Commit Graph

121 Commits

Author SHA1 Message Date
Benjamin Tissoires b98a5c68cc bpf: Do not walk twice the map on free
If someone stores both a timer and a workqueue in a map, on free
we would walk it twice.

Add a check in array_map_free_timers_wq and free the timers and
workqueues if they are present.

Fixes: 246331e3f1 ("bpf: allow struct bpf_wq to be embedded in arraymaps and hashmaps")
Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20240430-bpf-next-v3-1-27afe7f3b17c@kernel.org
2024-04-30 16:28:33 +02:00
Benjamin Tissoires 246331e3f1 bpf: allow struct bpf_wq to be embedded in arraymaps and hashmaps
Currently bpf_wq_cancel_and_free() is just a placeholder as there is
no memory allocation for bpf_wq just yet.

Again, duplication of the bpf_timer approach

Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
Link: https://lore.kernel.org/r/20240420-bpf_wq-v2-9-6c986a5a741f@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-04-23 18:31:25 -07:00
Andrii Nakryiko db69718b8e bpf: inline bpf_map_lookup_elem() for PERCPU_ARRAY maps
Using new per-CPU BPF instruction implement inlining for per-CPU ARRAY
map lookup helper, if BPF JIT support is present.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/20240402021307.1012571-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-04-03 10:29:56 -07:00
Andrii Nakryiko d79a354975 bpf: Consistently use BPF token throughout BPF verifier logic
Remove remaining direct queries to perfmon_capable() and bpf_capable()
in BPF verifier logic and instead use BPF token (if available) to make
decisions about privileges.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-9-andrii@kernel.org
2024-01-24 16:21:01 -08:00
Andrii Nakryiko d17aff807f Revert BPF token-related functionality
This patch includes the following revert (one  conflicting BPF FS
patch and three token patch sets, represented by merge commits):
  - revert 0f5d5454c7 "Merge branch 'bpf-fs-mount-options-parsing-follow-ups'";
  - revert 750e785796 "bpf: Support uid and gid when mounting bpffs";
  - revert 733763285a "Merge branch 'bpf-token-support-in-libbpf-s-bpf-object'";
  - revert c35919dcce "Merge branch 'bpf-token-and-bpf-fs-based-delegation'".

Link: https://lore.kernel.org/bpf/CAHk-=wg7JuFYwGy=GOMbRCtOL+jwSQsdUaBsRWkDVYbxipbM5A@mail.gmail.com
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
2023-12-19 08:23:03 -08:00
Jakub Kicinski c49b292d03 netdev
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmWAz2EACgkQ6rmadz2v
 bToqrw/9EwroZCc8GEHOKAlb/fzrMvn92rLo0ZW/cGN84QJPnx4zM6Zo0+fgLaaN
 oqqztwMUwdzGC3uX3FfVXaaLKbJ/MeHeL9BXFZNW8zkRHciw4R7kIBhOdPnHyET7
 uT+rQ4xPe1Mt7e9PjepKlSL5mEsxWfBkdUgsdn19Z2Vjdfr9mZMhYWYMJGcfTCD1
 TwxHKBPhq5fN3IsshmMBB8IrRp1HStUKb65MgZ4dI22LJXxTsFkx5XMFXcmuqvkH
 NhKj8jDcPEEh31bYcb6aG2Z4onw5F2lquygjk1Qyy5cyw45m/ipJKAXKdAyvJG+R
 VZCWOET/9wbRwFSK5wxwihCuKghFiofK52i2PcGtXZh0PCouyZZneSJOKM0yVWKO
 BvuJBxK4ETRnQyN6ZxhuJiEXG3/YMBBhyR2TX1LntVK9ct/k7qFVzATG49J39/sR
 SYMbptBRj4a5oMJ1qn0nFVEDFkg0jTnTDNnsEpcz60Ayt6EsJ1XosO5yz2huf861
 xgRMTKMseyG1/uV45tQ8ZPzbSPpBxjUi9Dl3coYsIm1a+y6clWUXcarONY5KVrpS
 CR98DuFgl+E7dXuisd/Kz2p2KxxSPq8nytsmLlgOvrUqhwiXqB+TKN8EHgIapVOt
 l1A5LrzXFTcGlT9MlaWBqEIy83Bu1nqQqbxrAFOE0k8A5jomXaw=
 =stU2
 -----END PGP SIGNATURE-----

Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next

Alexei Starovoitov says:

====================
pull-request: bpf-next 2023-12-18

This PR is larger than usual and contains changes in various parts
of the kernel.

The main changes are:

1) Fix kCFI bugs in BPF, from Peter Zijlstra.

End result: all forms of indirect calls from BPF into kernel
and from kernel into BPF work with CFI enabled. This allows BPF
to work with CONFIG_FINEIBT=y.

2) Introduce BPF token object, from Andrii Nakryiko.

It adds an ability to delegate a subset of BPF features from privileged
daemon (e.g., systemd) through special mount options for userns-bound
BPF FS to a trusted unprivileged application. The design accommodates
suggestions from Christian Brauner and Paul Moore.

Example:
$ sudo mkdir -p /sys/fs/bpf/token
$ sudo mount -t bpf bpffs /sys/fs/bpf/token \
             -o delegate_cmds=prog_load:MAP_CREATE \
             -o delegate_progs=kprobe \
             -o delegate_attachs=xdp

3) Various verifier improvements and fixes, from Andrii Nakryiko, Andrei Matei.

 - Complete precision tracking support for register spills
 - Fix verification of possibly-zero-sized stack accesses
 - Fix access to uninit stack slots
 - Track aligned STACK_ZERO cases as imprecise spilled registers.
   It improves the verifier "instructions processed" metric from single
   digit to 50-60% for some programs.
 - Fix verifier retval logic

4) Support for VLAN tag in XDP hints, from Larysa Zaremba.

5) Allocate BPF trampoline via bpf_prog_pack mechanism, from Song Liu.

End result: better memory utilization and lower I$ miss for calls to BPF
via BPF trampoline.

6) Fix race between BPF prog accessing inner map and parallel delete,
from Hou Tao.

7) Add bpf_xdp_get_xfrm_state() kfunc, from Daniel Xu.

It allows BPF interact with IPSEC infra. The intent is to support
software RSS (via XDP) for the upcoming ipsec pcpu work.
Experiments on AWS demonstrate single tunnel pcpu ipsec reaching
line rate on 100G ENA nics.

8) Expand bpf_cgrp_storage to support cgroup1 non-attach, from Yafang Shao.

9) BPF file verification via fsverity, from Song Liu.

It allows BPF progs get fsverity digest.

* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (164 commits)
  bpf: Ensure precise is reset to false in __mark_reg_const_zero()
  selftests/bpf: Add more uprobe multi fail tests
  bpf: Fail uprobe multi link with negative offset
  selftests/bpf: Test the release of map btf
  s390/bpf: Fix indirect trampoline generation
  selftests/bpf: Temporarily disable dummy_struct_ops test on s390
  x86/cfi,bpf: Fix bpf_exception_cb() signature
  bpf: Fix dtor CFI
  cfi: Add CFI_NOSEAL()
  x86/cfi,bpf: Fix bpf_struct_ops CFI
  x86/cfi,bpf: Fix bpf_callback_t CFI
  x86/cfi,bpf: Fix BPF JIT call
  cfi: Flip headers
  selftests/bpf: Add test for abnormal cnt during multi-kprobe attachment
  selftests/bpf: Don't use libbpf_get_error() in kprobe_multi_test
  selftests/bpf: Add test for abnormal cnt during multi-uprobe attachment
  bpf: Limit the number of kprobes when attaching program to multiple kprobes
  bpf: Limit the number of uprobes when attaching program to multiple uprobes
  bpf: xdp: Register generic_kfunc_set with XDP programs
  selftests/bpf: utilize string values for delegate_xxx mount options
  ...
====================

Link: https://lore.kernel.org/r/20231219000520.34178-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-18 16:46:08 -08:00
Hou Tao dc68540913 bpf: Use GFP_KERNEL in bpf_event_entry_gen()
rcu_read_lock() is no longer held when invoking bpf_event_entry_gen()
which is called by perf_event_fd_array_get_ptr(), so using GFP_KERNEL
instead of GFP_ATOMIC to reduce the possibility of failures due to
out-of-memory.

Acked-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231214043010.3458072-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13 20:49:11 -08:00
Jiri Olsa 4b7de80160 bpf: Fix prog_array_map_poke_run map poke update
Lee pointed out issue found by syscaller [0] hitting BUG in prog array
map poke update in prog_array_map_poke_run function due to error value
returned from bpf_arch_text_poke function.

There's race window where bpf_arch_text_poke can fail due to missing
bpf program kallsym symbols, which is accounted for with check for
-EINVAL in that BUG_ON call.

The problem is that in such case we won't update the tail call jump
and cause imbalance for the next tail call update check which will
fail with -EBUSY in bpf_arch_text_poke.

I'm hitting following race during the program load:

  CPU 0                             CPU 1

  bpf_prog_load
    bpf_check
      do_misc_fixups
        prog_array_map_poke_track

                                    map_update_elem
                                      bpf_fd_array_map_update_elem
                                        prog_array_map_poke_run

                                          bpf_arch_text_poke returns -EINVAL

    bpf_prog_kallsyms_add

After bpf_arch_text_poke (CPU 1) fails to update the tail call jump, the next
poke update fails on expected jump instruction check in bpf_arch_text_poke
with -EBUSY and triggers the BUG_ON in prog_array_map_poke_run.

Similar race exists on the program unload.

Fixing this by moving the update to bpf_arch_poke_desc_update function which
makes sure we call __bpf_arch_text_poke that skips the bpf address check.

Each architecture has slightly different approach wrt looking up bpf address
in bpf_arch_text_poke, so instead of splitting the function or adding new
'checkip' argument in previous version, it seems best to move the whole
map_poke_run update as arch specific code.

  [0] https://syzkaller.appspot.com/bug?extid=97a4fe20470e9bc30810

Fixes: ebf7d1f508 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Reported-by: syzbot+97a4fe20470e9bc30810@syzkaller.appspotmail.com
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Cc: Lee Jones <lee@kernel.org>
Cc: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Link: https://lore.kernel.org/bpf/20231206083041.1306660-2-jolsa@kernel.org
2023-12-06 22:40:16 +01:00
Andrii Nakryiko 8062fb12de bpf: consistently use BPF token throughout BPF verifier logic
Remove remaining direct queries to perfmon_capable() and bpf_capable()
in BPF verifier logic and instead use BPF token (if available) to make
decisions about privileges.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-06 10:02:59 -08:00
Hou Tao 79d93b3c6f bpf: Set need_defer as false when clearing fd array during map free
Both map deletion operation, map release and map free operation use
fd_array_map_delete_elem() to remove the element from fd array and
need_defer is always true in fd_array_map_delete_elem(). For the map
deletion operation and map release operation, need_defer=true is
necessary, because the bpf program, which accesses the element in fd
array, may still alive. However for map free operation, it is certain
that the bpf program which owns the fd array has already been exited, so
setting need_defer as false is appropriate for map free operation.

So fix it by adding need_defer parameter to bpf_fd_array_map_clear() and
adding a new helper __fd_array_map_delete_elem() to handle the map
deletion, map release and map free operations correspondingly.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-04 17:50:26 -08:00
Hou Tao 20c20bd11a bpf: Add map and need_defer parameters to .map_fd_put_ptr()
map is the pointer of outer map, and need_defer needs some explanation.
need_defer tells the implementation to defer the reference release of
the passed element and ensure that the element is still alive before
the bpf program, which may manipulate it, exits.

The following three cases will invoke map_fd_put_ptr() and different
need_defer values will be passed to these callers:

1) release the reference of the old element in the map during map update
   or map deletion. The release must be deferred, otherwise the bpf
   program may incur use-after-free problem, so need_defer needs to be
   true.
2) release the reference of the to-be-added element in the error path of
   map update. The to-be-added element is not visible to any bpf
   program, so it is OK to pass false for need_defer parameter.
3) release the references of all elements in the map during map release.
   Any bpf program which has access to the map must have been exited and
   released, so need_defer=false will be OK.

These two parameters will be used by the following patches to fix the
potential use-after-free problem for map-in-map.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-04 17:50:26 -08:00
JP Kobryn d7ba4cc900 bpf: return long from bpf_map_ops funcs
This patch changes the return types of bpf_map_ops functions to long, where
previously int was returned. Using long allows for bpf programs to maintain
the sign bit in the absence of sign extension during situations where
inlined bpf helper funcs make calls to the bpf_map_ops funcs and a negative
error is returned.

The definitions of the helper funcs are generated from comments in the bpf
uapi header at `include/uapi/linux/bpf.h`. The return type of these
helpers was previously changed from int to long in commit bdb7b79b4c. For
any case where one of the map helpers call the bpf_map_ops funcs that are
still returning 32-bit int, a compiler might not include sign extension
instructions to properly convert the 32-bit negative value a 64-bit
negative value.

For example:
bpf assembly excerpt of an inlined helper calling a kernel function and
checking for a specific error:

; err = bpf_map_update_elem(&mymap, &key, &val, BPF_NOEXIST);
  ...
  46:	call   0xffffffffe103291c	; htab_map_update_elem
; if (err && err != -EEXIST) {
  4b:	cmp    $0xffffffffffffffef,%rax ; cmp -EEXIST,%rax

kernel function assembly excerpt of return value from
`htab_map_update_elem` returning 32-bit int:

movl $0xffffffef, %r9d
...
movl %r9d, %eax

...results in the comparison:
cmp $0xffffffffffffffef, $0x00000000ffffffef

Fixes: bdb7b79b4c ("bpf: Switch most helper return values from 32-bit int to 64-bit long")
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Link: https://lore.kernel.org/r/20230322194754.185781-3-inwardvessel@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-22 15:11:30 -07:00
Yafang Shao 1746d0555a bpf: arraymap memory usage
Introduce array_map_mem_usage() to calculate arraymap memory usage. In
this helper, some small memory allocations are ignored, like the
allocation of struct bpf_array_aux in prog_array. The inner_map_meta in
array_of_map is also ignored.

