Commit Graph

18058 Commits

Author SHA1 Message Date
Andrey Konovalov 043fcdc287 mm: introduce clear_highpage_kasan_tagged
commit d9da8f6cf5 upstream.

Add a clear_highpage_kasan_tagged() helper that does clear_highpage() on a
page potentially tagged by KASAN.

This helper is used by the following patch.

Link: https://lkml.kernel.org/r/4471979b46b2c487787ddcd08b9dc5fedd1b6ffd.1654798516.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jiri Slaby <jirislaby@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-17 14:42:36 +02:00
Miaohe Lin d4c8bbf236 hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
[ Upstream commit 2727cfe407 ]

We forget to set cft->private for numa stat file.  As a result, numa stat
of hstates[0] is always showed for all hstates.  Encode the hstates index
into cft->private to fix this issue.

Link: https://lkml.kernel.org/r/20220723073804.53035-1-linmiaohe@huawei.com
Fixes: f477619990 ("hugetlb: add hugetlb.*.numa_stat file")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:42:29 +02:00
Jianglei Nie 9d3e9e1e08 mm/damon/reclaim: fix potential memory leak in damon_reclaim_init()
[ Upstream commit 188043c7f4 ]

damon_reclaim_init() allocates a memory chunk for ctx with
damon_new_ctx().  When damon_select_ops() fails, ctx is not released,
which will lead to a memory leak.

We should release the ctx with damon_destroy_ctx() when damon_select_ops()
fails to fix the memory leak.

Link: https://lkml.kernel.org/r/20220714063746.2343549-1-niejianglei2021@163.com
Fixes: 4d69c34578 ("mm/damon/reclaim: use damon_select_ops() instead of damon_{v,p}a_set_operations()")
Signed-off-by: Jianglei Nie <niejianglei2021@163.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:42:29 +02:00
Miaohe Lin b6bf63840f mm/mmap.c: fix missing call to vm_unacct_memory in mmap_region
[ Upstream commit 7f82f92231 ]

Since the beginning, charged is set to 0 to avoid calling vm_unacct_memory
twice because vm_unacct_memory will be called by above unmap_region.  But
since commit 4f74d2c8e8 ("vm: remove 'nr_accounted' calculations from
the unmap_vmas() interfaces"), unmap_region doesn't call vm_unacct_memory
anymore.  So charged shouldn't be set to 0 now otherwise the calling to
paired vm_unacct_memory will be missed and leads to imbalanced account.

Link: https://lkml.kernel.org/r/20220618082027.43391-1-linmiaohe@huawei.com
Fixes: 4f74d2c8e8 ("vm: remove 'nr_accounted' calculations from the unmap_vmas() interfaces")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:41:55 +02:00
Tianyu Li 8176f6a0d9 mm/mempolicy: fix get_nodes out of bound access
[ Upstream commit 000eca5d04 ]

When user specified more nodes than supported, get_nodes will access nmask
array out of bounds.

Link: https://lkml.kernel.org/r/20220601093211.2970565-1-tianyu.li@arm.com
Fixes: e130242dc3 ("mm: simplify compat numa syscalls")
Signed-off-by: Tianyu Li <tianyu.li@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:41:42 +02:00
Andrey Konovalov 2ba8fd5ae6 kasan: fix zeroing vmalloc memory with HW_TAGS
[ Upstream commit 6c2f761dad ]

HW_TAGS KASAN skips zeroing page_alloc allocations backing vmalloc
mappings via __GFP_SKIP_ZERO.  Instead, these pages are zeroed via
kasan_unpoison_vmalloc() by passing the KASAN_VMALLOC_INIT flag.

The problem is that __kasan_unpoison_vmalloc() does not zero pages when
either kasan_vmalloc_enabled() or is_vmalloc_or_module_addr() fail.

Thus:

1. Change __vmalloc_node_range() to only set KASAN_VMALLOC_INIT when
   __GFP_SKIP_ZERO is set.

2. Change __kasan_unpoison_vmalloc() to always zero pages when the
   KASAN_VMALLOC_INIT flag is set.

3. Add WARN_ON() asserts to check that KASAN_VMALLOC_INIT cannot be set
   in other early return paths of __kasan_unpoison_vmalloc().

Also clean up the comment in __kasan_unpoison_vmalloc.

Link: https://lkml.kernel.org/r/4bc503537efdc539ffc3f461c1b70162eea31cf6.1654798516.git.andreyknvl@google.com
Fixes: 23689e91fb ("kasan, vmalloc: add vmalloc tagging for HW_TAGS")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:41:42 +02:00
Miaohe Lin d3f3037d2d mm/migration: fix potential pte_unmap on an not mapped pte
[ Upstream commit ad1ac596e8 ]

__migration_entry_wait and migration_entry_wait_on_locked assume pte is
always mapped from caller.  But this is not the case when it's called from
migration_entry_wait_huge and follow_huge_pmd.  Add a hugetlbfs variant
that calls hugetlb_migration_entry_wait(ptep == NULL) to fix this issue.

Link: https://lkml.kernel.org/r/20220530113016.16663-5-linmiaohe@huawei.com
Fixes: 30dad30922 ("mm: migration: add migrate_entry_wait_huge()")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:41:42 +02:00
Miaohe Lin c36770e67e mm/migration: return errno when isolate_huge_page failed
[ Upstream commit 7ce82f4c3f ]

We might fail to isolate huge page due to e.g.  the page is under
migration which cleared HPageMigratable.  We should return errno in this
case rather than always return 1 which could confuse the user, i.e.  the
caller might think all of the memory is migrated while the hugetlb page is
left behind.  We make the prototype of isolate_huge_page consistent with
isolate_lru_page as suggested by Huang Ying and rename isolate_huge_page
to isolate_hugetlb as suggested by Muchun to improve the readability.

Link: https://lkml.kernel.org/r/20220530113016.16663-4-linmiaohe@huawei.com
Fixes: e8db67eb0d ("mm: migrate: move_pages() supports thp migration")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Suggested-by: Huang Ying <ying.huang@intel.com>
Reported-by: kernel test robot <lkp@intel.com> (build error)
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:41:42 +02:00
Miaohe Lin 79c1c78b31 mm/memremap: fix memunmap_pages() race with get_dev_pagemap()
[ Upstream commit 1e57ffb6e3 ]

Think about the below scene:

 CPU1			CPU2
 memunmap_pages
   percpu_ref_exit
     __percpu_ref_exit
       free_percpu(percpu_count);
         /* percpu_count is freed here! */
			 get_dev_pagemap
			   xa_load(&pgmap_array, PHYS_PFN(phys))
			     /* pgmap still in the pgmap_array */
			   percpu_ref_tryget_live(&pgmap->ref)
			     if __ref_is_percpu
			       /* __PERCPU_REF_ATOMIC_DEAD not set yet */
			       this_cpu_inc(*percpu_count)
			         /* access freed percpu_count here! */
      ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
        /* too late... */
   pageunmap_range

To fix the issue, do percpu_ref_exit() after pgmap_array is emptied. So
we won't do percpu_ref_tryget_live() against a being freed percpu_ref.

Link: https://lkml.kernel.org/r/20220609121305.2508-1-linmiaohe@huawei.com
Fixes: b7b3c01b19 ("mm/memremap_pages: support multiple ranges per invocation")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:41:37 +02:00
Matthew Wilcox (Oracle) 03bda5032d mm: Account dirty folios properly during splits
[ Upstream commit fb5c2029f8 ]

If the last folio in a file is split as a result of truncation,
we simply clear the dirty bits for the pages we're discarding.
That causes NR_FILE_DIRTY (among other counters) to be thrown off
and eventually Linux will hang in balance_dirty_pages_ratelimited()

Reported-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Darrick J. Wong <djwong@kernel.org>
Fixes: d68eccad37 ("mm/filemap: Allow large folios to be added to the page cache")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:40:57 +02:00
Jaewon Kim 5cd3256fc5 page_alloc: fix invalid watermark check on a negative value
commit 9282012fc0 upstream.

There was a report that a task is waiting at the
throttle_direct_reclaim. The pgscan_direct_throttle in vmstat was
increasing.

This is a bug where zone_watermark_fast returns true even when the free
is very low. The commit f27ce0e140 ("page_alloc: consider highatomic
reserve in watermark fast") changed the watermark fast to consider
highatomic reserve. But it did not handle a negative value case which
can be happened when reserved_highatomic pageblock is bigger than the
actual free.

If watermark is considered as ok for the negative value, allocating
contexts for order-0 will consume all free pages without direct reclaim,
and finally free page may become depleted except highatomic free.

Then allocating contexts may fall into throttle_direct_reclaim. This
symptom may easily happen in a system where wmark min is low and other
reclaimers like kswapd does not make free pages quickly.

Handle the negative case by using MIN.

Link: https://lkml.kernel.org/r/20220725095212.25388-1-jaewon31.kim@samsung.com
Fixes: f27ce0e140 ("page_alloc: consider highatomic reserve in watermark fast")
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Reported-by: GyeongHwan Hong <gh21.hong@samsung.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Yong-Taek Lee <ytk.lee@samsung.com>
Cc: <stable@vger.kerenl.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:05:28 +02:00
Ralph Campbell eee3f217da mm/hmm: fault non-owner device private entries
commit 8a295dbbaf upstream.

