
#define readb_relaxed(c) ({ u8 __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; })
#define readw_relaxed(c) ({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; })
#define readl_relaxed(c) ({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; })
#define writeb_relaxed(v,c) ({ __io_rbw(); writeb_cpu((v),(c)); __io_raw(); })
#define writew_relaxed(v,c) ({ __io_rbw(); writew_cpu((v),(c)); __io_raw(); })
#define writel_relaxed(v,c) ({ __io_rbw(); writel_cpu((v),(c)); __io_raw(); })
#ifdef CONFIG_64BIT
#define readq_relaxed(c) ({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; })
#define writeq_relaxed(v,c) ({ __io_rbw(); writeq_cpu((v),(c)); __io_raw(); })
#endif
/*
* I/O memory access primitives. Reads are ordered relative to any
* following Normal memory access. Writes are ordered relative to any prior
* Normal memory access. The memory barriers here are necessary as RISC-V
* doesn't define any ordering between the memory space and the I/O space.
*/
#define __io_br() do {} while (0)
#define __io_ar() __asm__ __volatile__ ("fence i,r" : : : "memory");
#define __io_bw() __asm__ __volatile__ ("fence w,o" : : : "memory");
#define __io_aw() do {} while (0)
#define readb(c) ({ u8 __v; __io_br(); __v = readb_cpu(c); __io_ar(); __v; })
#define readw(c) ({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(); __v; })
#define readl(c) ({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(); __v; })
#define writeb(v,c) ({ __io_bw(); writeb_cpu((v),(c)); __io_aw(); })
#define writew(v,c) ({ __io_bw(); writew_cpu((v),(c)); __io_aw(); })
#define writel(v,c) ({ __io_bw(); writel_cpu((v),(c)); __io_aw(); })
#ifdef CONFIG_64BIT
#define readq(c) ({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(); __v; })
#define writeq(v,c) ({ __io_bw(); writeq_cpu((v),(c)); __io_aw(); })
#endif
/*
* Emulation routines for the port-mapped IO space used by some PCI drivers.
* These are defined as being "fully synchronous", but also "not guaranteed to
* be fully ordered with respect to other memory and I/O operations". We're
* going to be on the safe side here and just make them:
* - Fully ordered WRT each other, by bracketing them with two fences. The
* outer set contains both I/O so inX is ordered with outX, while the inner just
* needs the type of the access (I for inX and O for outX).
* - Ordered in the same manner as readX/writeX WRT memory by subsuming their
* fences.
* - Ordered WRT timer reads, so udelay and friends don't get elided by the
* implementation.
* Note that there is no way to actually enforce that outX is a non-posted
* operation on RISC-V, but hopefully the timer ordering constraint is
* sufficient to ensure this works sanely on controllers that support I/O
* writes.
*/
#define __io_pbr() __asm__ __volatile__ ("fence io,i" : : : "memory");
#define __io_par() __asm__ __volatile__ ("fence i,ior" : : : "memory");
#define __io_pbw() __asm__ __volatile__ ("fence iow,o" : : : "memory");
#define __io_paw() __asm__ __volatile__ ("fence o,io" : : : "memory");
#define inb(c) ({ u8 __v; __io_pbr(); __v = readb_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
#define inw(c) ({ u16 __v; __io_pbr(); __v = readw_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
#define inl(c) ({ u32 __v; __io_pbr(); __v = readl_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
#define outb(v,c) ({ __io_pbw(); writeb_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