The result as follows,

- before
11: array  name count_map  flags 0x0
        key 4B  value 4B  max_entries 65536  memlock 524288B
12: percpu_array  name count_map  flags 0x0
        key 4B  value 4B  max_entries 65536  memlock 8912896B
13: perf_event_array  name count_map  flags 0x0
        key 4B  value 4B  max_entries 65536  memlock 524288B
14: prog_array  name count_map  flags 0x0
        key 4B  value 4B  max_entries 65536  memlock 524288B
15: cgroup_array  name count_map  flags 0x0
        key 4B  value 4B  max_entries 65536  memlock 524288B

- after
11: array  name count_map  flags 0x0
        key 4B  value 4B  max_entries 65536  memlock 524608B
12: percpu_array  name count_map  flags 0x0
        key 4B  value 4B  max_entries 65536  memlock 17301824B
13: perf_event_array  name count_map  flags 0x0
        key 4B  value 4B  max_entries 65536  memlock 524608B
14: prog_array  name count_map  flags 0x0
        key 4B  value 4B  max_entries 65536  memlock 524608B
15: cgroup_array  name count_map  flags 0x0
        key 4B  value 4B  max_entries 65536  memlock 524608B

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-5-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-07 09:33:42 -08:00
Kumar Kartikeya Dwivedi d7f5ef653c bpf: Do btf_record_free outside map_free callback
Since the commit being fixed, we now miss freeing btf_record for local
storage maps which will have a btf_record populated in case they have
bpf_spin_lock element.

This was missed because I made the choice of offloading the job to free
kptr_off_tab (now btf_record) to the map_free callback when adding
support for kptrs.

Revisiting the reason for this decision, there is the possibility that
the btf_record gets used inside map_free callback (e.g. in case of maps
embedding kptrs) to iterate over them and free them, hence doing it
before the map_free callback would be leaking special field memory, and
do invalid memory access. The btf_record keeps module references which
is critical to ensure the dtor call made for referenced kptr is safe to
do.

If doing it after map_free callback, the map area is already freed, so
we cannot access bpf_map structure anymore.

To fix this and prevent such lapses in future, move bpf_map_free_record
out of the map_free callback, and do it after map_free by remembering
the btf_record pointer. There is no need to access bpf_map structure in
that case, and we can avoid missing this case when support for new map
types is added for other special fields.

Since a btf_record and its btf_field_offs are used together, for
consistency delay freeing of field_offs as well. While not a problem
right now, a lot of code assumes that either both record and field_offs
are set or none at once.

Note that in case of map of maps (outer maps), inner_map_meta->record is
only used during verification, not to free fields in map value, hence we
simply keep the bpf_map_free_record call as is in bpf_map_meta_free and
never touch map->inner_map_meta in bpf_map_free_deferred.

Add a comment making note of these details.

Fixes: db55911782 ("bpf: Consolidate spin_lock, timer management into btf_record")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17 19:11:31 -08:00
Kumar Kartikeya Dwivedi db55911782 bpf: Consolidate spin_lock, timer management into btf_record
Now that kptr_off_tab has been refactored into btf_record, and can hold
more than one specific field type, accomodate bpf_spin_lock and
bpf_timer as well.

While they don't require any more metadata than offset, having all
special fields in one place allows us to share the same code for
allocated user defined types and handle both map values and these
allocated objects in a similar fashion.

As an optimization, we still keep spin_lock_off and timer_off offsets in
the btf_record structure, just to avoid having to find the btf_field
struct each time their offset is needed. This is mostly needed to
manipulate such objects in a map value at runtime. It's ok to hardcode
just one offset as more than one field is disallowed.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-03 22:19:40 -07:00
Kumar Kartikeya Dwivedi aa3496accc bpf: Refactor kptr_off_tab into btf_record
To prepare the BPF verifier to handle special fields in both map values
and program allocated types coming from program BTF, we need to refactor
the kptr_off_tab handling code into something more generic and reusable
across both cases to avoid code duplication.

Later patches also require passing this data to helpers at runtime, so
that they can work on user defined types, initialize them, destruct
them, etc.

The main observation is that both map values and such allocated types
point to a type in program BTF, hence they can be handled similarly. We
can prepare a field metadata table for both cases and store them in
struct bpf_map or struct btf depending on the use case.

Hence, refactor the code into generic btf_record and btf_field member
structs. The btf_record represents the fields of a specific btf_type in
user BTF. The cnt indicates the number of special fields we successfully
recognized, and field_mask is a bitmask of fields that were found, to
enable quick determination of availability of a certain field.

Subsequently, refactor the rest of the code to work with these generic
types, remove assumptions about kptr and kptr_off_tab, rename variables
to more meaningful names, etc.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-03 21:44:53 -07:00
Kumar Kartikeya Dwivedi 6df4ea1ff0 bpf: Support kptrs in percpu arraymap
Enable support for kptrs in percpu BPF arraymap by wiring up the freeing
of these kptrs from percpu map elements.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220904204145.3089-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-07 11:46:08 -07:00
Hou Tao f76fa6b338 bpf: Acquire map uref in .init_seq_private for array map iterator
bpf_iter_attach_map() acquires a map uref, and the uref may be released
before or in the middle of iterating map elements. For example, the uref
could be released in bpf_iter_detach_map() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().

Alternative fix is acquiring an extra bpf_link reference just like
a pinned map iterator does, but it introduces unnecessary dependency
on bpf_link instead of bpf_map.

So choose another fix: acquiring an extra map uref in .init_seq_private
for array map iterator.

Fixes: d3cc2ab546 ("bpf: Implement bpf iterator for array maps")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-10 10:12:47 -07:00
Andrii Nakryiko 63b8ce77b1 bpf: remove obsolete KMALLOC_MAX_SIZE restriction on array map value size
Syscall-side map_lookup_elem() and map_update_elem() used to use
kmalloc() to allocate temporary buffers of value_size, so
KMALLOC_MAX_SIZE limit on value_size made sense to prevent creation of
array map that won't be accessible through syscall interface.

But this limitation since has been lifted by relying on kvmalloc() in
syscall handling code. So remove KMALLOC_MAX_SIZE, which among other
things means that it's possible to have BPF global variable sections
(.bss, .data, .rodata) bigger than 8MB now. Keep the sanity check to
prevent trivial overflows like round_up(map->value_size, 8) and restrict
value size to <= INT_MAX (2GB).

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20220715053146.1291891-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-07-19 09:45:34 -07:00
Andrii Nakryiko d937bc3449 bpf: make uniform use of array->elem_size everywhere in arraymap.c
BPF_MAP_TYPE_ARRAY is rounding value_size to closest multiple of 8 and
stores that as array->elem_size for various memory allocations and
accesses.