If hmm_range_fault() is called with the HMM_PFN_REQ_FAULT flag and a
device private PTE is found, the hmm_range::dev_private_owner page is used
to determine if the device private page should not be faulted in.
However, if the device private page is not owned by the caller,
hmm_range_fault() returns an error instead of calling migrate_to_ram() to
fault in the page.

For example, if a page is migrated to GPU private memory and a RDMA fault
capable NIC tries to read the migrated page, without this patch it will
get an error.  With this patch, the page will be migrated back to system
memory and the NIC will be able to read the data.

Link: https://lkml.kernel.org/r/20220727000837.4128709-2-rcampbell@nvidia.com
Link: https://lkml.kernel.org/r/20220725183615.4118795-2-rcampbell@nvidia.com
Fixes: 08ddddda66 ("mm/hmm: check the device private page owner in hmm_range_fault()")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reported-by: Felix Kuehling <felix.kuehling@amd.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Cc: Philip Yang <Philip.Yang@amd.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:05:28 +02:00
Miaohe Lin 9fd5096c56 hugetlb: fix memoryleak in hugetlb_mcopy_atomic_pte
commit da9a298f5f upstream.

When alloc_huge_page fails, *pagep is set to NULL without put_page first.
So the hugepage indicated by *pagep is leaked.

Link: https://lkml.kernel.org/r/20220709092629.54291-1-linmiaohe@huawei.com
Fixes: 8cc5fcbb5b ("mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPY")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:05:17 +02:00
Muchun Song e786be4338 mm: fix missing wake-up event for FSDAX pages
commit f4f451a16d upstream.

FSDAX page refcounts are 1-based, rather than 0-based: if refcount is
1, then the page is freed.  The FSDAX pages can be pinned through GUP,
then they will be unpinned via unpin_user_page() using a folio variant
to put the page, however, folio variants did not consider this special
case, the result will be to miss a wakeup event (like the user of
__fuse_dax_break_layouts()).  This results in a task being permanently
stuck in TASK_INTERRUPTIBLE state.

Since FSDAX pages are only possibly obtained by GUP users, so fix GUP
instead of folio_put() to lower overhead.

Link: https://lkml.kernel.org/r/20220705123532.283-1-songmuchun@bytedance.com
Fixes: d8ddc099c6 ("mm/gup: Add gup_put_folio()")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:05:17 +02:00
Josef Bacik f1a0a81e72 mm: fix page leak with multiple threads mapping the same page
commit 3fe2895cfe upstream.

We have an application with a lot of threads that use a shared mmap backed
by tmpfs mounted with -o huge=within_size.  This application started
leaking loads of huge pages when we upgraded to a recent kernel.

Using the page ref tracepoints and a BPF program written by Tejun Heo we
were able to determine that these pages would have multiple refcounts from
the page fault path, but when it came to unmap time we wouldn't drop the
number of refs we had added from the faults.

I wrote a reproducer that mmap'ed a file backed by tmpfs with -o
huge=always, and then spawned 20 threads all looping faulting random
offsets in this map, while using madvise(MADV_DONTNEED) randomly for huge
page aligned ranges.  This very quickly reproduced the problem.

The problem here is that we check for the case that we have multiple
threads faulting in a range that was previously unmapped.  One thread maps
the PMD, the other thread loses the race and then returns 0.  However at
this point we already have the page, and we are no longer putting this
page into the processes address space, and so we leak the page.  We
actually did the correct thing prior to f9ce0be71d, however it looks
like Kirill copied what we do in the anonymous page case.  In the
anonymous page case we don't yet have a page, so we don't have to drop a
reference on anything.  Previously we did the correct thing for file based
faults by returning VM_FAULT_NOPAGE so we correctly drop the reference on
the page we faulted in.

Fix this by returning VM_FAULT_NOPAGE in the pmd_devmap_trans_unstable()
case, this makes us drop the ref on the page properly, and now my
reproducer no longer leaks the huge pages.

[josef@toxicpanda.com: v2]
  Link: https://lkml.kernel.org/r/e90c8f0dbae836632b669c2afc434006a00d4a67.1657721478.git.josef@toxicpanda.com
Link: https://lkml.kernel.org/r/2b798acfd95c9ab9395fe85e8d5a835e2e10a920.1657051137.git.josef@toxicpanda.com
Fixes: f9ce0be71d ("mm: Cleanup faultaround and finish_fault() codepaths")
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:05:17 +02:00
Mike Rapoport afc21041be secretmem: fix unhandled fault in truncate
commit 84ac013046 upstream.

syzkaller reports the following issue:

BUG: unable to handle page fault for address: ffff888021f7e005
PGD 11401067 P4D 11401067 PUD 11402067 PMD 21f7d063 PTE 800fffffde081060
Oops: 0002 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 3761 Comm: syz-executor281 Not tainted 5.19.0-rc4-syzkaller-00014-g941e3e791269 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:memset_erms+0x9/0x10 arch/x86/lib/memset_64.S:64
Code: c1 e9 03 40 0f b6 f6 48 b8 01 01 01 01 01 01 01 01 48 0f af c6 f3 48 ab 89 d1 f3 aa 4c 89 c8 c3 90 49 89 f9 40 88 f0 48 89 d1 <f3> aa 4c 89 c8 c3 90 49 89 fa 40 0f b6 ce 48 b8 01 01 01 01 01 01
RSP: 0018:ffffc9000329fa90 EFLAGS: 00010202
RAX: 0000000000000000 RBX: 0000000000001000 RCX: 0000000000000ffb
RDX: 0000000000000ffb RSI: 0000000000000000 RDI: ffff888021f7e005
RBP: ffffea000087df80 R08: 0000000000000001 R09: ffff888021f7e005
R10: ffffed10043efdff R11: 0000000000000000 R12: 0000000000000005
R13: 0000000000000000 R14: 0000000000001000 R15: 0000000000000ffb
FS:  00007fb29d8b2700(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff888021f7e005 CR3: 0000000026e7b000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
 zero_user_segments include/linux/highmem.h:272 [inline]
 folio_zero_range include/linux/highmem.h:428 [inline]
 truncate_inode_partial_folio+0x76a/0xdf0 mm/truncate.c:237
 truncate_inode_pages_range+0x83b/0x1530 mm/truncate.c:381
 truncate_inode_pages mm/truncate.c:452 [inline]
 truncate_pagecache+0x63/0x90 mm/truncate.c:753
 simple_setattr+0xed/0x110 fs/libfs.c:535
 secretmem_setattr+0xae/0xf0 mm/secretmem.c:170
 notify_change+0xb8c/0x12b0 fs/attr.c:424
 do_truncate+0x13c/0x200 fs/open.c:65
 do_sys_ftruncate+0x536/0x730 fs/open.c:193
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fb29d900899
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 11 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fb29d8b2318 EFLAGS: 00000246 ORIG_RAX: 000000000000004d
RAX: ffffffffffffffda RBX: 00007fb29d988408 RCX: 00007fb29d900899
RDX: 00007fb29d900899 RSI: 0000000000000005 RDI: 0000000000000003
RBP: 00007fb29d988400 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fb29d98840c
R13: 00007ffca01a23bf R14: 00007fb29d8b2400 R15: 0000000000022000
 </TASK>
Modules linked in:
CR2: ffff888021f7e005
---[ end trace 0000000000000000 ]---

Eric Biggers suggested that this happens when
secretmem_setattr()->simple_setattr() races with secretmem_fault() so that
a page that is faulted in by secretmem_fault() (and thus removed from the
direct map) is zeroed by inode truncation right afterwards.

Use mapping->invalidate_lock to make secretmem_fault() and
secretmem_setattr() mutually exclusive.

[rppt@linux.ibm.com: v3]
  Link: https://lkml.kernel.org/r/20220714091337.412297-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20220707165650.248088-1-rppt@kernel.org
Reported-by: syzbot+9bd2b7adbd34b30b87e4@syzkaller.appspotmail.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Suggested-by: Eric Biggers <ebiggers@kernel.org>
Reviewed-by: Axel Rasmussen <axelrasmussen@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:05:16 +02:00
Wang Cheng 777e563f10 mm/mempolicy: fix uninit-value in mpol_rebind_policy()
commit 018160ad31 upstream.

mpol_set_nodemask()(mm/mempolicy.c) does not set up nodemask when
pol->mode is MPOL_LOCAL.  Check pol->mode before access
pol->w.cpuset_mems_allowed in mpol_rebind_policy()(mm/mempolicy.c).

