Commit Graph

1375 Commits

Author SHA1 Message Date
Linus Torvalds 53683e4080 tracing ring buffer updates for v6.10:
- Add ring_buffer memory mappings
 
   The tracing ring buffer was created based on being mostly used with the
   splice system call. It is broken up into page ordered sub-buffers and the
   reader swaps a new sub-buffer with an existing sub-buffer that's part
   of the write buffer. It then has total access to the swapped out
   sub-buffer and can do copyless movements of the memory into other mediums
   (file system, network, etc).
 
   The buffer is great for passing around the ring buffer contents in the
   kernel, but is not so good for when the consumer is the user space task
   itself.
 
   A new interface is added that allows user space to memory map the ring
   buffer. It will get all the write sub-buffers as well as reader sub-buffer
   (that is not written to). It can send an ioctl to change which sub-buffer
   is the new reader sub-buffer.
 
   The ring buffer is read only to user space. It only needs to call the
   ioctl when it is finished with a sub-buffer and needs a new sub-buffer
   that the writer will not write over.
 
   A self test program was also created for testing and can be used as
   an example for the interface to user space. The libtracefs (external
   to the kernel) also has code that interacts with this, although it is
   disabled until the interface is in a official release. It can be enabled
   by compiling the library with a special flag. This was used for testing
   applications that perform better with the buffer being mapped.
 
   Memory mapped buffers have limitations. The main one is that it can not be
   used with the snapshot logic. If the buffer is mapped, snapshots will be
   disabled. If any logic is set to trigger snapshots on a buffer, that
   buffer will not be allowed to be mapped.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZkYzDRQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qttNAQCj3I0OpeI1vms85ShIa7Eha2qes5uC
 Yml2fnapkmRSwAEAp5UTGxtDctycWOk9B9PA7/oJmLgATaQwRKoEeTUwfAA=
 =TyEB
 -----END PGP SIGNATURE-----

Merge tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing ring buffer updates from Steven Rostedt:
 "Add ring_buffer memory mappings.

  The tracing ring buffer was created based on being mostly used with
  the splice system call. It is broken up into page ordered sub-buffers
  and the reader swaps a new sub-buffer with an existing sub-buffer
  that's part of the write buffer. It then has total access to the
  swapped out sub-buffer and can do copyless movements of the memory
  into other mediums (file system, network, etc).

  The buffer is great for passing around the ring buffer contents in the
  kernel, but is not so good for when the consumer is the user space
  task itself.

  A new interface is added that allows user space to memory map the ring
  buffer. It will get all the write sub-buffers as well as reader
  sub-buffer (that is not written to). It can send an ioctl to change
  which sub-buffer is the new reader sub-buffer.

  The ring buffer is read only to user space. It only needs to call the
  ioctl when it is finished with a sub-buffer and needs a new sub-buffer
  that the writer will not write over.

  A self test program was also created for testing and can be used as an
  example for the interface to user space. The libtracefs (external to
  the kernel) also has code that interacts with this, although it is
  disabled until the interface is in a official release. It can be
  enabled by compiling the library with a special flag. This was used
  for testing applications that perform better with the buffer being
  mapped.

  Memory mapped buffers have limitations. The main one is that it can
  not be used with the snapshot logic. If the buffer is mapped,
  snapshots will be disabled. If any logic is set to trigger snapshots
  on a buffer, that buffer will not be allowed to be mapped"

* tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  ring-buffer: Add cast to unsigned long addr passed to virt_to_page()
  ring-buffer: Have mmapped ring buffer keep track of missed events
  ring-buffer/selftest: Add ring-buffer mapping test
  Documentation: tracing: Add ring-buffer mapping
  tracing: Allow user-space mapping of the ring-buffer
  ring-buffer: Introducing ring-buffer mapping functions
  ring-buffer: Allocate sub-buffers with __GFP_COMP
2024-05-17 18:40:37 -07:00
Vincent Donnefort cf9f0f7c4c tracing: Allow user-space mapping of the ring-buffer
Currently, user-space extracts data from the ring-buffer via splice,
which is handy for storage or network sharing. However, due to splice
limitations, it is imposible to do real-time analysis without a copy.

A solution for that problem is to let the user-space map the ring-buffer
directly.