But the code tends to re-calculate round_up(map->value_size, 8) in
multiple places instead of using array->elem_size. Cleaning this up and
making sure we always use array->size to avoid duplication of this
(admittedly simple) logic for consistency.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20220715053146.1291891-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-07-19 09:45:34 -07:00
Andrii Nakryiko 87ac0d6009 bpf: fix potential 32-bit overflow when accessing ARRAY map element
If BPF array map is bigger than 4GB, element pointer calculation can
overflow because both index and elem_size are u32. Fix this everywhere
by forcing 64-bit multiplication. Extract this formula into separate
small helper and use it consistently in various places.

Speculative-preventing formula utilizing index_mask trick is left as is,
but explicit u64 casts are added in both places.

Fixes: c85d69135a ("bpf: move memory size checks to bpf_map_charge_init()")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20220715053146.1291891-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-07-19 09:45:34 -07:00
Feng Zhou 07343110b2 bpf: add bpf_map_lookup_percpu_elem for percpu map
Add new ebpf helpers bpf_map_lookup_percpu_elem.

The implementation method is relatively simple, refer to the implementation
method of map_lookup_elem of percpu map, increase the parameters of cpu, and
obtain it according to the specified cpu.

Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Link: https://lore.kernel.org/r/20220511093854.411-2-zhoufeng.zf@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-05-11 18:16:54 -07:00
Takshak Chahande 9263dddc7b bpf: Extend batch operations for map-in-map bpf-maps
This patch extends batch operations support for map-in-map map-types:
BPF_MAP_TYPE_HASH_OF_MAPS and BPF_MAP_TYPE_ARRAY_OF_MAPS

A usecase where outer HASH map holds hundred of VIP entries and its
associated reuse-ports per VIP stored in REUSEPORT_SOCKARRAY type
inner map, needs to do batch operation for performance gain.

This patch leverages the exiting generic functions for most of the batch
operations. As map-in-map's value contains the actual reference of the inner map,
for BPF_MAP_TYPE_HASH_OF_MAPS type, it needed an extra step to fetch the
map_id from the reference value.

selftests are added in next patch 2/2.

Signed-off-by: Takshak Chahande <ctakshak@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220510082221.2390540-1-ctakshak@fb.com
2022-05-10 10:34:57 -07:00
Menglong Dong c317ab71fa bpf: Compute map_btf_id during build time
For now, the field 'map_btf_id' in 'struct bpf_map_ops' for all map
types are computed during vmlinux-btf init:

  btf_parse_vmlinux() -> btf_vmlinux_map_ids_init()

It will lookup the btf_type according to the 'map_btf_name' field in
'struct bpf_map_ops'. This process can be done during build time,
thanks to Jiri's resolve_btfids.

selftest of map_ptr has passed:

  $96 map_ptr:OK
  Summary: 1/0 PASSED, 0 SKIPPED, 0 FAILED

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-04-26 11:35:21 -07:00
Kumar Kartikeya Dwivedi 14a324f6a6 bpf: Wire up freeing of referenced kptr
A destructor kfunc can be defined as void func(type *), where type may
be void or any other pointer type as per convenience.

In this patch, we ensure that the type is sane and capture the function
pointer into off_desc of ptr_off_tab for the specific pointer offset,
with the invariant that the dtor pointer is always set when 'kptr_ref'
tag is applied to the pointer's pointee type, which is indicated by the
flag BPF_MAP_VALUE_OFF_F_REF.

Note that only BTF IDs whose destructor kfunc is registered, thus become
the allowed BTF IDs for embedding as referenced kptr. Hence it serves
the purpose of finding dtor kfunc BTF ID, as well acting as a check
against the whitelist of allowed BTF IDs for this purpose.

Finally, wire up the actual freeing of the referenced pointer if any at
all available offsets, so that no references are leaked after the BPF
map goes away and the BPF program previously moved the ownership a
referenced pointer into it.

The behavior is similar to BPF timers, where bpf_map_{update,delete}_elem
will free any existing referenced kptr. The same case is with LRU map's
bpf_lru_push_free/htab_lru_push_free functions, which are extended to
reset unreferenced and free referenced kptr.

Note that unlike BPF timers, kptr is not reset or freed when map uref
drops to zero.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-8-memxor@gmail.com
2022-04-25 20:26:44 -07:00
Toke Hoiland-Jorgensen f45d5b6ce2 bpf: generalise tail call map compatibility check
The check for tail call map compatibility ensures that tail calls only
happen between maps of the same type. To ensure backwards compatibility for
XDP frags we need a similar type of check for cpumap and devmap
programs, so move the state from bpf_array_aux into bpf_map, add
xdp_has_frags to the check, and apply the same check to cpumap and devmap.

Acked-by: John Fastabend <john.fastabend@gmail.com>
Co-developed-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Toke Hoiland-Jorgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/f19fd97c0328a39927f3ad03e1ca6b43fd53cdfd.1642758637.git.lorenzo@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-01-21 14:14:03 -08:00
Jakub Kicinski 7df621a3ee Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
include/net/sock.h
  7b50ecfcc6 ("net: Rename ->stream_memory_read to ->sock_is_readable")
  4c1e34c0db ("vsock: Enable y2038 safe timeval for timeout")

drivers/net/ethernet/marvell/octeontx2/af/rvu_debugfs.c
  0daa55d033 ("octeontx2-af: cn10k: debugfs for dumping LMTST map table")
  e77bcdd1f6 ("octeontx2-af: Display all enabled PF VF rsrc_alloc entries.")

Adjacent code addition in both cases, keep both.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-28 10:43:58 -07:00
Toke Høiland-Jørgensen 54713c85f5 bpf: Fix potential race in tail call compatibility check
Lorenzo noticed that the code testing for program type compatibility of
tail call maps is potentially racy in that two threads could encounter a
map with an unset type simultaneously and both return true even though they
are inserting incompatible programs.

The race window is quite small, but artificially enlarging it by adding a
usleep_range() inside the check in bpf_prog_array_compatible() makes it
trivial to trigger from userspace with a program that does, essentially:

        map_fd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, 4, 4, 2, 0);
        pid = fork();
        if (pid) {
                key = 0;
                value = xdp_fd;
        } else {
                key = 1;
                value = tc_fd;
        }
        err = bpf_map_update_elem(map_fd, &key, &value, 0);

While the race window is small, it has potentially serious ramifications in
that triggering it would allow a BPF program to tail call to a program of a
different type. So let's get rid of it by protecting the update with a
spinlock. The commit in the Fixes tag is the last commit that touches the
code in question.

v2:
- Use a spinlock instead of an atomic variable and cmpxchg() (Alexei)
v3:
- Put lock and the members it protects into an embedded 'owner' struct (Daniel)

Fixes: 3324b584b6 ("ebpf: misc core cleanup")
Reported-by: Lorenzo Bianconi <lorenzo.bianconi@redhat.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211026110019.363464-1-toke@redhat.com
2021-10-26 12:37:28 -07:00
Kees Cook 102acbacfd bpf: Replace callers of BPF_CAST_CALL with proper function typedef
In order to keep ahead of cases in the kernel where Control Flow
Integrity (CFI) may trip over function call casts, enabling
-Wcast-function-type is helpful. To that end, BPF_CAST_CALL causes
various warnings and is one of the last places in the kernel
triggering this warning.