BUG: KMSAN: uninit-value in mpol_rebind_policy mm/mempolicy.c:352 [inline]
BUG: KMSAN: uninit-value in mpol_rebind_task+0x2ac/0x2c0 mm/mempolicy.c:368
 mpol_rebind_policy mm/mempolicy.c:352 [inline]
 mpol_rebind_task+0x2ac/0x2c0 mm/mempolicy.c:368
 cpuset_change_task_nodemask kernel/cgroup/cpuset.c:1711 [inline]
 cpuset_attach+0x787/0x15e0 kernel/cgroup/cpuset.c:2278
 cgroup_migrate_execute+0x1023/0x1d20 kernel/cgroup/cgroup.c:2515
 cgroup_migrate kernel/cgroup/cgroup.c:2771 [inline]
 cgroup_attach_task+0x540/0x8b0 kernel/cgroup/cgroup.c:2804
 __cgroup1_procs_write+0x5cc/0x7a0 kernel/cgroup/cgroup-v1.c:520
 cgroup1_tasks_write+0x94/0xb0 kernel/cgroup/cgroup-v1.c:539
 cgroup_file_write+0x4c2/0x9e0 kernel/cgroup/cgroup.c:3852
 kernfs_fop_write_iter+0x66a/0x9f0 fs/kernfs/file.c:296
 call_write_iter include/linux/fs.h:2162 [inline]
 new_sync_write fs/read_write.c:503 [inline]
 vfs_write+0x1318/0x2030 fs/read_write.c:590
 ksys_write+0x28b/0x510 fs/read_write.c:643
 __do_sys_write fs/read_write.c:655 [inline]
 __se_sys_write fs/read_write.c:652 [inline]
 __x64_sys_write+0xdb/0x120 fs/read_write.c:652
 do_syscall_x64 arch/x86/entry/common.c:51 [inline]
 do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Uninit was created at:
 slab_post_alloc_hook mm/slab.h:524 [inline]
 slab_alloc_node mm/slub.c:3251 [inline]
 slab_alloc mm/slub.c:3259 [inline]
 kmem_cache_alloc+0x902/0x11c0 mm/slub.c:3264
 mpol_new mm/mempolicy.c:293 [inline]
 do_set_mempolicy+0x421/0xb70 mm/mempolicy.c:853
 kernel_set_mempolicy mm/mempolicy.c:1504 [inline]
 __do_sys_set_mempolicy mm/mempolicy.c:1510 [inline]
 __se_sys_set_mempolicy+0x44c/0xb60 mm/mempolicy.c:1507
 __x64_sys_set_mempolicy+0xd8/0x110 mm/mempolicy.c:1507
 do_syscall_x64 arch/x86/entry/common.c:51 [inline]
 do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
 entry_SYSCALL_64_after_hwframe+0x44/0xae

KMSAN: uninit-value in mpol_rebind_task (2)
https://syzkaller.appspot.com/bug?id=d6eb90f952c2a5de9ea718a1b873c55cb13b59dc

This patch seems to fix below bug too.
KMSAN: uninit-value in mpol_rebind_mm (2)
https://syzkaller.appspot.com/bug?id=f2fecd0d7013f54ec4162f60743a2b28df40926b

The uninit-value is pol->w.cpuset_mems_allowed in mpol_rebind_policy().
When syzkaller reproducer runs to the beginning of mpol_new(),

	    mpol_new() mm/mempolicy.c
	  do_mbind() mm/mempolicy.c
	kernel_mbind() mm/mempolicy.c

`mode` is 1(MPOL_PREFERRED), nodes_empty(*nodes) is `true` and `flags`
is 0. Then

	mode = MPOL_LOCAL;
	...
	policy->mode = mode;
	policy->flags = flags;

will be executed. So in mpol_set_nodemask(),

	    mpol_set_nodemask() mm/mempolicy.c
	  do_mbind()
	kernel_mbind()

pol->mode is 4 (MPOL_LOCAL), that `nodemask` in `pol` is not initialized,
which will be accessed in mpol_rebind_policy().

Link: https://lkml.kernel.org/r/20220512123428.fq3wofedp6oiotd4@ppc.localdomain
Signed-off-by: Wang Cheng <wanngchenng@gmail.com>
Reported-by: <syzbot+217f792c92599518a2ab@syzkaller.appspotmail.com>
Tested-by: <syzbot+217f792c92599518a2ab@syzkaller.appspotmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-29 17:28:14 +02:00
Baolin Wang 3920c5843e mm/damon: use set_huge_pte_at() to make huge pte old
commit ed1523a895 upstream.

The huge_ptep_set_access_flags() can not make the huge pte old according
to the discussion [1], that means we will always mornitor the young state
of the hugetlb though we stopped accessing the hugetlb, as a result DAMON
will get inaccurate accessing statistics.

So changing to use set_huge_pte_at() to make the huge pte old to fix this
issue.

[1] https://lore.kernel.org/all/Yqy97gXI4Nqb7dYo@arm.com/

Link: https://lkml.kernel.org/r/1655692482-28797-1-git-send-email-baolin.wang@linux.alibaba.com
Fixes: 49f4203aae ("mm/damon: add access checking for hugetlb pages")
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-22 10:21:19 +02:00
Gowans, James 3d637c7df8 mm: split huge PUD on wp_huge_pud fallback
commit 14c99d6594 upstream.

Currently the implementation will split the PUD when a fallback is taken
inside the create_huge_pud function.  This isn't where it should be done:
the splitting should be done in wp_huge_pud, just like it's done for PMDs.
Reason being that if a callback is taken during create, there is no PUD
yet so nothing to split, whereas if a fallback is taken when encountering
a write protection fault there is something to split.

It looks like this was the original intention with the commit where the
splitting was introduced, but somehow it got moved to the wrong place
between v1 and v2 of the patch series.  Rebase mistake perhaps.

Link: https://lkml.kernel.org/r/6f48d622eb8bce1ae5dd75327b0b73894a2ec407.camel@amazon.com
Fixes: 327e9fd489 ("mm: Split huge pages on write-notify or COW")
Signed-off-by: James Gowans <jgowans@amazon.com>
Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-22 10:21:18 +02:00
Muchun Song 6ebbd46d2e mm: sparsemem: fix missing higher order allocation splitting
commit 39d35edee4 upstream.

Higher order allocations for vmemmap pages from buddy allocator must be
able to be treated as indepdenent small pages as they can be freed
individually by the caller.  There is no problem for higher order vmemmap
pages allocated at boot time since each individual small page will be
initialized at boot time.  However, it will be an issue for memory hotplug
case since those higher order vmemmap pages are allocated from buddy
allocator without initializing each individual small page's refcount.  The
system will panic in put_page_testzero() when CONFIG_DEBUG_VM is enabled
if the vmemmap page is freed.

Link: https://lkml.kernel.org/r/20220620023019.94257-1-songmuchun@bytedance.com
Fixes: d8d55f5616 ("mm: sparsemem: use page table lock to protect kernel pmd operations")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-22 10:21:18 +02:00
Axel Rasmussen 43c5ac008f mm: userfaultfd: fix UFFDIO_CONTINUE on fallocated shmem pages
commit 73f37dbcfe upstream.

When fallocate() is used on a shmem file, the pages we allocate can end up
with !PageUptodate.

Since UFFDIO_CONTINUE tries to find the existing page the user wants to
map with SGP_READ, we would fail to find such a page, since
shmem_getpage_gfp returns with a "NULL" pagep for SGP_READ if it discovers
!PageUptodate.  As a result, UFFDIO_CONTINUE returns -EFAULT, as it would
do if the page wasn't found in the page cache at all.

This isn't the intended behavior.  UFFDIO_CONTINUE is just trying to find
if a page exists, and doesn't care whether it still needs to be cleared or
not.  So, instead of SGP_READ, pass in SGP_NOALLOC.  This is the same,
except for one critical difference: in the !PageUptodate case, SGP_NOALLOC
will clear the page and then return it.  With this change, UFFDIO_CONTINUE
works properly (succeeds) on a shmem file which has been fallocated, but
otherwise not modified.

Link: https://lkml.kernel.org/r/20220610173812.1768919-1-axelrasmussen@google.com
Fixes: 153132571f ("userfaultfd/shmem: support UFFDIO_CONTINUE for shmem")
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-22 10:21:18 +02:00
Marcelo Tosatti 6dac8e101d mm: lru_cache_disable: use synchronize_rcu_expedited
commit 3173346337 upstream.

commit ff042f4a9b ("mm: lru_cache_disable: replace work queue
synchronization with synchronize_rcu") replaced lru_cache_disable's usage
of work queues with synchronize_rcu.

Some users reported large performance regressions due to this commit, for
example:
https://lore.kernel.org/all/20220521234616.GO1790663@paulmck-ThinkPad-P17-Gen-1/T/

Switching to synchronize_rcu_expedited fixes the problem.

Link: https://lkml.kernel.org/r/YpToHCmnx/HEcVyR@fuller.cnet
Fixes: ff042f4a9b ("mm: lru_cache_disable: replace work queue synchronization with synchronize_rcu")
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Tested-by: Stefan Wahren <stefan.wahren@i2se.com>
Tested-by: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Phil Elwell <phil@raspberrypi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-29 09:04:41 +02:00
zhenwei pi fbbc999464 mm/memory-failure: disable unpoison once hw error happens
commit 67f22ba775 upstream.

Currently unpoison_memory(unsigned long pfn) is designed for soft
poison(hwpoison-inject) only.  Since 17fae1294a, the KPTE gets cleared
on a x86 platform once hardware memory corrupts.

Unpoisoning a hardware corrupted page puts page back buddy only, the
kernel has a chance to access the page with *NOT PRESENT* KPTE.  This
leads BUG during accessing on the corrupted KPTE.