The mapping is exposed via the per-CPU file trace_pipe_raw. The first
element of the mapping is the meta-page. It is followed by each
subbuffer constituting the ring-buffer, ordered by their unique page ID:

  * Meta-page -- include/uapi/linux/trace_mmap.h for a description
  * Subbuf ID 0
  * Subbuf ID 1
     ...

It is therefore easy to translate a subbuf ID into an offset in the
mapping:

  reader_id = meta->reader->id;
  reader_offset = meta->meta_page_size + reader_id * meta->subbuf_size;

When new data is available, the mapper must call a newly introduced ioctl:
TRACE_MMAP_IOCTL_GET_READER. This will update the Meta-page reader ID to
point to the next reader containing unread data.

Mapping will prevent snapshot and buffer size modifications.

Link: https://lore.kernel.org/linux-trace-kernel/20240510140435.3550353-4-vdonnefort@google.com

CC: <linux-mm@kvack.org>
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-05-13 18:09:56 -04:00
Ye Bin 20fe4d07bd tracing/probes: support '%pD' type for print struct file's name
As like '%pd' type, this patch supports print type '%pD' for print file's
name. For example "name=$arg1:%pD" casts the `$arg1` as (struct file*),
dereferences the "file.f_path.dentry.d_name.name" field and stores it to
"name" argument as a kernel string.
Here is an example:
[tracing]# echo 'p:testprobe vfs_read name=$arg1:%pD' > kprobe_event
[tracing]# echo 1 > events/kprobes/testprobe/enable
[tracing]# grep -q "1" events/kprobes/testprobe/enable
[tracing]# echo 0 > events/kprobes/testprobe/enable
[tracing]# grep "vfs_read" trace | grep "enable"
            grep-15108   [003] .....  5228.328609: testprobe: (vfs_read+0x4/0xbb0) name="enable"

Note that this expects the given argument (e.g. $arg1) is an address of struct
file. User must ensure it.

Link: https://lore.kernel.org/all/20240322064308.284457-3-yebin10@huawei.com/
[Masami: replaced "previous patch" with '%pd' type]

Signed-off-by: Ye Bin <yebin10@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-05-01 23:18:47 +09:00
Ye Bin d9b15224dd tracing/probes: support '%pd' type for print struct dentry's name
During fault locating, the file name needs to be printed based on the
dentry  address. The offset needs to be calculated each time, which
is troublesome. Similar to printk, kprobe support print type '%pd' for
print dentry's name. For example "name=$arg1:%pd" casts the `$arg1`
as (struct dentry *), dereferences the "d_name.name" field and stores
it to "name" argument as a kernel string.
Here is an example:
[tracing]# echo 'p:testprobe dput name=$arg1:%pd' > kprobe_events
[tracing]# echo 1 > events/kprobes/testprobe/enable
[tracing]# grep -q "1" events/kprobes/testprobe/enable
[tracing]# echo 0 > events/kprobes/testprobe/enable
[tracing]# cat trace | grep "enable"
	    bash-14844   [002] ..... 16912.889543: testprobe: (dput+0x4/0x30) name="enable"
            grep-15389   [003] ..... 16922.834182: testprobe: (dput+0x4/0x30) name="enable"
            grep-15389   [003] ..... 16922.836103: testprobe: (dput+0x4/0x30) name="enable"
            bash-14844   [001] ..... 16931.820909: testprobe: (dput+0x4/0x30) name="enable"

Note that this expects the given argument (e.g. $arg1) is an address of struct
dentry. User must ensure it.

Link: https://lore.kernel.org/all/20240322064308.284457-2-yebin10@huawei.com/

Signed-off-by: Ye Bin <yebin10@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-05-01 23:18:47 +09:00
Huang Yiwei 19f0423fd5 tracing: Support to dump instance traces by ftrace_dump_on_oops
Currently ftrace only dumps the global trace buffer on an OOPs. For
debugging a production usecase, instance trace will be helpful to
check specific problems since global trace buffer may be used for
other purposes.