For actual function calls, replace BPF_CAST_CALL() with a typedef, which
captures the same details about the given function pointers.

This change results in no object code difference.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Link: https://github.com/KSPP/linux/issues/20
Link: https://lore.kernel.org/lkml/CAEf4Bzb46=-J5Fxc3mMZ8JQPtK1uoE0q6+g6WPz53Cvx=CBEhw@mail.gmail.com
Link: https://lore.kernel.org/bpf/20210928230946.4062144-3-keescook@chromium.org
2021-09-28 16:27:18 -07:00
Alexei Starovoitov 68134668c1 bpf: Add map side support for bpf timers.
Restrict bpf timers to array, hash (both preallocated and kmalloced), and
lru map types. The per-cpu maps with timers don't make sense, since 'struct
bpf_timer' is a part of map value. bpf timers in per-cpu maps would mean that
the number of timers depends on number of possible cpus and timers would not be
accessible from all cpus. lpm map support can be added in the future.
The timers in inner maps are supported.

The bpf_map_update/delete_elem() helpers and sys_bpf commands cancel and free
bpf_timer in a given map element.

Similar to 'struct bpf_spin_lock' BTF is required and it is used to validate
that map element indeed contains 'struct bpf_timer'.

Make check_and_init_map_value() init both bpf_spin_lock and bpf_timer when
map element data is reused in preallocated htab and lru maps.

Teach copy_map_value() to support both bpf_spin_lock and bpf_timer in a single
map element. There could be one of each, but not more than one. Due to 'one
bpf_timer in one element' restriction do not support timers in global data,
since global data is a map of single element, but from bpf program side it's
seen as many global variables and restriction of single global timer would be
odd. The sys_bpf map_freeze and sys_mmap syscalls are not allowed on maps with
timers, since user space could have corrupted mmap element and crashed the
kernel. The maps with timers cannot be readonly. Due to these restrictions
search for bpf_timer in datasec BTF in case it was placed in the global data to
report clear error.

The previous patch allowed 'struct bpf_timer' as a first field in a map
element only. Relax this restriction.

Refactor lru map to s/bpf_lru_push_free/htab_lru_push_free/ to cancel and free
the timer when lru map deletes an element as a part of it eviction algorithm.

Make sure that bpf program cannot access 'struct bpf_timer' via direct load/store.
The timer operation are done through helpers only.
This is similar to 'struct bpf_spin_lock'.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-5-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Pedro Tammela f008d732ab bpf: Add batched ops support for percpu array
Uses the already in-place infrastructure provided by the
'generic_map_*_batch' functions.

No tweak was needed as it transparently handles the percpu variant.

As arrays don't have delete operations, let it return a error to
user space (default behaviour).

Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: Pedro Tammela <pctammela@mojatatu.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210424214510.806627-2-pctammela@mojatatu.com
2021-04-28 01:17:45 +02:00
Yonghong Song 06dcdcd4b9 bpf: Add arraymap support for bpf_for_each_map_elem() helper
This patch added support for arraymap and percpu arraymap.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210226204928.3885192-1-yhs@fb.com
2021-02-26 13:23:52 -08:00
Roman Gushchin 1bc5975613 bpf: Eliminate rlimit-based memory accounting for arraymap maps
Do not use rlimit-based memory accounting for arraymap maps.
It has been replaced with the memcg-based memory accounting.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-19-guro@fb.com
2020-12-02 18:32:46 -08:00
Roman Gushchin 6d192c7938 bpf: Refine memcg-based memory accounting for arraymap maps
Include percpu arrays and auxiliary data into the memcg-based memory
accounting.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-9-guro@fb.com
2020-12-02 18:32:45 -08:00
Daniel Borkmann 4a8f87e60f bpf: Allow for map-in-map with dynamic inner array map entries
Recent work in f4d0525921 ("bpf: Add map_meta_equal map ops") and 134fede4ee
("bpf: Relax max_entries check for most of the inner map types") added support
for dynamic inner max elements for most map-in-map types. Exceptions were maps
like array or prog array where the map_gen_lookup() callback uses the maps'
max_entries field as a constant when emitting instructions.

We recently implemented Maglev consistent hashing into Cilium's load balancer
which uses map-in-map with an outer map being hash and inner being array holding
the Maglev backend table for each service. This has been designed this way in
order to reduce overall memory consumption given the outer hash map allows to
avoid preallocating a large, flat memory area for all services. Also, the
number of service mappings is not always known a-priori.

The use case for dynamic inner array map entries is to further reduce memory
overhead, for example, some services might just have a small number of back
ends while others could have a large number. Right now the Maglev backend table
for small and large number of backends would need to have the same inner array
map entries which adds a lot of unneeded overhead.

Dynamic inner array map entries can be realized by avoiding the inlined code
generation for their lookup. The lookup will still be efficient since it will
be calling into array_map_lookup_elem() directly and thus avoiding retpoline.
The patch adds a BPF_F_INNER_MAP flag to map creation which therefore skips
inline code generation and relaxes array_map_meta_equal() check to ignore both
maps' max_entries. This also still allows to have faster lookups for map-in-map
when BPF_F_INNER_MAP is not specified and hence dynamic max_entries not needed.

Example code generation where inner map is dynamic sized array:

  # bpftool p d x i 125
  int handle__sys_enter(void * ctx):
  ; int handle__sys_enter(void *ctx)
     0: (b4) w1 = 0
  ; int key = 0;
     1: (63) *(u32 *)(r10 -4) = r1
     2: (bf) r2 = r10
  ;
     3: (07) r2 += -4
  ; inner_map = bpf_map_lookup_elem(&outer_arr_dyn, &key);
     4: (18) r1 = map[id:468]
     6: (07) r1 += 272
     7: (61) r0 = *(u32 *)(r2 +0)
     8: (35) if r0 >= 0x3 goto pc+5
     9: (67) r0 <<= 3
    10: (0f) r0 += r1
    11: (79) r0 = *(u64 *)(r0 +0)
    12: (15) if r0 == 0x0 goto pc+1
    13: (05) goto pc+1
    14: (b7) r0 = 0
    15: (b4) w6 = -1
  ; if (!inner_map)
    16: (15) if r0 == 0x0 goto pc+6
    17: (bf) r2 = r10
  ;
    18: (07) r2 += -4
  ; val = bpf_map_lookup_elem(inner_map, &key);
    19: (bf) r1 = r0                               | No inlining but instead
    20: (85) call array_map_lookup_elem#149280     | call to array_map_lookup_elem()
  ; return val ? *val : -1;                        | for inner array lookup.
    21: (15) if r0 == 0x0 goto pc+1
  ; return val ? *val : -1;
    22: (61) r6 = *(u32 *)(r0 +0)
  ; }
    23: (bc) w0 = w6
    24: (95) exit

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201010234006.7075-4-daniel@iogearbox.net
2020-10-11 10:21:04 -07:00
Song Liu 792caccc45 bpf: Introduce BPF_F_PRESERVE_ELEMS for perf event array
Currently, perf event in perf event array is removed from the array when
the map fd used to add the event is closed. This behavior makes it
difficult to the share perf events with perf event array.