Suggested by David&Naoya, disable unpoison mechanism when a real HW error
happens to avoid BUG like this:

 Unpoison: Software-unpoisoned page 0x61234
 BUG: unable to handle page fault for address: ffff888061234000
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0002) - not-present page
 PGD 2c01067 P4D 2c01067 PUD 107267063 PMD 10382b063 PTE 800fffff9edcb062
 Oops: 0002 [#1] PREEMPT SMP NOPTI
 CPU: 4 PID: 26551 Comm: stress Kdump: loaded Tainted: G   M       OE     5.18.0.bm.1-amd64 #7
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...
 RIP: 0010:clear_page_erms+0x7/0x10
 Code: ...
 RSP: 0000:ffffc90001107bc8 EFLAGS: 00010246
 RAX: 0000000000000000 RBX: 0000000000000901 RCX: 0000000000001000
 RDX: ffffea0001848d00 RSI: ffffea0001848d40 RDI: ffff888061234000
 RBP: ffffea0001848d00 R08: 0000000000000901 R09: 0000000000001276
 R10: 0000000000000003 R11: 0000000000000000 R12: 0000000000000001
 R13: 0000000000000000 R14: 0000000000140dca R15: 0000000000000001
 FS:  00007fd8b2333740(0000) GS:ffff88813fd00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: ffff888061234000 CR3: 00000001023d2005 CR4: 0000000000770ee0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 PKRU: 55555554
 Call Trace:
  <TASK>
  prep_new_page+0x151/0x170
  get_page_from_freelist+0xca0/0xe20
  ? sysvec_apic_timer_interrupt+0xab/0xc0
  ? asm_sysvec_apic_timer_interrupt+0x1b/0x20
  __alloc_pages+0x17e/0x340
  __folio_alloc+0x17/0x40
  vma_alloc_folio+0x84/0x280
  __handle_mm_fault+0x8d4/0xeb0
  handle_mm_fault+0xd5/0x2a0
  do_user_addr_fault+0x1d0/0x680
  ? kvm_read_and_reset_apf_flags+0x3b/0x50
  exc_page_fault+0x78/0x170
  asm_exc_page_fault+0x27/0x30

Link: https://lkml.kernel.org/r/20220615093209.259374-2-pizhenwei@bytedance.com
Fixes: 847ce401df ("HWPOISON: Add unpoisoning support")
Fixes: 17fae1294a ("x86/{mce,mm}: Unmap the entire page if the whole page is affected and poisoned")
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>	[5.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-29 09:04:41 +02:00
Alistair Popple 28e016f00c filemap: Fix serialization adding transparent huge pages to page cache
[ Upstream commit 00fa15e0d5 ]

Commit 793917d997 ("mm/readahead: Add large folio readahead")
introduced support for using large folios for filebacked pages if the
filesystem supports it.

page_cache_ra_order() was introduced to allocate and add these large
folios to the page cache. However adding pages to the page cache should
be serialized against truncation and hole punching by taking
invalidate_lock. Not doing so can lead to data races resulting in stale
data getting added to the page cache and marked up-to-date. See commit
730633f0b7 ("mm: Protect operations adding pages to page cache with
invalidate_lock") for more details.

This issue was found by inspection but a testcase revealed it was
possible to observe in practice on XFS. Fix this by taking
invalidate_lock in page_cache_ra_order(), to mirror what is done for the
non-thp case in page_cache_ra_unbounded().

Signed-off-by: Alistair Popple <apopple@nvidia.com>
Fixes: 793917d997 ("mm/readahead: Add large folio readahead")
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-29 09:04:35 +02:00
Jann Horn 197e257da4 mm/slub: add missing TID updates on slab deactivation
commit eeaa345e12 upstream.

The fastpath in slab_alloc_node() assumes that c->slab is stable as long as
the TID stays the same. However, two places in __slab_alloc() currently
don't update the TID when deactivating the CPU slab.

If multiple operations race the right way, this could lead to an object
getting lost; or, in an even more unlikely situation, it could even lead to
an object being freed onto the wrong slab's freelist, messing up the
`inuse` counter and eventually causing a page to be freed to the page
allocator while it still contains slab objects.

(I haven't actually tested these cases though, this is just based on
looking at the code. Writing testcases for this stuff seems like it'd be
a pain...)

The race leading to state inconsistency is (all operations on the same CPU
and kmem_cache):

 - task A: begin do_slab_free():
    - read TID
    - read pcpu freelist (==NULL)
    - check `slab == c->slab` (true)
 - [PREEMPT A->B]
 - task B: begin slab_alloc_node():
    - fastpath fails (`c->freelist` is NULL)
    - enter __slab_alloc()
    - slub_get_cpu_ptr() (disables preemption)
    - enter ___slab_alloc()
    - take local_lock_irqsave()
    - read c->freelist as NULL
    - get_freelist() returns NULL
    - write `c->slab = NULL`
    - drop local_unlock_irqrestore()
    - goto new_slab
    - slub_percpu_partial() is NULL
    - get_partial() returns NULL
    - slub_put_cpu_ptr() (enables preemption)
 - [PREEMPT B->A]
 - task A: finish do_slab_free():
    - this_cpu_cmpxchg_double() succeeds()
    - [CORRUPT STATE: c->slab==NULL, c->freelist!=NULL]

From there, the object on c->freelist will get lost if task B is allowed to
continue from here: It will proceed to the retry_load_slab label,
set c->slab, then jump to load_freelist, which clobbers c->freelist.

But if we instead continue as follows, we get worse corruption:

 - task A: run __slab_free() on object from other struct slab:
    - CPU_PARTIAL_FREE case (slab was on no list, is now on pcpu partial)
 - task A: run slab_alloc_node() with NUMA node constraint:
    - fastpath fails (c->slab is NULL)
    - call __slab_alloc()
    - slub_get_cpu_ptr() (disables preemption)
    - enter ___slab_alloc()
    - c->slab is NULL: goto new_slab
    - slub_percpu_partial() is non-NULL
    - set c->slab to slub_percpu_partial(c)
    - [CORRUPT STATE: c->slab points to slab-1, c->freelist has objects
      from slab-2]
    - goto redo
    - node_match() fails
    - goto deactivate_slab
    - existing c->freelist is passed into deactivate_slab()
    - inuse count of slab-1 is decremented to account for object from
      slab-2

At this point, the inuse count of slab-1 is 1 lower than it should be.
This means that if we free all allocated objects in slab-1 except for one,
SLUB will think that slab-1 is completely unused, and may free its page,
leading to use-after-free.

Fixes: c17dda40a6 ("slub: Separate out kmem_cache_cpu processing from deactivate_slab")
Fixes: 03e404af26 ("slub: fast release on full slab")
Cc: stable@vger.kernel.org
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/20220608182205.2945720-1-jannh@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-29 09:04:27 +02:00
Matthew Wilcox (Oracle) a66f131d30 filemap: Handle sibling entries in filemap_get_read_batch()
commit cb995f4eeb upstream.

If a read races with an invalidation followed by another read, it is
possible for a folio to be replaced with a higher-order folio.  If that
happens, we'll see a sibling entry for the new folio in the next iteration
of the loop.  This manifests as a NULL pointer dereference while holding
the RCU read lock.

Handle this by simply returning.  The next call will find the new folio
and handle it correctly.  The other ways of handling this rare race are
more complex and it's just not worth it.

Reported-by: Dave Chinner <david@fromorbit.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Debugged-by: Brian Foster <bfoster@redhat.com>
Tested-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Fixes: cbd59c48ae ("mm/filemap: use head pages in generic_file_buffered_read")
Cc: stable@vger.kernel.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-29 09:04:27 +02:00
Jan Kara 3ea26602da init: Initialize noop_backing_dev_info early
[ Upstream commit 4bca7e80b6 ]

noop_backing_dev_info is used by superblocks of various
pseudofilesystems such as kdevtmpfs. After commit 10e1407310
("writeback: Fix inode->i_io_list not be protected by inode->i_lock
error") this broke because __mark_inode_dirty() started to access more
fields from noop_backing_dev_info and this led to crashes inside
locked_inode_to_wb_and_lock_list() called from __mark_inode_dirty().
Fix the problem by initializing noop_backing_dev_info before the
filesystems get mounted.

Fixes: 10e1407310 ("writeback: Fix inode->i_io_list not be protected by inode->i_lock error")
Reported-and-tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reported-and-tested-by: Alexandru Elisei <alexandru.elisei@arm.com>
Reported-and-tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-22 14:28:03 +02:00
Matthew Wilcox (Oracle) 95c8181b49 mm/huge_memory: Fix xarray node memory leak
commit 69a37a8ba1 upstream.

If xas_split_alloc() fails to allocate the necessary nodes to complete the
xarray entry split, it sets the xa_state to -ENOMEM, which xas_nomem()
then interprets as "Please allocate more memory", not as "Please free
any unnecessary memory" (which was the intended outcome).  It's confusing
to use xas_nomem() to free memory in this context, so call xas_destroy()
instead.

Reported-by: syzbot+9e27a75a8c24f3fe75c1@syzkaller.appspotmail.com
Fixes: 6b24ca4a1a ("mm: Use multi-index entries in the page cache")
Cc: stable@vger.kernel.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-14 18:45:19 +02:00
Matthew Wilcox (Oracle) db58eef8cc filemap: Cache the value of vm_flags
commit dcfa24ba68 upstream.