This patch extend the ftrace_dump_on_oops parameter to dump a specific
or multiple trace instances:

  - ftrace_dump_on_oops=0: as before -- don't dump
  - ftrace_dump_on_oops[=1]: as before -- dump the global trace buffer
  on all CPUs
  - ftrace_dump_on_oops=2 or =orig_cpu: as before -- dump the global
  trace buffer on CPU that triggered the oops
  - ftrace_dump_on_oops=<instance_name>: new behavior -- dump the
  tracing instance matching <instance_name>
  - ftrace_dump_on_oops[=2/orig_cpu],<instance1_name>[=2/orig_cpu],
  <instrance2_name>[=2/orig_cpu]: new behavior -- dump the global trace
  buffer and multiple instance buffer on all CPUs, or only dump on CPU
  that triggered the oops if =2 or =orig_cpu is given

Also, the sysctl node can handle the input accordingly.

Link: https://lore.kernel.org/linux-trace-kernel/20240223083126.1817731-1-quic_hyiwei@quicinc.com

Cc: Ross Zwisler <zwisler@google.com>
Cc: <mhiramat@kernel.org>
Cc: <mark.rutland@arm.com>
Cc: <mcgrof@kernel.org>
Cc: <keescook@chromium.org>
Cc: <j.granados@samsung.com>
Cc: <mathieu.desnoyers@efficios.com>
Cc: <corbet@lwn.net>
Signed-off-by: Huang Yiwei <quic_hyiwei@quicinc.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:33:06 -04:00
Steven Rostedt (Google) cca990c7b5 tracing: Fix snapshot counter going between two tracers that use it
Running the ftrace selftests caused the ring buffer mapping test to fail.
Investigating, I found that the snapshot counter would be incremented
every time a tracer that uses the snapshot is enabled even if the snapshot
was used by the previous tracer.

That is:

 # cd /sys/kernel/tracing
 # echo wakeup_rt > current_tracer
 # echo wakeup_dl > current_tracer
 # echo nop > current_tracer

would leave the snapshot counter at 1 and not zero. That's because the
enabling of wakeup_dl would increment the counter again but the setting
the tracer to nop would only decrement it once.

Do not arm the snapshot for a tracer if the previous tracer already had it
armed.

Link: https://lore.kernel.org/linux-trace-kernel/20240223013344.570525723@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Fixes: 16f7e48ffc53a ("tracing: Add snapshot refcount")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:33:05 -04:00
John Garry ed89683763 tracing: Use init_utsname()->release
Instead of using UTS_RELEASE, use init_utsname()->release, which means that
we don't need to rebuild the code just for the git head commit changing.

Link: https://lore.kernel.org/linux-trace-kernel/20240222124639.65629-1-john.g.garry@oracle.com

Signed-off-by: John Garry <john.g.garry@oracle.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:13:21 -04:00
Vincent Donnefort 180e4e3909 tracing: Add snapshot refcount
When a ring-buffer is memory mapped by user-space, no trace or
ring-buffer swap is possible. This means the snapshot feature is
mutually exclusive with the memory mapping. Having a refcount on
snapshot users will help to know if a mapping is possible or not.

Instead of relying on the global trace_types_lock, a new spinlock is
introduced to serialize accesses to trace_array->snapshot. This intends
to allow access to that variable in a context where the mmap lock is
already held.

Link: https://lore.kernel.org/linux-trace-kernel/20240220202310.2489614-4-vdonnefort@google.com

Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:12:47 -04:00
Steven Rostedt (Google) 2cc621fd2e tracing: Move saved_cmdline code into trace_sched_switch.c
The code that handles saved_cmdlines is split between the trace.c file and
the trace_sched_switch.c. There's some history to this. The
trace_sched_switch.c was originally created to handle the sched_switch
tracer that was deprecated due to sched_switch trace event making it
obsolete. But that file did not get deleted as it had some code to help
with saved_cmdlines. But trace.c has grown tremendously since then. Just
move all the saved_cmdlines code into trace_sched_switch.c as that's the
only reason that file still exists, and trace.c has gotten too big.

No functional changes.

Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.497966629@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-17 07:58:53 -04:00
Steven Rostedt (Google) e85d471c2b tracing: Move open coded processing of tgid_map into helper function
In preparation of moving the saved_cmdlines logic out of trace.c and into
trace_sched_switch.c, replace the open coded manipulation of tgid_map in
set_tracer_flag() into a helper function trace_alloc_tgid_map() so that it
can be easily moved into trace_sched_switch.c without changing existing
functions in trace.c.

No functional changes.

Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.338116216@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-17 07:58:52 -04:00
Steven Rostedt (Google) 0b18c852cc tracing: Have saved_cmdlines arrays all in one allocation
The saved_cmdlines have three arrays for mapping PIDs to COMMs:

 - map_pid_to_cmdline[]
 - map_cmdline_to_pid[]
 - saved_cmdlines

The map_pid_to_cmdline[] is PID_MAX_DEFAULT in size and holds the index
into the other arrays. The map_cmdline_to_pid[] is a mapping back to the
full pid as it can be larger than PID_MAX_DEFAULT. And the
saved_cmdlines[] just holds the COMMs associated to the pids.

Currently the map_pid_to_cmdline[] and saved_cmdlines[] are allocated
together (in reality the saved_cmdlines is just in the memory of the
rounding of the allocation of the structure as it is always allocated in
powers of two). The map_cmdline_to_pid[] array is allocated separately.

Since the rounding to a power of two is rather large (it allows for 8000
elements in saved_cmdlines), also include the map_cmdline_to_pid[] array.
(This drops it to 6000 by default, which is still plenty for most use
cases). This saves even more memory as the map_cmdline_to_pid[] array
doesn't need to be allocated.

Link: https://lore.kernel.org/linux-trace-kernel/20240212174011.068211d9@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.182330529@goodmis.org

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 44dc5c41b5 ("tracing: Fix wasted memory in saved_cmdlines logic")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-17 07:58:52 -04:00
Linus Torvalds 63bd30f249 Tracing/ring-buffer fixes for 6.8 (to be applied in 6.9-rc):
- Do not update shortest_full in rb_watermark_hit() if the watermark
   is hit. The shortest_full field was being updated regardless if
   the task was going to wait or not. If the watermark is hit, then
   the task is not going to wait, so do not update the shortest_full
   field (used by the waker).
 
 - Update shortest_full field before setting the full_waiters_pending flag
 
   In the poll logic, the full_waiters_pending flag was being set
   before the shortest_full field was set. If the full_waiters_pending
   flag is set, writers will check the shortest_full field which has
   the least percentage of data that the ring buffer needs to be
   filled before waking up. The writer will check shortest_full if
   full_waiters_pending is set, and if the ring buffer percentage filled
   is greater than shortest full, then it will call the irq_work to
   wake up the waiters.
 
   The problem was that the poll logic set the full_waiters_pending flag
   before updating shortest_full, which when zero will always trigger
   the writer to call the irq_work to wake up the waiters. The irq_work
   will reset the shortest_full field back to zero as the woken waiters
   is suppose to reset it.
 
 - There's some optimized logic in the rb_watermark_hit() that is used
   in ring_buffer_wait(). Use that helper function in the poll logic
   as well.
 
 - Restructure ring_buffer_wait() to use wait_event_interruptible()
 
   The logic to wake up pending readers when the file descriptor is
   closed is racy. Restructure ring_buffer_wait() to allow callers
   to pass in conditions besides the ring buffer having enough data
   in it by using wait_event_interruptible().
 
 - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with
   its own conditions to exit the wait loop.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZfH6MRQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qtlwAP9ZoSIkvw2MVu7FclgAguaX2CaylGEw
 sv0wZaCy1kgAPgD8CFhezZcHrt/RwJibpMxVnUs+DDqYnGdJsHYLihlbWgg=
 =99FG
 -----END PGP SIGNATURE-----

Merge tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing updates from Steven Rostedt:

 - Do not update shortest_full in rb_watermark_hit() if the watermark is
   hit. The shortest_full field was being updated regardless if the task
   was going to wait or not. If the watermark is hit, then the task is
   not going to wait, so do not update the shortest_full field (used by
   the waker).

 - Update shortest_full field before setting the full_waiters_pending
   flag

   In the poll logic, the full_waiters_pending flag was being set before
   the shortest_full field was set. If the full_waiters_pending flag is
   set, writers will check the shortest_full field which has the least
   percentage of data that the ring buffer needs to be filled before
   waking up. The writer will check shortest_full if
   full_waiters_pending is set, and if the ring buffer percentage filled
   is greater than shortest full, then it will call the irq_work to wake
   up the waiters.

   The problem was that the poll logic set the full_waiters_pending flag
   before updating shortest_full, which when zero will always trigger
   the writer to call the irq_work to wake up the waiters. The irq_work
   will reset the shortest_full field back to zero as the woken waiters
   is suppose to reset it.

 - There's some optimized logic in the rb_watermark_hit() that is used
   in ring_buffer_wait(). Use that helper function in the poll logic as
   well.