Introduce perf event map that keeps the perf event open with a new flag
BPF_F_PRESERVE_ELEMS. With this flag set, perf events in the array are not
removed when the original map fd is closed. Instead, the perf event will
stay in the map until 1) it is explicitly removed from the array; or 2)
the array is freed.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200930224927.1936644-2-songliubraving@fb.com
2020-09-30 23:18:12 -07:00
Maciej Fijalkowski ebf7d1f508 bpf, x64: rework pro/epilogue and tailcall handling in JIT
This commit serves two things:
1) it optimizes BPF prologue/epilogue generation
2) it makes possible to have tailcalls within BPF subprogram

Both points are related to each other since without 1), 2) could not be
achieved.

In [1], Alexei says:
"The prologue will look like:
nop5
xor eax,eax  // two new bytes if bpf_tail_call() is used in this
             // function
push rbp
mov rbp, rsp
sub rsp, rounded_stack_depth
push rax // zero init tail_call counter
variable number of push rbx,r13,r14,r15

Then bpf_tail_call will pop variable number rbx,..
and final 'pop rax'
Then 'add rsp, size_of_current_stack_frame'
jmp to next function and skip over 'nop5; xor eax,eax; push rpb; mov
rbp, rsp'

This way new function will set its own stack size and will init tail
call
counter with whatever value the parent had.

If next function doesn't use bpf_tail_call it won't have 'xor eax,eax'.
Instead it would need to have 'nop2' in there."

Implement that suggestion.

Since the layout of stack is changed, tail call counter handling can not
rely anymore on popping it to rbx just like it have been handled for
constant prologue case and later overwrite of rbx with actual value of
rbx pushed to stack. Therefore, let's use one of the register (%rcx) that
is considered to be volatile/caller-saved and pop the value of tail call
counter in there in the epilogue.

Drop the BUILD_BUG_ON in emit_prologue and in
emit_bpf_tail_call_indirect where instruction layout is not constant
anymore.

Introduce new poke target, 'tailcall_bypass' to poke descriptor that is
dedicated for skipping the register pops and stack unwind that are
generated right before the actual jump to target program.
For case when the target program is not present, BPF program will skip
the pop instructions and nop5 dedicated for jmpq $target. An example of
such state when only R6 of callee saved registers is used by program:

ffffffffc0513aa1:       e9 0e 00 00 00          jmpq   0xffffffffc0513ab4
ffffffffc0513aa6:       5b                      pop    %rbx
ffffffffc0513aa7:       58                      pop    %rax
ffffffffc0513aa8:       48 81 c4 00 00 00 00    add    $0x0,%rsp
ffffffffc0513aaf:       0f 1f 44 00 00          nopl   0x0(%rax,%rax,1)
ffffffffc0513ab4:       48 89 df                mov    %rbx,%rdi

When target program is inserted, the jump that was there to skip
pops/nop5 will become the nop5, so CPU will go over pops and do the
actual tailcall.

One might ask why there simply can not be pushes after the nop5?
In the following example snippet:

ffffffffc037030c:       48 89 fb                mov    %rdi,%rbx
(...)
ffffffffc0370332:       5b                      pop    %rbx
ffffffffc0370333:       58                      pop    %rax
ffffffffc0370334:       48 81 c4 00 00 00 00    add    $0x0,%rsp
ffffffffc037033b:       0f 1f 44 00 00          nopl   0x0(%rax,%rax,1)
ffffffffc0370340:       48 81 ec 00 00 00 00    sub    $0x0,%rsp
ffffffffc0370347:       50                      push   %rax
ffffffffc0370348:       53                      push   %rbx
ffffffffc0370349:       48 89 df                mov    %rbx,%rdi
ffffffffc037034c:       e8 f7 21 00 00          callq  0xffffffffc0372548

There is the bpf2bpf call (at ffffffffc037034c) right after the tailcall
and jump target is not present. ctx is in %rbx register and BPF
subprogram that we will call into on ffffffffc037034c is relying on it,
e.g. it will pick ctx from there. Such code layout is therefore broken
as we would overwrite the content of %rbx with the value that was pushed
on the prologue. That is the reason for the 'bypass' approach.

Special care needs to be taken during the install/update/remove of
tailcall target. In case when target program is not present, the CPU
must not execute the pop instructions that precede the tailcall.

To address that, the following states can be defined:
A nop, unwind, nop
B nop, unwind, tail
C skip, unwind, nop
D skip, unwind, tail

A is forbidden (lead to incorrectness). The state transitions between
tailcall install/update/remove will work as follows:

First install tail call f: C->D->B(f)
 * poke the tailcall, after that get rid of the skip
Update tail call f to f': B(f)->B(f')
 * poke the tailcall (poke->tailcall_target) and do NOT touch the
   poke->tailcall_bypass
Remove tail call: B(f')->C(f')
 * poke->tailcall_bypass is poked back to jump, then we wait the RCU
   grace period so that other programs will finish its execution and
   after that we are safe to remove the poke->tailcall_target
Install new tail call (f''): C(f')->D(f'')->B(f'').
 * same as first step

This way CPU can never be exposed to "unwind, tail" state.

Last but not least, when tailcalls get mixed with bpf2bpf calls, it
would be possible to encounter the endless loop due to clearing the
tailcall counter if for example we would use the tailcall3-like from BPF
selftests program that would be subprogram-based, meaning the tailcall
would be present within the BPF subprogram.

This test, broken down to particular steps, would do:
entry -> set tailcall counter to 0, bump it by 1, tailcall to func0
func0 -> call subprog_tail
(we are NOT skipping the first 11 bytes of prologue and this subprogram
has a tailcall, therefore we clear the counter...)
subprog -> do the same thing as entry

and then loop forever.

To address this, the idea is to go through the call chain of bpf2bpf progs
and look for a tailcall presence throughout whole chain. If we saw a single
tail call then each node in this call chain needs to be marked as a subprog
that can reach the tailcall. We would later feed the JIT with this info
and:
- set eax to 0 only when tailcall is reachable and this is the entry prog
- if tailcall is reachable but there's no tailcall in insns of currently
  JITed prog then push rax anyway, so that it will be possible to
  propagate further down the call chain
- finally if tailcall is reachable, then we need to precede the 'call'
  insn with mov rax, [rbp - (stack_depth + 8)]

Tail call related cases from test_verifier kselftest are also working
fine. Sample BPF programs that utilize tail calls (sockex3, tracex5)
work properly as well.