After we have unlocked the mmap_lock for I/O, the file is pinned, but
the VMA is not.  Checking this flag after that can be a use-after-free.
It's not a terribly interesting use-after-free as it can only read one
bit, and it's used to decide whether to read 2MB or 4MB.  But it
upsets the automated tools and it's generally bad practice anyway,
so let's fix it.

Reported-by: syzbot+5b96d55e5b54924c77ad@syzkaller.appspotmail.com
Fixes: 4687fdbb80 ("mm/filemap: Support VM_HUGEPAGE for file mappings")
Cc: stable@vger.kernel.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-14 18:45:17 +02:00
Miaohe Lin 2f2af0e5f6 mm/memremap: fix missing call to untrack_pfn() in pagemap_range()
commit a04e1928e2 upstream.

We forget to call untrack_pfn() to pair with track_pfn_remap() when range
is not allowed to hotplug.  Fix it by jump err_kasan.

Link: https://lkml.kernel.org/r/20220531122643.25249-1-linmiaohe@huawei.com
Fixes: bca3feaa07 ("mm/memory_hotplug: prevalidate the address range being added with platform")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09 10:30:52 +02:00
Mike Kravetz fe5c5fb931 hugetlb: fix huge_pmd_unshare address update
commit 48381273f8 upstream.

The routine huge_pmd_unshare() is passed a pointer to an address
associated with an area which may be unshared.  If unshare is successful
this address is updated to 'optimize' callers iterating over huge page
addresses.  For the optimization to work correctly, address should be
updated to the last huge page in the unmapped/unshared area.  However, in
the common case where the passed address is PUD_SIZE aligned, the address
is incorrectly updated to the address of the preceding huge page.  That
wastes CPU cycles as the unmapped/unshared range is scanned twice.

Link: https://lkml.kernel.org/r/20220524205003.126184-1-mike.kravetz@oracle.com
Fixes: 39dde65c99 ("shared page table for hugetlb page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09 10:30:52 +02:00
Mel Gorman 620195356d mm/page_alloc: always attempt to allocate at least one page during bulk allocation
commit c572e4888a upstream.

Peter Pavlisko reported the following problem on kernel bugzilla 216007.

	When I try to extract an uncompressed tar archive (2.6 milion
	files, 760.3 GiB in size) on newly created (empty) XFS file system,
	after first low tens of gigabytes extracted the process hangs in
	iowait indefinitely. One CPU core is 100% occupied with iowait,
	the other CPU core is idle (on 2-core Intel Celeron G1610T).

It was bisected to c9fa563072 ("xfs: use alloc_pages_bulk_array() for
buffers") but XFS is only the messenger.  The problem is that nothing is
waking kswapd to reclaim some pages at a time the PCP lists cannot be
refilled until some reclaim happens.  The bulk allocator checks that there
are some pages in the array and the original intent was that a bulk
allocator did not necessarily need all the requested pages and it was best
to return as quickly as possible.

This was fine for the first user of the API but both NFS and XFS require
the requested number of pages be available before making progress.  Both
could be adjusted to call the page allocator directly if a bulk allocation
fails but it puts a burden on users of the API.  Adjust the semantics to
attempt at least one allocation via __alloc_pages() before returning so
kswapd is woken if necessary.

It was reported via bugzilla that the patch addressed the problem and that
the tar extraction completed successfully.  This may also address bug
215975 but has yet to be confirmed.

BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=216007
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=215975
Link: https://lkml.kernel.org/r/20220526091210.GC3441@techsingularity.net
Fixes: 387ba26fb1 ("mm/page_alloc: add a bulk page allocator")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: <stable@vger.kernel.org>	[5.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09 10:30:52 +02:00
Eric Dumazet 5cd9900a1a mm/page_owner: use strscpy() instead of strlcpy()
commit cd8c1fd8cd upstream.

current->comm[] is not a string (no guarantee for a zero byte in it).

strlcpy(s1, s2, l) is calling strlen(s2), potentially
causing out-of-bound access, as reported by syzbot:

detected buffer overflow in __fortify_strlen
------------[ cut here ]------------
kernel BUG at lib/string_helpers.c:980!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 4087 Comm: dhcpcd-run-hooks Not tainted 5.18.0-rc3-syzkaller-01537-g20b87e7c29df #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:fortify_panic+0x18/0x1a lib/string_helpers.c:980
Code: 8c e8 c5 ba e1 fa e9 23 0f bf fa e8 0b 5d 8c f8 eb db 55 48 89 fd e8 e0 49 40 f8 48 89 ee 48 c7 c7 80 f5 26 8a e8 99 09 f1 ff <0f> 0b e8 ca 49 40 f8 48 8b 54 24 18 4c 89 f1 48 c7 c7 00 00 27 8a
RSP: 0018:ffffc900000074a8 EFLAGS: 00010286

RAX: 000000000000002c RBX: ffff88801226b728 RCX: 0000000000000000
RDX: ffff8880198e0000 RSI: ffffffff81600458 RDI: fffff52000000e87
RBP: ffffffff89da2aa0 R08: 000000000000002c R09: 0000000000000000
R10: ffffffff815fae2e R11: 0000000000000000 R12: ffff88801226b700
R13: ffff8880198e0830 R14: 0000000000000000 R15: 0000000000000000
FS:  0000000000000000(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f5876ad6ff8 CR3: 000000001a48c000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
Call Trace:
 <IRQ>
 __fortify_strlen include/linux/fortify-string.h:128 [inline]
 strlcpy include/linux/fortify-string.h:143 [inline]
 __set_page_owner_handle+0x2b1/0x3e0 mm/page_owner.c:171
 __set_page_owner+0x3e/0x50 mm/page_owner.c:190
 prep_new_page mm/page_alloc.c:2441 [inline]
 get_page_from_freelist+0xba2/0x3e00 mm/page_alloc.c:4182
 __alloc_pages+0x1b2/0x500 mm/page_alloc.c:5408
 alloc_pages+0x1aa/0x310 mm/mempolicy.c:2272
 alloc_slab_page mm/slub.c:1799 [inline]
 allocate_slab+0x26c/0x3c0 mm/slub.c:1944
 new_slab mm/slub.c:2004 [inline]
 ___slab_alloc+0x8df/0xf20 mm/slub.c:3005
 __slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3092
 slab_alloc_node mm/slub.c:3183 [inline]
 slab_alloc mm/slub.c:3225 [inline]
 __kmem_cache_alloc_lru mm/slub.c:3232 [inline]
 kmem_cache_alloc+0x360/0x3b0 mm/slub.c:3242
 dst_alloc+0x146/0x1f0 net/core/dst.c:92

Link: https://lkml.kernel.org/r/20220509145949.265184-1-eric.dumazet@gmail.com
Fixes: 865ed6a327 ("mm/page_owner: record task command name")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Acked-by: Waiman Long <longman@redhat.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09 10:30:52 +02:00
Dong Aisheng 50aacd105f Revert "mm/cma.c: remove redundant cma_mutex lock"
commit 60a60e32cf upstream.

This reverts commit a4efc174b3 which introduced a regression issue
that when there're multiple processes allocating dma memory in parallel by
calling dma_alloc_coherent(), it may fail sometimes as follows:

Error log:
cma: cma_alloc: linux,cma: alloc failed, req-size: 148 pages, ret: -16
cma: number of available pages:
3@125+20@172+12@236+4@380+32@736+17@2287+23@2473+20@36076+99@40477+108@40852+44@41108+20@41196+108@41364+108@41620+
108@42900+108@43156+483@44061+1763@45341+1440@47712+20@49324+20@49388+5076@49452+2304@55040+35@58141+20@58220+20@58284+
7188@58348+84@66220+7276@66452+227@74525+6371@75549=> 33161 free of 81920 total pages

When issue happened, we saw there were still 33161 pages (129M) free CMA
memory and a lot available free slots for 148 pages in CMA bitmap that we
want to allocate.

When dumping memory info, we found that there was also ~342M normal
memory, but only 1352K CMA memory left in buddy system while a lot of
pageblocks were isolated.

Memory info log:
Normal free:351096kB min:30000kB low:37500kB high:45000kB reserved_highatomic:0KB
	    active_anon:98060kB inactive_anon:98948kB active_file:60864kB inactive_file:31776kB
	    unevictable:0kB writepending:0kB present:1048576kB managed:1018328kB mlocked:0kB
	    bounce:0kB free_pcp:220kB local_pcp:192kB free_cma:1352kB lowmem_reserve[]: 0 0 0
Normal: 78*4kB (UECI) 1772*8kB (UMECI) 1335*16kB (UMECI) 360*32kB (UMECI) 65*64kB (UMCI)
	36*128kB (UMECI) 16*256kB (UMCI) 6*512kB (EI) 8*1024kB (UEI) 4*2048kB (MI) 8*4096kB (EI)
	8*8192kB (UI) 3*16384kB (EI) 8*32768kB (M) = 489288kB

The root cause of this issue is that since commit a4efc174b3 ("mm/cma.c:
remove redundant cma_mutex lock"), CMA supports concurrent memory
allocation.  It's possible that the memory range process A trying to alloc
has already been isolated by the allocation of process B during memory
migration.