 - Restructure ring_buffer_wait() to use wait_event_interruptible()

   The logic to wake up pending readers when the file descriptor is
   closed is racy. Restructure ring_buffer_wait() to allow callers to
   pass in conditions besides the ring buffer having enough data in it
   by using wait_event_interruptible().

 - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with its
   own conditions to exit the wait loop.

* tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  tracing/ring-buffer: Fix wait_on_pipe() race
  ring-buffer: Use wait_event_interruptible() in ring_buffer_wait()
  ring-buffer: Reuse rb_watermark_hit() for the poll logic
  ring-buffer: Fix full_waiters_pending in poll
  ring-buffer: Do not set shortest_full when full target is hit
2024-03-14 16:25:01 -07:00
Linus Torvalds 01732755ee Probes updates for v6.9:
- x96/kprobes: Use boolean for some function return instead of 0 and 1.
  - x86/kprobes: Prohibit probing on INT/UD. This prevents user to put kprobe on
     INTn/INT1/INT3/INTO and UD0/UD1/UD2 because these are used for a special
     purpose in the kernel.
  - x86/kprobes: Boost Grp instructions. Because a few percent of kernel
     instructions are Grp 2/3/4/5 and those are safe to be executed without
     ip register fixup, allow those to be boosted (direct execution on the
     trampoline buffer with a JMP).
 
  - tracing/probes: Add function argument access from return events (kretprobe
     and fprobe). This allows user to compare how a data structure field is
     changed after executing a function. With BTF, return event also accepts
     function argument access by name. This also includes below patches;
   . Fix a wrong comment (using "Kretprobe" in fprobe)
   . Cleanup a big probe argument parser function into three parts, type
      parser, post-processing function, and main parser.
   . Cleanup to set nr_args field when initializing trace_probe instead of
      counting up it while parsing.
   . Cleanup a redundant #else block from tracefs/README source code.
   . Update selftests to check entry argument access from return probes.
   . Documentation update about entry argument access from return probes.
 -----BEGIN PGP SIGNATURE-----
 
 iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmXwW4kbHG1hc2FtaS5o
 aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bH80H/3H6JENlDAjaSLi4vYrP
 Qyw/cOGIuGu8cDEzkkOaFMol3TY23M7tQZH1lFefvV92gebZ0ttXnrQhSsKeO5XT
 PCZ6Eoift5rwJCY967W4V6O0DrAkOGHlPtlKs47APJnTXwn8RcFTqWlQmhWg1AfD
 g/FCWV7cs3eewZgV9iQcLydOoLLgRMr3G3rtPYQbCXhPzze0WTu4dSOXxCTjFe04
 riHQy7R+ut6Cur8njpoqZl6bCMkQqAylByXf6wK96HjcS0+ZI7Ivi8Ey3l2aAFen
 EeIViMU2Bl02XzBszj7Xq2cT/ebYAgDonFW3/5ZKD1YMO6F7wPoVH5OHrQ518Xuw
 hQ8=
 =O6l5
 -----END PGP SIGNATURE-----

Merge tag 'probes-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull probes updates from Masami Hiramatsu:
 "x86 kprobes:

   - Use boolean for some function return instead of 0 and 1

   - Prohibit probing on INT/UD. This prevents user to put kprobe on
     INTn/INT1/INT3/INTO and UD0/UD1/UD2 because these are used for a
     special purpose in the kernel

   - Boost Grp instructions. Because a few percent of kernel
     instructions are Grp 2/3/4/5 and those are safe to be executed
     without ip register fixup, allow those to be boosted (direct
     execution on the trampoline buffer with a JMP)

  tracing:

   - Add function argument access from return events (kretprobe and
     fprobe). This allows user to compare how a data structure field is
     changed after executing a function. With BTF, return event also
     accepts function argument access by name.