#define outw(v,c) ({ __io_pbw(); writew_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
#define outl(v,c) ({ __io_pbw(); writel_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
#ifdef CONFIG_64BIT
#define inq(c) ({ u64 __v; __io_pbr(); __v = readq_cpu((void*)(c)); __io_par(); __v; })
#define outq(v,c) ({ __io_pbw(); writeq_cpu((v),(void*)(c)); __io_paw(); })
#endif
/*
* Accesses from a single hart to a single I/O address must be ordered. This
* allows us to use the raw read macros, but we still need to fence before and
* after the block to ensure ordering WRT other macros. These are defined to
* perform host-endian accesses so we use __raw instead of __cpu.
*/
#define __io_reads_ins(port, ctype, len, bfence, afence) \
static inline void __ ## port ## len(const volatile void __iomem *addr, \
void *buffer, \
unsigned int count) \
{ \
bfence; \
if (count) { \
ctype *buf = buffer; \
\
do { \
ctype x = __raw_read ## len(addr); \
*buf++ = x; \
} while (--count); \
} \
afence; \
}
#define __io_writes_outs(port, ctype, len, bfence, afence) \
static inline void __ ## port ## len(volatile void __iomem *addr, \
const void *buffer, \
unsigned int count) \
{ \
bfence; \
if (count) { \
const ctype *buf = buffer; \
\
do { \
__raw_writeq(*buf++, addr); \
} while (--count); \
} \
afence; \
}
__io_reads_ins(reads, u8, b, __io_br(), __io_ar())
__io_reads_ins(reads, u16, w, __io_br(), __io_ar())
__io_reads_ins(reads, u32, l, __io_br(), __io_ar())
#define readsb(addr, buffer, count) __readsb(addr, buffer, count)
#define readsw(addr, buffer, count) __readsw(addr, buffer, count)
#define readsl(addr, buffer, count) __readsl(addr, buffer, count)
__io_reads_ins(ins, u8, b, __io_pbr(), __io_par())
__io_reads_ins(ins, u16, w, __io_pbr(), __io_par())
__io_reads_ins(ins, u32, l, __io_pbr(), __io_par())
#define insb(addr, buffer, count) __insb((void __iomem *)addr, buffer, count)
#define insw(addr, buffer, count) __insw((void __iomem *)addr, buffer, count)
#define insl(addr, buffer, count) __insl((void __iomem *)addr, buffer, count)
__io_writes_outs(writes, u8, b, __io_bw(), __io_aw())
__io_writes_outs(writes, u16, w, __io_bw(), __io_aw())
__io_writes_outs(writes, u32, l, __io_bw(), __io_aw())
#define writesb(addr, buffer, count) __writesb(addr, buffer, count)
#define writesw(addr, buffer, count) __writesw(addr, buffer, count)
#define writesl(addr, buffer, count) __writesl(addr, buffer, count)
__io_writes_outs(outs, u8, b, __io_pbw(), __io_paw())
__io_writes_outs(outs, u16, w, __io_pbw(), __io_paw())
__io_writes_outs(outs, u32, l, __io_pbw(), __io_paw())
#define outsb(addr, buffer, count) __outsb((void __iomem *)addr, buffer, count)
#define outsw(addr, buffer, count) __outsw((void __iomem *)addr, buffer, count)
#define outsl(addr, buffer, count) __outsl((void __iomem *)addr, buffer, count)
#ifdef CONFIG_64BIT
__io_reads_ins(reads, u64, q, __io_br(), __io_ar())
#define readsq(addr, buffer, count) __readsq(addr, buffer, count)
__io_reads_ins(ins, u64, q, __io_pbr(), __io_par())
#define insq(addr, buffer, count) __insq((void __iomem *)addr, buffer, count)
__io_writes_outs(writes, u64, q, __io_bw(), __io_aw())
#define writesq(addr, buffer, count) __writesq(addr, buffer, count)
__io_writes_outs(outs, u64, q, __io_pbr(), __io_paw())
#define outsq(addr, buffer, count) __outsq((void __iomem *)addr, buffer, count)
#endif
#include <asm-generic/io.h>
#endif /* _ASM_RISCV_IO_H */