The problem here is that the memory range isolated during one allocation
by start_isolate_page_range() could be much bigger than the real size we
want to alloc due to the range is aligned to MAX_ORDER_NR_PAGES.

Taking an ARMv7 platform with 1G memory as an example, when
MAX_ORDER_NR_PAGES is big (e.g.  32M with max_order 14) and CMA memory is
relatively small (e.g.  128M), there're only 4 MAX_ORDER slot, then it's
very easy that all CMA memory may have already been isolated by other
processes when one trying to allocate memory using dma_alloc_coherent().
Since current CMA code will only scan one time of whole available CMA
memory, then dma_alloc_coherent() may easy fail due to contention with
other processes.

This patch simply falls back to the original method that using cma_mutex
to make alloc_contig_range() run sequentially to avoid the issue.

Link: https://lkml.kernel.org/r/20220509094551.3596244-1-aisheng.dong@nxp.com
Link: https://lore.kernel.org/all/20220315144521.3810298-2-aisheng.dong@nxp.com/
Fixes: a4efc174b3 ("mm/cma.c: remove redundant cma_mutex lock")
Signed-off-by: Dong Aisheng <aisheng.dong@nxp.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>	[5.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09 10:30:52 +02:00
Rei Yamamoto 4d7fdff4df mm, compaction: fast_find_migrateblock() should return pfn in the target zone
commit bbe832b9db upstream.

At present, pages not in the target zone are added to cc->migratepages
list in isolate_migratepages_block().  As a result, pages may migrate
between nodes unintentionally.

This would be a serious problem for older kernels without commit
a984226f45 ("mm: memcontrol: remove the pgdata parameter of
mem_cgroup_page_lruvec"), because it can corrupt the lru list by
handling pages in list without holding proper lru_lock.

Avoid returning a pfn outside the target zone in the case that it is
not aligned with a pageblock boundary.  Otherwise
isolate_migratepages_block() will handle pages not in the target zone.

Link: https://lkml.kernel.org/r/20220511044300.4069-1-yamamoto.rei@jp.fujitsu.com
Fixes: 70b44595ea ("mm, compaction: use free lists to quickly locate a migration source")
Signed-off-by: Rei Yamamoto <yamamoto.rei@jp.fujitsu.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Wonhyuk Yang <vvghjk1234@gmail.com>
Cc: Rei Yamamoto <yamamoto.rei@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09 10:30:44 +02:00
Sultan Alsawaf c5402fb5f7 zsmalloc: fix races between asynchronous zspage free and page migration
commit 2505a98111 upstream.

The asynchronous zspage free worker tries to lock a zspage's entire page
list without defending against page migration.  Since pages which haven't
yet been locked can concurrently migrate off the zspage page list while
lock_zspage() churns away, lock_zspage() can suffer from a few different
lethal races.

It can lock a page which no longer belongs to the zspage and unsafely
dereference page_private(), it can unsafely dereference a torn pointer to
the next page (since there's a data race), and it can observe a spurious
NULL pointer to the next page and thus not lock all of the zspage's pages
(since a single page migration will reconstruct the entire page list, and
create_page_chain() unconditionally zeroes out each list pointer in the
process).

Fix the races by using migrate_read_lock() in lock_zspage() to synchronize
with page migration.

Link: https://lkml.kernel.org/r/20220509024703.243847-1-sultan@kerneltoast.com
Fixes: 77ff465799 ("zsmalloc: zs_page_migrate: skip unnecessary loops but not return -EBUSY if zspage is not inuse")
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-06 08:48:56 +02:00
Jason A. Donenfeld 463ebd6f87 random: move randomize_page() into mm where it belongs
commit 5ad7dd882e upstream.

randomize_page is an mm function. It is documented like one. It contains
the history of one. It has the naming convention of one. It looks
just like another very similar function in mm, randomize_stack_top().
And it has always been maintained and updated by mm people. There is no
need for it to be in random.c. In the "which shape does not look like
the other ones" test, pointing to randomize_page() is correct.

So move randomize_page() into mm/util.c, right next to the similar
randomize_stack_top() function.

This commit contains no actual code changes.

Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-30 09:24:08 +02:00
Linus Torvalds 364a453ab9 hotfixes for 5.18-rc7
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYnvwxgAKCRDdBJ7gKXxA
 jhymAQDvHnFT3F5ydvBqApbzrQRUk/+fkkQSrF/xYawknZNgkAEA6Tnh9XqYplJN
 bbmml6HTVvDjprEOCGakY/Kyz7qmdQ0=
 =SMJQ
 -----END PGP SIGNATURE-----

Merge tag 'mm-hotfixes-stable-2022-05-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull misc fixes from Andrew Morton:
 "Seven MM fixes, three of which address issues added in the most recent
  merge window, four of which are cc:stable.

  Three non-MM fixes, none very serious"

[ And yes, that's a real pull request from Andrew, not me creating a
  branch from emailed patches. Woo-hoo! ]

* tag 'mm-hotfixes-stable-2022-05-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
  MAINTAINERS: add a mailing list for DAMON development
  selftests: vm: Makefile: rename TARGETS to VMTARGETS
  mm/kfence: reset PG_slab and memcg_data before freeing __kfence_pool
  mailmap: add entry for martyna.szapar-mudlaw@intel.com
  arm[64]/memremap: don't abuse pfn_valid() to ensure presence of linear map
  procfs: prevent unprivileged processes accessing fdinfo dir
  mm: mremap: fix sign for EFAULT error return value
  mm/hwpoison: use pr_err() instead of dump_page() in get_any_page()
  mm/huge_memory: do not overkill when splitting huge_zero_page
  Revert "mm/memory-failure.c: skip huge_zero_page in memory_failure()"
2022-05-13 10:22:37 -07:00
Hyeonggon Yoo 2839b0999c mm/kfence: reset PG_slab and memcg_data before freeing __kfence_pool
When kfence fails to initialize kfence pool, it frees the pool.  But it
does not reset memcg_data and PG_slab flag.

Below is a BUG because of this. Let's fix it by resetting memcg_data
and PG_slab flag before free.

[    0.089149] BUG: Bad page state in process swapper/0  pfn:3d8e06
[    0.089149] page:ffffea46cf638180 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x3d8e06
[    0.089150] memcg:ffffffff94a475d1
[    0.089150] flags: 0x17ffffc0000200(slab|node=0|zone=2|lastcpupid=0x1fffff)
[    0.089151] raw: 0017ffffc0000200 ffffea46cf638188 ffffea46cf638188 0000000000000000
[    0.089152] raw: 0000000000000000 0000000000000000 00000000ffffffff ffffffff94a475d1
[    0.089152] page dumped because: page still charged to cgroup
[    0.089153] Modules linked in:
[    0.089153] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G    B   W         5.18.0-rc1+ #965
[    0.089154] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
[    0.089154] Call Trace:
[    0.089155]  <TASK>
[    0.089155]  dump_stack_lvl+0x49/0x5f
[    0.089157]  dump_stack+0x10/0x12
[    0.089158]  bad_page.cold+0x63/0x94
[    0.089159]  check_free_page_bad+0x66/0x70
[    0.089160]  __free_pages_ok+0x423/0x530
[    0.089161]  __free_pages_core+0x8e/0xa0
[    0.089162]  memblock_free_pages+0x10/0x12
[    0.089164]  memblock_free_late+0x8f/0xb9
[    0.089165]  kfence_init+0x68/0x92
[    0.089166]  start_kernel+0x789/0x992
[    0.089167]  x86_64_start_reservations+0x24/0x26
[    0.089168]  x86_64_start_kernel+0xa9/0xaf
[    0.089170]  secondary_startup_64_no_verify+0xd5/0xdb
[    0.089171]  </TASK>

Link: https://lkml.kernel.org/r/YnPG3pQrqfcgOlVa@hyeyoo
Fixes: 0ce20dd840 ("mm: add Kernel Electric-Fence infrastructure")
Fixes: 8f0b364973 ("mm: kfence: fix objcgs vector allocation")
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 17:34:29 -07:00
Niels Dossche 7d1e649661 mm: mremap: fix sign for EFAULT error return value
The mremap syscall is supposed to return a pointer to the new virtual
memory area on success, and a negative value of the error code in case of
failure.  Currently, EFAULT is returned when the VMA is not found, instead
of -EFAULT.  The users of this syscall will therefore believe the syscall
succeeded in case the VMA didn't exist, as it returns a pointer to address
0xe (0xe being the value of EFAULT).  Fix the sign of the error value.

Link: https://lkml.kernel.org/r/20220427224439.23828-2-dossche.niels@gmail.com
Fixes: 550a7d60bd ("mm, hugepages: add mremap() support for hugepage backed vma")
Signed-off-by: Niels Dossche <dossche.niels@gmail.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 17:34:28 -07:00
Matthew Wilcox (Oracle) b9ff43dd27 mm/readahead: Fix readahead with large folios
Reading 100KB chunks from a big file (eg dd bs=100K) leads to poor
readahead behaviour.  Studying the traces in detail, I noticed two
problems.