   - Fix a wrong comment (using "Kretprobe" in fprobe)

   - Cleanup a big probe argument parser function into three parts, type
     parser, post-processing function, and main parser

   - Cleanup to set nr_args field when initializing trace_probe instead
     of counting up it while parsing

   - Cleanup a redundant #else block from tracefs/README source code

   - Update selftests to check entry argument access from return probes

   - Documentation update about entry argument access from return
     probes"

* tag 'probes-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  Documentation: tracing: Add entry argument access at function exit
  selftests/ftrace: Add test cases for entry args at function exit
  tracing/probes: Support $argN in return probe (kprobe and fprobe)
  tracing: Remove redundant #else block for BTF args from README
  tracing/probes: cleanup: Set trace_probe::nr_args at trace_probe_init
  tracing/probes: Cleanup probe argument parser
  tracing/fprobe-event: cleanup: Fix a wrong comment in fprobe event
  x86/kprobes: Boost more instructions from grp2/3/4/5
  x86/kprobes: Prohibit kprobing on INT and UD
  x86/kprobes: Refactor can_{probe,boost} return type to bool
2024-03-14 16:16:33 -07:00
Steven Rostedt (Google) 2aa043a55b tracing/ring-buffer: Fix wait_on_pipe() race
When the trace_pipe_raw file is closed, there should be no new readers on
the file descriptor. This is mostly handled with the waking and wait_index
fields of the iterator. But there's still a slight race.

     CPU 0                              CPU 1
     -----                              -----
                                   wait_index++;
   index = wait_index;
                                   ring_buffer_wake_waiters();
   wait_on_pipe()
     ring_buffer_wait();

The ring_buffer_wait() will miss the wakeup from CPU 1. The problem is
that the ring_buffer_wait() needs the logic of:

        prepare_to_wait();
        if (!condition)
                schedule();

Where the missing condition check is the iter->wait_index update.

Have the ring_buffer_wait() take a conditional callback function and a
data parameter that can be used within the wait_event_interruptible() of
the ring_buffer_wait() function.

In wait_on_pipe(), pass a condition function that will check if the
wait_index has been updated, if it has, it will return true to break out
of the wait_event_interruptible() loop.

Create a new field "closed" in the trace_iterator and set it in the
.flush() callback before calling ring_buffer_wake_waiters().
This will keep any new readers from waiting on a closed file descriptor.

Have the wait_on_pipe() condition callback also check the closed field.

Change the wait_index field of the trace_iterator to atomic_t. There's no
reason it needs to be 'long' and making it atomic and using
atomic_read_acquire() and atomic_fetch_inc_release() will provide the
necessary memory barriers.

Add a "woken" flag to tracing_buffers_splice_read() to exit the loop after
one more try to fetch data. That is, if it waited for data and something
woke it up, it should try to collect any new data and then exit back to
user space.

Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.557950713@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-12 12:44:48 -04:00
Steven Rostedt (Google) e5d7c19165 tracing: Use .flush() call to wake up readers
The .release() function does not get called until all readers of a file
descriptor are finished.

If a thread is blocked on reading a file descriptor in ring_buffer_wait(),
and another thread closes the file descriptor, it will not wake up the
other thread as ring_buffer_wake_waiters() is called by .release(), and
that will not get called until the .read() is finished.

The issue originally showed up in trace-cmd, but the readers are actually
other processes with their own file descriptors. So calling close() would wake
up the other tasks because they are blocked on another descriptor then the
one that was closed(). But there's other wake ups that solve that issue.

When a thread is blocked on a read, it can still hang even when another
thread closed its descriptor.

This is what the .flush() callback is for. Have the .flush() wake up the
readers.

Link: https://lore.kernel.org/linux-trace-kernel/20240308202432.107909457@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-10 12:27:47 -04:00
Steven Rostedt (Google) 095fe48912 tracing: Limit trace_marker writes to just 4K
Limit the max print event of trace_marker to just 4K string size. This must
also be less than the amount that can be held by a trace_seq along with
the text that is before the output (like the task name, PID, CPU, state,
etc). As trace_seq is made to handle large events (some greater than 4K).
Make the max size of a trace_marker write event be 4K which is guaranteed
to fit in the trace_seq buffer.

Link: https://lore.kernel.org/linux-trace-kernel/20240304223433.4ba47dff@gandalf.local.home

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-06 13:27:26 -05:00
Masami Hiramatsu (Google) 25f00e40ce tracing/probes: Support $argN in return probe (kprobe and fprobe)
Support accessing $argN in the return probe events. This will help users to
record entry data in function return (exit) event for simplfing the function
entry/exit information in one event, and record the result values (e.g.
allocated object/initialized object) at function exit.