[1]: https://lore.kernel.org/bpf/20200517043227.2gpq22ifoq37ogst@ast-mbp.dhcp.thefacebook.com/

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-09-17 19:55:30 -07:00
Maciej Fijalkowski cf71b174d3 bpf: rename poke descriptor's 'ip' member to 'tailcall_target'
Reflect the actual purpose of poke->ip and rename it to
poke->tailcall_target so that it will not the be confused with another
poke target that will be introduced in next commit.

While at it, do the same thing with poke->ip_stable - rename it to
poke->tailcall_target_stable.

Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-09-17 12:59:31 -07:00
Alexei Starovoitov 1e6c62a882 bpf: Introduce sleepable BPF programs
Introduce sleepable BPF programs that can request such property for themselves
via BPF_F_SLEEPABLE flag at program load time. In such case they will be able
to use helpers like bpf_copy_from_user() that might sleep. At present only
fentry/fexit/fmod_ret and lsm programs can request to be sleepable and only
when they are attached to kernel functions that are known to allow sleeping.

The non-sleepable programs are relying on implicit rcu_read_lock() and
migrate_disable() to protect life time of programs, maps that they use and
per-cpu kernel structures used to pass info between bpf programs and the
kernel. The sleepable programs cannot be enclosed into rcu_read_lock().
migrate_disable() maps to preempt_disable() in non-RT kernels, so the progs
should not be enclosed in migrate_disable() as well. Therefore
rcu_read_lock_trace is used to protect the life time of sleepable progs.

There are many networking and tracing program types. In many cases the
'struct bpf_prog *' pointer itself is rcu protected within some other kernel
data structure and the kernel code is using rcu_dereference() to load that
program pointer and call BPF_PROG_RUN() on it. All these cases are not touched.
Instead sleepable bpf programs are allowed with bpf trampoline only. The
program pointers are hard-coded into generated assembly of bpf trampoline and
synchronize_rcu_tasks_trace() is used to protect the life time of the program.
The same trampoline can hold both sleepable and non-sleepable progs.

When rcu_read_lock_trace is held it means that some sleepable bpf program is
running from bpf trampoline. Those programs can use bpf arrays and preallocated
hash/lru maps. These map types are waiting on programs to complete via
synchronize_rcu_tasks_trace();

Updates to trampoline now has to do synchronize_rcu_tasks_trace() and
synchronize_rcu_tasks() to wait for sleepable progs to finish and for
trampoline assembly to finish.

This is the first step of introducing sleepable progs. Eventually dynamically
allocated hash maps can be allowed and networking program types can become
sleepable too.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20200827220114.69225-3-alexei.starovoitov@gmail.com
2020-08-28 21:20:33 +02:00
Martin KaFai Lau 134fede4ee bpf: Relax max_entries check for most of the inner map types
Most of the maps do not use max_entries during verification time.
Thus, those map_meta_equal() do not need to enforce max_entries
when it is inserted as an inner map during runtime.  The max_entries
check is removed from the default implementation bpf_map_meta_equal().

The prog_array_map and xsk_map are exception.  Its map_gen_lookup
uses max_entries to generate inline lookup code.  Thus, they will
implement its own map_meta_equal() to enforce max_entries.
Since there are only two cases now, the max_entries check
is not refactored and stays in its own .c file.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200828011813.1970516-1-kafai@fb.com
2020-08-28 15:41:30 +02:00
Martin KaFai Lau f4d0525921 bpf: Add map_meta_equal map ops
Some properties of the inner map is used in the verification time.
When an inner map is inserted to an outer map at runtime,
bpf_map_meta_equal() is currently used to ensure those properties
of the inserting inner map stays the same as the verification
time.

In particular, the current bpf_map_meta_equal() checks max_entries which
turns out to be too restrictive for most of the maps which do not use
max_entries during the verification time.  It limits the use case that
wants to replace a smaller inner map with a larger inner map.  There are
some maps do use max_entries during verification though.  For example,
the map_gen_lookup in array_map_ops uses the max_entries to generate
the inline lookup code.

To accommodate differences between maps, the map_meta_equal is added
to bpf_map_ops.  Each map-type can decide what to check when its
map is used as an inner map during runtime.

Also, some map types cannot be used as an inner map and they are
currently black listed in bpf_map_meta_alloc() in map_in_map.c.
It is not unusual that the new map types may not aware that such
blacklist exists.  This patch enforces an explicit opt-in
and only allows a map to be used as an inner map if it has
implemented the map_meta_equal ops.  It is based on the
discussion in [1].

All maps that support inner map has its map_meta_equal points
to bpf_map_meta_equal in this patch.  A later patch will
relax the max_entries check for most maps.  bpf_types.h
counts 28 map types.  This patch adds 23 ".map_meta_equal"
by using coccinelle.  -5 for
	BPF_MAP_TYPE_PROG_ARRAY
	BPF_MAP_TYPE_(PERCPU)_CGROUP_STORAGE
	BPF_MAP_TYPE_STRUCT_OPS
	BPF_MAP_TYPE_ARRAY_OF_MAPS
	BPF_MAP_TYPE_HASH_OF_MAPS

The "if (inner_map->inner_map_meta)" check in bpf_map_meta_alloc()
is moved such that the same error is returned.

[1]: https://lore.kernel.org/bpf/20200522022342.899756-1-kafai@fb.com/

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200828011806.1970400-1-kafai@fb.com
2020-08-28 15:41:30 +02:00
Yonghong Song d3cc2ab546 bpf: Implement bpf iterator for array maps
The bpf iterators for array and percpu array
are implemented. Similar to hash maps, for percpu
array map, bpf program will receive values
from all cpus.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200723184115.590532-1-yhs@fb.com
2020-07-25 20:16:33 -07:00
Alexei Starovoitov bba1dc0b55 bpf: Remove redundant synchronize_rcu.
bpf_free_used_maps() or close(map_fd) will trigger map_free callback.
bpf_free_used_maps() is called after bpf prog is no longer executing:
bpf_prog_put->call_rcu->bpf_prog_free->bpf_free_used_maps.
Hence there is no need to call synchronize_rcu() to protect map elements.

Note that hash_of_maps and array_of_maps update/delete inner maps via
sys_bpf() that calls maybe_wait_bpf_programs() and synchronize_rcu().

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/bpf/20200630043343.53195-2-alexei.starovoitov@gmail.com
2020-07-01 08:07:13 -07:00
Andrey Ignatov 2872e9ac33 bpf: Set map_btf_{name, id} for all map types
Set map_btf_name and map_btf_id for all map types so that map fields can
be accessed by bpf programs.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/a825f808f22af52b018dbe82f1c7d29dab5fc978.1592600985.git.rdna@fb.com
2020-06-22 22:22:58 +02:00
Andrey Ignatov 41c48f3a98 bpf: Support access to bpf map fields
There are multiple use-cases when it's convenient to have access to bpf
map fields, both `struct bpf_map` and map type specific struct-s such as
`struct bpf_array`, `struct bpf_htab`, etc.