The first is that we were setting the readahead flag on the folio which
contains the last byte read from the block.  This is wrong because we
will trigger readahead at the end of the read without waiting to see
if a subsequent read is going to use the pages we just read.  Instead,
we need to set the readahead flag on the first folio _after_ the one
which contains the last byte that we're reading.

The second is that we were looking for the index of the folio with the
readahead flag set to exactly match the start + size - async_size.
If we've rounded this, either down (as previously) or up (as now),
we'll think we hit a folio marked as readahead by a different read,
and try to read the wrong pages.  So round the expected index to the
order of the folio we hit.

Reported-by: Guo Xuenan <guoxuenan@huawei.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-05-05 00:47:29 -04:00
Naoya Horiguchi 1825b93b62 mm/hwpoison: use pr_err() instead of dump_page() in get_any_page()
The following VM_BUG_ON_FOLIO() is triggered when memory error event
happens on the (thp/folio) pages which are about to be freed:

  [ 1160.232771] page:00000000b36a8a0f refcount:1 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x16a000
  [ 1160.236916] page:00000000b36a8a0f refcount:0 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x16a000
  [ 1160.240684] flags: 0x57ffffc0800000(hwpoison|node=1|zone=2|lastcpupid=0x1fffff)
  [ 1160.243458] raw: 0057ffffc0800000 dead000000000100 dead000000000122 0000000000000000
  [ 1160.246268] raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000
  [ 1160.249197] page dumped because: VM_BUG_ON_FOLIO(!folio_test_large(folio))
  [ 1160.251815] ------------[ cut here ]------------
  [ 1160.253438] kernel BUG at include/linux/mm.h:788!
  [ 1160.256162] invalid opcode: 0000 [#1] PREEMPT SMP PTI
  [ 1160.258172] CPU: 2 PID: 115368 Comm: mceinj.sh Tainted: G            E     5.18.0-rc1-v5.18-rc1-220404-2353-005-g83111+ #3
  [ 1160.262049] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1.fc35 04/01/2014
  [ 1160.265103] RIP: 0010:dump_page.cold+0x27e/0x2bd
  [ 1160.266757] Code: fe ff ff 48 c7 c6 81 f1 5a 98 e9 4c fe ff ff 48 c7 c6 a1 95 59 98 e9 40 fe ff ff 48 c7 c6 50 bf 5a 98 48 89 ef e8 9d 04 6d ff <0f> 0b 41 f7 c4 ff 0f 00 00 0f 85 9f fd ff ff 49 8b 04 24 a9 00 00
  [ 1160.273180] RSP: 0018:ffffaa2c4d59fd18 EFLAGS: 00010292
  [ 1160.274969] RAX: 000000000000003e RBX: 0000000000000001 RCX: 0000000000000000
  [ 1160.277263] RDX: 0000000000000001 RSI: ffffffff985995a1 RDI: 00000000ffffffff
  [ 1160.279571] RBP: ffffdc9c45a80000 R08: 0000000000000000 R09: 00000000ffffdfff
  [ 1160.281794] R10: ffffaa2c4d59fb08 R11: ffffffff98940d08 R12: ffffdc9c45a80000
  [ 1160.283920] R13: ffffffff985b6f94 R14: 0000000000000000 R15: ffffdc9c45a80000
  [ 1160.286641] FS:  00007eff54ce1740(0000) GS:ffff99c67bd00000(0000) knlGS:0000000000000000
  [ 1160.289498] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [ 1160.291106] CR2: 00005628381a5f68 CR3: 0000000104712003 CR4: 0000000000170ee0
  [ 1160.293031] Call Trace:
  [ 1160.293724]  <TASK>
  [ 1160.294334]  get_hwpoison_page+0x47d/0x570
  [ 1160.295474]  memory_failure+0x106/0xaa0
  [ 1160.296474]  ? security_capable+0x36/0x50
  [ 1160.297524]  hard_offline_page_store+0x43/0x80
  [ 1160.298684]  kernfs_fop_write_iter+0x11c/0x1b0
  [ 1160.299829]  new_sync_write+0xf9/0x160
  [ 1160.300810]  vfs_write+0x209/0x290
  [ 1160.301835]  ksys_write+0x4f/0xc0
  [ 1160.302718]  do_syscall_64+0x3b/0x90
  [ 1160.303664]  entry_SYSCALL_64_after_hwframe+0x44/0xae
  [ 1160.304981] RIP: 0033:0x7eff54b018b7

As shown in the RIP address, this VM_BUG_ON in folio_entire_mapcount() is
called from dump_page("hwpoison: unhandlable page") in get_any_page().
The below explains the mechanism of the race:

  CPU 0                                       CPU 1

    memory_failure
      get_hwpoison_page
        get_any_page
          dump_page
            compound = PageCompound
                                                free_pages_prepare
                                                  page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP
            folio_entire_mapcount
              VM_BUG_ON_FOLIO(!folio_test_large(folio))

So replace dump_page() with safer one, pr_err().

Link: https://lkml.kernel.org/r/20220427053220.719866-1-naoya.horiguchi@linux.dev
Fixes: 74e8ee4708 ("mm: Turn head_compound_mapcount() into folio_entire_mapcount()")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28 23:14:44 -07:00
Xu Yu 478d134e95 mm/huge_memory: do not overkill when splitting huge_zero_page
Kernel panic when injecting memory_failure for the global huge_zero_page,
when CONFIG_DEBUG_VM is enabled, as follows.

  Injecting memory failure for pfn 0x109ff9 at process virtual address 0x20ff9000
  page:00000000fb053fc3 refcount:2 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x109e00
  head:00000000fb053fc3 order:9 compound_mapcount:0 compound_pincount:0
  flags: 0x17fffc000010001(locked|head|node=0|zone=2|lastcpupid=0x1ffff)
  raw: 017fffc000010001 0000000000000000 dead000000000122 0000000000000000
  raw: 0000000000000000 0000000000000000 00000002ffffffff 0000000000000000
  page dumped because: VM_BUG_ON_PAGE(is_huge_zero_page(head))
  ------------[ cut here ]------------
  kernel BUG at mm/huge_memory.c:2499!
  invalid opcode: 0000 [#1] PREEMPT SMP PTI
  CPU: 6 PID: 553 Comm: split_bug Not tainted 5.18.0-rc1+ #11
  Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 3288b3c 04/01/2014
  RIP: 0010:split_huge_page_to_list+0x66a/0x880
  Code: 84 9b fb ff ff 48 8b 7c 24 08 31 f6 e8 9f 5d 2a 00 b8 b8 02 00 00 e9 e8 fb ff ff 48 c7 c6 e8 47 3c 82 4c b
  RSP: 0018:ffffc90000dcbdf8 EFLAGS: 00010246
  RAX: 000000000000003c RBX: 0000000000000001 RCX: 0000000000000000
  RDX: 0000000000000000 RSI: ffffffff823e4c4f RDI: 00000000ffffffff
  RBP: ffff88843fffdb40 R08: 0000000000000000 R09: 00000000fffeffff
  R10: ffffc90000dcbc48 R11: ffffffff82d68448 R12: ffffea0004278000
  R13: ffffffff823c6203 R14: 0000000000109ff9 R15: ffffea000427fe40
  FS:  00007fc375a26740(0000) GS:ffff88842fd80000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fc3757c9290 CR3: 0000000102174006 CR4: 00000000003706e0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
  try_to_split_thp_page+0x3a/0x130
  memory_failure+0x128/0x800
  madvise_inject_error.cold+0x8b/0xa1
  __x64_sys_madvise+0x54/0x60
  do_syscall_64+0x35/0x80
  entry_SYSCALL_64_after_hwframe+0x44/0xae
  RIP: 0033:0x7fc3754f8bf9
  Code: 01 00 48 81 c4 80 00 00 00 e9 f1 fe ff ff 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 8
  RSP: 002b:00007ffeda93a1d8 EFLAGS: 00000217 ORIG_RAX: 000000000000001c
  RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fc3754f8bf9
  RDX: 0000000000000064 RSI: 0000000000003000 RDI: 0000000020ff9000
  RBP: 00007ffeda93a200 R08: 0000000000000000 R09: 0000000000000000
  R10: 00000000ffffffff R11: 0000000000000217 R12: 0000000000400490
  R13: 00007ffeda93a2e0 R14: 0000000000000000 R15: 0000000000000000

We think that raising BUG is overkilling for splitting huge_zero_page, the
huge_zero_page can't be met from normal paths other than memory failure,
but memory failure is a valid caller.  So we tend to replace the BUG to
WARN + returning -EBUSY, and thus the panic above won't happen again.

Link: https://lkml.kernel.org/r/f35f8b97377d5d3ede1bc5ac3114da888c57cbce.1651052574.git.xuyu@linux.alibaba.com
Fixes: d173d5417f ("mm/memory-failure.c: skip huge_zero_page in memory_failure()")
Fixes: 6a46079cf5 ("HWPOISON: The high level memory error handler in the VM v7")
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Suggested-by: Yang Shi <shy828301@gmail.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28 23:14:43 -07:00
Xu Yu b4e61fc031 Revert "mm/memory-failure.c: skip huge_zero_page in memory_failure()"
Patch series "mm/memory-failure: rework fix on huge_zero_page splitting".