View File

@ -0,0 +1,165 @@
/*
* Copyright (C) 2015 Regents of the University of California
* Copyright (C) 2017 SiFive
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _ASM_RISCV_SPINLOCK_H
#define _ASM_RISCV_SPINLOCK_H
#include <linux/kernel.h>
#include <asm/current.h>
/*
* Simple spin lock operations. These provide no fairness guarantees.
*/
/* FIXME: Replace this with a ticket lock, like MIPS. */
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
#define arch_spin_is_locked(x) ((x)->lock != 0)
static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
__asm__ __volatile__ (
"amoswap.w.rl x0, x0, %0"
: "=A" (lock->lock)
:: "memory");
}
static inline int arch_spin_trylock(arch_spinlock_t *lock)
{
int tmp = 1, busy;
__asm__ __volatile__ (
"amoswap.w.aq %0, %2, %1"
: "=r" (busy), "+A" (lock->lock)
: "r" (tmp)
: "memory");
return !busy;
}
static inline void arch_spin_lock(arch_spinlock_t *lock)
{
while (1) {
if (arch_spin_is_locked(lock))
continue;
if (arch_spin_trylock(lock))
break;
}
}
static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
{
smp_rmb();
do {
cpu_relax();
} while (arch_spin_is_locked(lock));
smp_acquire__after_ctrl_dep();
}
/***********************************************************/
static inline int arch_read_can_lock(arch_rwlock_t *lock)
{
return lock->lock >= 0;
}
static inline int arch_write_can_lock(arch_rwlock_t *lock)
{
return lock->lock == 0;
}
static inline void arch_read_lock(arch_rwlock_t *lock)
{
int tmp;
__asm__ __volatile__(
"1: lr.w %1, %0\n"
" bltz %1, 1b\n"
" addi %1, %1, 1\n"
" sc.w.aq %1, %1, %0\n"
" bnez %1, 1b\n"
: "+A" (lock->lock), "=&r" (tmp)
:: "memory");
}
static inline void arch_write_lock(arch_rwlock_t *lock)
{
int tmp;
__asm__ __volatile__(
"1: lr.w %1, %0\n"
" bnez %1, 1b\n"
" li %1, -1\n"
" sc.w.aq %1, %1, %0\n"
" bnez %1, 1b\n"
: "+A" (lock->lock), "=&r" (tmp)
:: "memory");
}
static inline int arch_read_trylock(arch_rwlock_t *lock)
{
int busy;
__asm__ __volatile__(
"1: lr.w %1, %0\n"
" bltz %1, 1f\n"
" addi %1, %1, 1\n"
" sc.w.aq %1, %1, %0\n"
" bnez %1, 1b\n"
"1:\n"
: "+A" (lock->lock), "=&r" (busy)
:: "memory");
return !busy;
}
static inline int arch_write_trylock(arch_rwlock_t *lock)
{
int busy;
__asm__ __volatile__(
"1: lr.w %1, %0\n"
" bnez %1, 1f\n"
" li %1, -1\n"
" sc.w.aq %1, %1, %0\n"
" bnez %1, 1b\n"
"1:\n"
: "+A" (lock->lock), "=&r" (busy)
:: "memory");
return !busy;
}
static inline void arch_read_unlock(arch_rwlock_t *lock)
{
__asm__ __volatile__(
"amoadd.w.rl x0, %1, %0"
: "+A" (lock->lock)
: "r" (-1)
: "memory");
}
static inline void arch_write_unlock(arch_rwlock_t *lock)
{
__asm__ __volatile__ (
"amoswap.w.rl x0, x0, %0"
: "=A" (lock->lock)
:: "memory");
}
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
#endif /* _ASM_RISCV_SPINLOCK_H */

View File

@ -0,0 +1,33 @@
/*
* Copyright (C) 2015 Regents of the University of California
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _ASM_RISCV_SPINLOCK_TYPES_H
#define _ASM_RISCV_SPINLOCK_TYPES_H
#ifndef __LINUX_SPINLOCK_TYPES_H
# error "please don't include this file directly"
#endif
typedef struct {
volatile unsigned int lock;
} arch_spinlock_t;
#define __ARCH_SPIN_LOCK_UNLOCKED { 0 }
typedef struct {
volatile unsigned int lock;
} arch_rwlock_t;
#define __ARCH_RW_LOCK_UNLOCKED { 0 }
#endif

View File

@ -0,0 +1,24 @@
/*
* Copyright (C) 2012 Regents of the University of California
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _ASM_RISCV_TLB_H
#define _ASM_RISCV_TLB_H
#include <asm-generic/tlb.h>
static inline void tlb_flush(struct mmu_gather *tlb)
{
flush_tlb_mm(tlb->mm);
}
#endif /* _ASM_RISCV_TLB_H */

View File

@ -0,0 +1,64 @@
/*
* Copyright (C) 2009 Chen Liqin <liqin.chen@sunplusct.com>
* Copyright (C) 2012 Regents of the University of California
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _ASM_RISCV_TLBFLUSH_H
#define _ASM_RISCV_TLBFLUSH_H
#ifdef CONFIG_MMU
/* Flush entire local TLB */
static inline void local_flush_tlb_all(void)
{
__asm__ __volatile__ ("sfence.vma" : : : "memory");
}
/* Flush one page from local TLB */
static inline void local_flush_tlb_page(unsigned long addr)
{
__asm__ __volatile__ ("sfence.vma %0" : : "r" (addr) : "memory");
}
#ifndef CONFIG_SMP
#define flush_tlb_all() local_flush_tlb_all()
#define flush_tlb_page(vma, addr) local_flush_tlb_page(addr)
#define flush_tlb_range(vma, start, end) local_flush_tlb_all()
#else /* CONFIG_SMP */
#include <asm/sbi.h>
#define flush_tlb_all() sbi_remote_sfence_vma(0, 0, -1)
#define flush_tlb_page(vma, addr) flush_tlb_range(vma, addr, 0)
#define flush_tlb_range(vma, start, end) \
sbi_remote_sfence_vma(0, start, (end) - (start))
#endif /* CONFIG_SMP */
/* Flush the TLB entries of the specified mm context */
static inline void flush_tlb_mm(struct mm_struct *mm)
{
flush_tlb_all();
}
/* Flush a range of kernel pages */
static inline void flush_tlb_kernel_range(unsigned long start,
unsigned long end)
{
flush_tlb_all();
}
#endif /* CONFIG_MMU */
#endif /* _ASM_RISCV_TLBFLUSH_H */