For example, if we have a function `int init_foo(struct foo *obj, int param)`
sometimes we want to check how `obj` is initialized. In such case, we can
define a new return event like below;

 # echo 'r init_foo retval=$retval param=$arg2 field1=+0($arg1)' >> kprobe_events

Thus it records the function parameter `param` and its result `obj->field1`
(the dereference will be done in the function exit timing) value at once.

This also support fprobe, BTF args and'$arg*'. So if CONFIG_DEBUG_INFO_BTF
is enabled, we can trace both function parameters and the return value
by following command.

 # echo 'f target_function%return $arg* $retval' >> dynamic_events

Link: https://lore.kernel.org/all/170952365552.229804.224112990211602895.stgit@devnote2/

Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-03-07 00:27:34 +09:00
Masami Hiramatsu (Google) c18f9eabee tracing: Remove redundant #else block for BTF args from README
Remove redundant #else block for BTF args from README message.
This is a cleanup, so no change on the message.

Link: https://lore.kernel.org/all/170952364558.229804.17285528811097152410.stgit@devnote2/

Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-07 00:27:25 +09:00
Steven Rostedt (Google) 2394ac4145 tracing: Inform kmemleak of saved_cmdlines allocation
The allocation of the struct saved_cmdlines_buffer structure changed from:

        s = kmalloc(sizeof(*s), GFP_KERNEL);
	s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);

to:

	orig_size = sizeof(*s) + val * TASK_COMM_LEN;
	order = get_order(orig_size);
	size = 1 << (order + PAGE_SHIFT);
	page = alloc_pages(GFP_KERNEL, order);
	if (!page)
		return NULL;

	s = page_address(page);
	memset(s, 0, sizeof(*s));

	s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);

Where that s->saved_cmdlines allocation looks to be a dangling allocation
to kmemleak. That's because kmemleak only keeps track of kmalloc()
allocations. For allocations that use page_alloc() directly, the kmemleak
needs to be explicitly informed about it.

Add kmemleak_alloc() and kmemleak_free() around the page allocation so
that it doesn't give the following false positive:

unreferenced object 0xffff8881010c8000 (size 32760):
  comm "swapper", pid 0, jiffies 4294667296
  hex dump (first 32 bytes):
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
  backtrace (crc ae6ec1b9):
    [<ffffffff86722405>] kmemleak_alloc+0x45/0x80
    [<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190
    [<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0
    [<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230
    [<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460
    [<ffffffff8864a174>] early_trace_init+0x14/0xa0
    [<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0
    [<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30
    [<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80
    [<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b

Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/
Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 44dc5c41b5 ("tracing: Fix wasted memory in saved_cmdlines logic")
Reported-by: Kalle Valo <kvalo@kernel.org>
Tested-by: Kalle Valo <kvalo@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-02-14 12:36:34 -05:00
Sven Schnelle a6eaa24f1c tracing: Use ring_buffer_record_is_set_on() in tracer_tracing_is_on()
tracer_tracing_is_on() checks whether record_disabled is not zero. This
checks both the record_disabled counter and the RB_BUFFER_OFF flag.
Reading the source it looks like this function should only check for
the RB_BUFFER_OFF flag. Therefore use ring_buffer_record_is_set_on().
This fixes spurious fails in the 'test for function traceon/off triggers'
test from the ftrace testsuite when the system is under load.

Link: https://lore.kernel.org/linux-trace-kernel/20240205065340.2848065-1-svens@linux.ibm.com

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Tested-By: Mete Durlu <meted@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-02-13 12:04:17 -05:00
Steven Rostedt (Google) 44dc5c41b5 tracing: Fix wasted memory in saved_cmdlines logic
While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.

The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.

The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.

In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.

Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.

This is similar to a recommendation that Linus had made about eventfs_inode names:

  https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/

Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.

Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.

Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 939c7a4f04 ("tracing: Introduce saved_cmdlines_size file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-02-09 06:43:21 -05:00
Linus Torvalds a2ded784cd tracing updates for 6.8:
- Allow kernel trace instance creation to specify what events are created
   Inside the kernel, a subsystem may create a tracing instance that it can
   use to send events to user space. This sub-system may not care about the
   thousands of events that exist in eventfs. Allow the sub-system to specify
   what sub-systems of events it cares about, and only those events are exposed
   to this instance.
 