This patch (of 2):

This reverts commit d173d5417f.

The commit d173d5417f ("mm/memory-failure.c: skip huge_zero_page in
memory_failure()") explicitly skips huge_zero_page in memory_failure(), in
order to avoid triggering VM_BUG_ON_PAGE on huge_zero_page in
split_huge_page_to_list().

This works, but Yang Shi thinks that,

    Raising BUG is overkilling for splitting huge_zero_page. The
    huge_zero_page can't be met from normal paths other than memory
    failure, but memory failure is a valid caller. So I tend to replace
    the BUG to WARN + returning -EBUSY. If we don't care about the
    reason code in memory failure, we don't have to touch memory
    failure.

And for the issue that huge_zero_page will be set PG_has_hwpoisoned,
Yang Shi comments that,

    The anonymous page fault doesn't check if the page is poisoned or
    not since it typically gets a fresh allocated page and assumes the
    poisoned page (isolated successfully) can't be reallocated again.
    But huge zero page and base zero page are reused every time. So no
    matter what fix we pick, the issue is always there.

Finally, Yang, David, Anshuman and Naoya all agree to fix the bug, i.e.,
to split huge_zero_page, in split_huge_page_to_list().

This reverts the commit d173d5417f ("mm/memory-failure.c: skip
huge_zero_page in memory_failure()"), and the original bug will be fixed
by the next patch.

Link: https://lkml.kernel.org/r/872cefb182ba1dd686b0e7db1e6b2ebe5a4fff87.1651039624.git.xuyu@linux.alibaba.com
Fixes: d173d5417f ("mm/memory-failure.c: skip huge_zero_page in memory_failure()")
Fixes: 6a46079cf5 ("HWPOISON: The high level memory error handler in the VM v7")
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Suggested-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28 23:14:43 -07:00
Zqiang 31fa985b41 kasan: prevent cpu_quarantine corruption when CPU offline and cache shrink occur at same time
kasan_quarantine_remove_cache() is called in kmem_cache_shrink()/
destroy().  The kasan_quarantine_remove_cache() call is protected by
cpuslock in kmem_cache_destroy() to ensure serialization with
kasan_cpu_offline().

However the kasan_quarantine_remove_cache() call is not protected by
cpuslock in kmem_cache_shrink().  When a CPU is going offline and cache
shrink occurs at same time, the cpu_quarantine may be corrupted by
interrupt (per_cpu_remove_cache operation).

So add a cpu_quarantine offline flags check in per_cpu_remove_cache().

[akpm@linux-foundation.org: add comment, per Zqiang]

Link: https://lkml.kernel.org/r/20220414025925.2423818-1-qiang1.zhang@intel.com
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-27 13:28:48 -07:00
Linus Torvalds 0fc74d820a no-MMU: expose vmalloc_huge() for alloc_large_system_hash()
It turns out that for the CONFIG_MMU=n builds, vmalloc_huge() was never
defined, since it's defined in mm/vmalloc.c, which doesn't get built for
the no-MMU configurations.

Just implement the trivial wrapper for the no-MMU case too.  In fact,
just make it an alias to the existing __vmalloc() function that has the
same signature.

Link: https://lore.kernel.org/all/CAMuHMdVdx2V1uhv_152Sw3_z2xE0spiaWp1d6Ko8-rYmAxUBAg@mail.gmail.com/
Link: https://lore.kernel.org/all/CA+G9fYscb1y4a17Sf5G_Aibt+WuSf-ks_Qjw9tYFy=A4sjCEug@mail.gmail.com/
Link: https://lore.kernel.org/all/20220425150356.GA4138752@roeck-us.net/
Reported-and-tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Reported-and-tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reported-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-25 10:11:49 -07:00
Linus Torvalds 9becb68891 kvmalloc: use vmalloc_huge for vmalloc allocations
Since commit 559089e0a9 ("vmalloc: replace VM_NO_HUGE_VMAP with
VM_ALLOW_HUGE_VMAP"), the use of hugepage mappings for vmalloc is an
opt-in strategy, because it caused a number of problems that weren't
noticed until x86 enabled it too.

One of the issues was fixed by Nick Piggin in commit 3b8000ae18
("mm/vmalloc: huge vmalloc backing pages should be split rather than
compound"), but I'm still worried about page protection issues, and
VM_FLUSH_RESET_PERMS in particular.

However, like the hash table allocation case (commit f2edd118d02d:
"page_alloc: use vmalloc_huge for large system hash"), the use of
kvmalloc() should be safe from any such games, since the returned
pointer might be a SLUB allocation, and as such no user should
reasonably be using it in any odd ways.

We also know that the allocations are fairly large, since it falls back
to the vmalloc case only when a kmalloc() fails.  So using a hugepage
mapping seems both safe and relevant.

This patch does show a weakness in the opt-in strategy: since the opt-in
flag is in the 'vm_flags', not the usual gfp_t allocation flags, very
few of the usual interfaces actually expose it.

That's not much of an issue in this case that already used one of the
fairly specialized low-level vmalloc interfaces for the allocation, but
for a lot of other vmalloc() users that might want to opt in, it's going
to be very inconvenient.

We'll either have to fix any compatibility problems, or expose it in the
gfp flags (__GFP_COMP would have made a lot of sense) to allow normal
vmalloc() users to use hugepage mappings.  That said, the cases that
really matter were probably already taken care of by the hash tabel
allocation.

Link: https://lore.kernel.org/all/20220415164413.2727220-1-song@kernel.org/
Link: https://lore.kernel.org/all/CAHk-=whao=iosX1s5Z4SF-ZGa-ebAukJoAdUJFk5SPwnofV+Vg@mail.gmail.com/
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Menzel <pmenzel@molgen.mpg.de>
Cc: Song Liu <songliubraving@fb.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-24 10:05:38 -07:00
Song Liu f2edd118d0 page_alloc: use vmalloc_huge for large system hash
Use vmalloc_huge() in alloc_large_system_hash() so that large system
hash (>= PMD_SIZE) could benefit from huge pages.

Note that vmalloc_huge only allocates huge pages for systems with
HAVE_ARCH_HUGE_VMALLOC.

Signed-off-by: Song Liu <song@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-24 10:00:54 -07:00
Linus Torvalds 281b9d9a4b Merge branch 'akpm' (patches from Andrew)
Merge misc fixes from Andrew Morton:
 "13 patches.

  Subsystems affected by this patch series: mm (memory-failure, memcg,
  userfaultfd, hugetlbfs, mremap, oom-kill, kasan, hmm), and kcov"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
  mm/mmu_notifier.c: fix race in mmu_interval_notifier_remove()
  kcov: don't generate a warning on vm_insert_page()'s failure
  MAINTAINERS: add Vincenzo Frascino to KASAN reviewers
  oom_kill.c: futex: delay the OOM reaper to allow time for proper futex cleanup
  selftest/vm: add skip support to mremap_test
  selftest/vm: support xfail in mremap_test
  selftest/vm: verify remap destination address in mremap_test
  selftest/vm: verify mmap addr in mremap_test
  mm, hugetlb: allow for "high" userspace addresses
  userfaultfd: mark uffd_wp regardless of VM_WRITE flag
  memcg: sync flush only if periodic flush is delayed
  mm/memory-failure.c: skip huge_zero_page in memory_failure()
  mm/hwpoison: fix race between hugetlb free/demotion and memory_failure_hugetlb()
2022-04-22 10:10:43 -07:00
Nicholas Piggin 3b8000ae18 mm/vmalloc: huge vmalloc backing pages should be split rather than compound
Huge vmalloc higher-order backing pages were allocated with __GFP_COMP
in order to allow the sub-pages to be refcounted by callers such as
"remap_vmalloc_page [sic]" (remap_vmalloc_range).

However a similar problem exists for other struct page fields callers
use, for example fb_deferred_io_fault() takes a vmalloc'ed page and
not only refcounts it but uses ->lru, ->mapping, ->index.

This is not compatible with compound sub-pages, and can cause bad page
state issues like

  BUG: Bad page state in process swapper/0  pfn:00743
  page:(____ptrval____) refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x743
  flags: 0x7ffff000000000(node=0|zone=0|lastcpupid=0x7ffff)
  raw: 007ffff000000000 c00c00000001d0c8 c00c00000001d0c8 0000000000000000
  raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
  page dumped because: corrupted mapping in tail page
  Modules linked in:
  CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.18.0-rc3-00082-gfc6fff4a7ce1-dirty #2810
  Call Trace:
    dump_stack_lvl+0x74/0xa8 (unreliable)
    bad_page+0x12c/0x170
    free_tail_pages_check+0xe8/0x190
    free_pcp_prepare+0x31c/0x4e0
    free_unref_page+0x40/0x1b0
    __vunmap+0x1d8/0x420
    ...

The correct approach is to use split high-order pages for the huge
vmalloc backing. These allow callers to treat them in exactly the same
way as individually-allocated order-0 pages.

Link: https://lore.kernel.org/all/14444103-d51b-0fb3-ee63-c3f182f0b546@molgen.mpg.de/
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Menzel <pmenzel@molgen.mpg.de>
Cc: Song Liu <songliubraving@fb.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-22 09:20:16 -07:00