For example while working with sock arrays it can be necessary to
calculate the key based on map->max_entries (some_hash % max_entries).
Currently this is solved by communicating max_entries via "out-of-band"
channel, e.g. via additional map with known key to get info about target
map. That works, but is not very convenient and error-prone while
working with many maps.

In other cases necessary data is dynamic (i.e. unknown at loading time)
and it's impossible to get it at all. For example while working with a
hash table it can be convenient to know how much capacity is already
used (bpf_htab.count.counter for BPF_F_NO_PREALLOC case).

At the same time kernel knows this info and can provide it to bpf
program.

Fill this gap by adding support to access bpf map fields from bpf
program for both `struct bpf_map` and map type specific fields.

Support is implemented via btf_struct_access() so that a user can define
their own `struct bpf_map` or map type specific struct in their program
with only necessary fields and preserve_access_index attribute, cast a
map to this struct and use a field.

For example:

	struct bpf_map {
		__u32 max_entries;
	} __attribute__((preserve_access_index));

	struct bpf_array {
		struct bpf_map map;
		__u32 elem_size;
	} __attribute__((preserve_access_index));

	struct {
		__uint(type, BPF_MAP_TYPE_ARRAY);
		__uint(max_entries, 4);
		__type(key, __u32);
		__type(value, __u32);
	} m_array SEC(".maps");

	SEC("cgroup_skb/egress")
	int cg_skb(void *ctx)
	{
		struct bpf_array *array = (struct bpf_array *)&m_array;
		struct bpf_map *map = (struct bpf_map *)&m_array;

		/* .. use map->max_entries or array->map.max_entries .. */
	}

Similarly to other btf_struct_access() use-cases (e.g. struct tcp_sock
in net/ipv4/bpf_tcp_ca.c) the patch allows access to any fields of
corresponding struct. Only reading from map fields is supported.

For btf_struct_access() to work there should be a way to know btf id of
a struct that corresponds to a map type. To get btf id there should be a
way to get a stringified name of map-specific struct, such as
"bpf_array", "bpf_htab", etc for a map type. Two new fields are added to
`struct bpf_map_ops` to handle it:
* .map_btf_name keeps a btf name of a struct returned by map_alloc();
* .map_btf_id is used to cache btf id of that struct.

To make btf ids calculation cheaper they're calculated once while
preparing btf_vmlinux and cached same way as it's done for btf_id field
of `struct bpf_func_proto`

While calculating btf ids, struct names are NOT checked for collision.
Collisions will be checked as a part of the work to prepare btf ids used
in verifier in compile time that should land soon. The only known
collision for `struct bpf_htab` (kernel/bpf/hashtab.c vs
net/core/sock_map.c) was fixed earlier.

Both new fields .map_btf_name and .map_btf_id must be set for a map type
for the feature to work. If neither is set for a map type, verifier will
return ENOTSUPP on a try to access map_ptr of corresponding type. If
just one of them set, it's verifier misconfiguration.

Only `struct bpf_array` for BPF_MAP_TYPE_ARRAY and `struct bpf_htab` for
BPF_MAP_TYPE_HASH are supported by this patch. Other map types will be
supported separately.

The feature is available only for CONFIG_DEBUG_INFO_BTF=y and gated by
perfmon_capable() so that unpriv programs won't have access to bpf map
fields.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/6479686a0cd1e9067993df57b4c3eef0e276fec9.1592600985.git.rdna@fb.com
2020-06-22 22:22:58 +02:00
David S. Miller da07f52d3c Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Move the bpf verifier trace check into the new switch statement in
HEAD.

Resolve the overlapping changes in hinic, where bug fixes overlap
the addition of VF support.

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-15 13:48:59 -07:00
Alexei Starovoitov 2c78ee898d bpf: Implement CAP_BPF
Implement permissions as stated in uapi/linux/capability.h
In order to do that the verifier allow_ptr_leaks flag is split
into four flags and they are set as:
  env->allow_ptr_leaks = bpf_allow_ptr_leaks();
  env->bypass_spec_v1 = bpf_bypass_spec_v1();
  env->bypass_spec_v4 = bpf_bypass_spec_v4();
  env->bpf_capable = bpf_capable();

The first three currently equivalent to perfmon_capable(), since leaking kernel
pointers and reading kernel memory via side channel attacks is roughly
equivalent to reading kernel memory with cap_perfmon.

'bpf_capable' enables bounded loops, precision tracking, bpf to bpf calls and
other verifier features. 'allow_ptr_leaks' enable ptr leaks, ptr conversions,
subtraction of pointers. 'bypass_spec_v1' disables speculative analysis in the
verifier, run time mitigations in bpf array, and enables indirect variable
access in bpf programs. 'bypass_spec_v4' disables emission of sanitation code
by the verifier.

That means that the networking BPF program loaded with CAP_BPF + CAP_NET_ADMIN
will have speculative checks done by the verifier and other spectre mitigation
applied. Such networking BPF program will not be able to leak kernel pointers
and will not be able to access arbitrary kernel memory.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200513230355.7858-3-alexei.starovoitov@gmail.com
2020-05-15 17:29:41 +02:00
Andrii Nakryiko 333291ce50 bpf: Fix bug in mmap() implementation for BPF array map
mmap() subsystem allows user-space application to memory-map region with
initial page offset. This wasn't taken into account in initial implementation
of BPF array memory-mapping. This would result in wrong pages, not taking into
account requested page shift, being memory-mmaped into user-space. This patch
fixes this gap and adds a test for such scenario.

Fixes: fc9702273e ("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512235925.3817805-1-andriin@fb.com
2020-05-14 12:40:04 -07:00
Brian Vazquez c60f2d2861 bpf: Add lookup and update batch ops to arraymap
This adds the generic batch ops functionality to bpf arraymap, note that
since deletion is not a valid operation for arraymap, only batch and
lookup are added.

Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200115184308.162644-5-brianvv@google.com
2020-01-15 14:00:35 -08:00
Daniel Borkmann b553a6ec57 bpf: Simplify __bpf_arch_text_poke poke type handling
Given that we have BPF_MOD_NOP_TO_{CALL,JUMP}, BPF_MOD_{CALL,JUMP}_TO_NOP
and BPF_MOD_{CALL,JUMP}_TO_{CALL,JUMP} poke types and that we also pass in
old_addr as well as new_addr, it's a bit redundant and unnecessarily
complicates __bpf_arch_text_poke() itself since we can derive the same from
the *_addr that were passed in. Hence simplify and use BPF_MOD_{CALL,JUMP}
as types which also allows to clean up call-sites.

In addition to that, __bpf_arch_text_poke() currently verifies that text
matches expected old_insn before we invoke text_poke_bp(). Also add a check
on new_insn and skip rewrite if it already matches. Reason why this is rather
useful is that it avoids making any special casing in prog_array_map_poke_run()
when old and new prog were NULL and has the benefit that also for this case
we perform a check on text whether it really matches our expectations.

Suggested-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/fcb00a2b0b288d6c73de4ef58116a821c8fe8f2f.1574555798.git.daniel@iogearbox.net
2019-11-24 17:12:11 -08:00