 - Allow the ring buffer to be broken up into bigger sub-buffers than just the
   architecture page size. A new tracefs file called "buffer_subbuf_size_kb"
   is created. The user can now specify a minimum size the sub-buffer may be
   in kilobytes. Note, that the implementation currently make the sub-buffer
   size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user only writes in
   kilobyte size, and the sub-buffer will be updated to the next size that
   it will can accommodate it. If the user writes in 10, it will change the
   size to be 4 pages on x86 (16K), as that is the next available size that
   can hold 10K pages.
 
 - Update the debug output when a corrupt time is detected in the ring buffer.
   If the ring buffer detects inconsistent timestamps, there's a debug config
   options that will dump the contents of the meta data of the sub-buffer that
   is used for debugging. Add some more information to this dump that helps
   with debugging.
 
 - Add more timestamp debugging checks (only triggers when the config is enabled)
 
 - Increase the trace_seq iterator to 2 page sizes.
 
 - Allow strings written into tracefs_marker to be larger. Up to just under
   2 page sizes (based on what trace_seq can hold).
 
 - Increase the trace_maker_raw write to be as big as a sub-buffer can hold.
 
 - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has been
   removed.
 
 - More selftests were added.
 
 - Some code clean ups as well.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZZ8p3BQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6ql2GAQDZg/zlFEiJHyTfWbCIE8pA3T5xbzKo
 26TNxIZAxJJZpQEAvGFU5Smy14pG6soEoVMp8B6ZOANbqU8VVamhOL+r+Qw=
 =0OYG
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing updates from Steven Rostedt:

 - Allow kernel trace instance creation to specify what events are
   created

   Inside the kernel, a subsystem may create a tracing instance that it
   can use to send events to user space. This sub-system may not care
   about the thousands of events that exist in eventfs. Allow the
   sub-system to specify what sub-systems of events it cares about, and
   only those events are exposed to this instance.

 - Allow the ring buffer to be broken up into bigger sub-buffers than
   just the architecture page size.

   A new tracefs file called "buffer_subbuf_size_kb" is created. The
   user can now specify a minimum size the sub-buffer may be in
   kilobytes. Note, that the implementation currently make the
   sub-buffer size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user
   only writes in kilobyte size, and the sub-buffer will be updated to
   the next size that it will can accommodate it. If the user writes in
   10, it will change the size to be 4 pages on x86 (16K), as that is
   the next available size that can hold 10K pages.

 - Update the debug output when a corrupt time is detected in the ring
   buffer. If the ring buffer detects inconsistent timestamps, there's a
   debug config options that will dump the contents of the meta data of
   the sub-buffer that is used for debugging. Add some more information
   to this dump that helps with debugging.

 - Add more timestamp debugging checks (only triggers when the config is
   enabled)

 - Increase the trace_seq iterator to 2 page sizes.

 - Allow strings written into tracefs_marker to be larger. Up to just
   under 2 page sizes (based on what trace_seq can hold).

 - Increase the trace_maker_raw write to be as big as a sub-buffer can
   hold.

 - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has
   been removed.

 - More selftests were added.

 - Some code clean ups as well.

* tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (29 commits)
  ring-buffer: Remove stale comment from ring_buffer_size()
  tracing histograms: Simplify parse_actions() function
  tracing/selftests: Remove exec permissions from trace_marker.tc test
  ring-buffer: Use subbuf_order for buffer page masking
  tracing: Update subbuffer with kilobytes not page order
  ringbuffer/selftest: Add basic selftest to test changing subbuf order
  ring-buffer: Add documentation on the buffer_subbuf_order file
  ring-buffer: Just update the subbuffers when changing their allocation order
  ring-buffer: Keep the same size when updating the order
  tracing: Stop the tracing while changing the ring buffer subbuf size
  tracing: Update snapshot order along with main buffer order
  ring-buffer: Make sure the spare sub buffer used for reads has same size
  ring-buffer: Do no swap cpu buffers if order is different
  ring-buffer: Clear pages on error in ring_buffer_subbuf_order_set() failure
  ring-buffer: Read and write to ring buffers with custom sub buffer size
  ring-buffer: Set new size of the ring buffer sub page
  ring-buffer: Add interface for configuring trace sub buffer size
  ring-buffer: Page size per ring buffer
  ring-buffer: Have ring_buffer_print_page_header() be able to access ring_buffer_iter
  ring-buffer: Check if absolute timestamp goes backwards
  ...
2024-01-18 14:35:29 -08:00
Steven Rostedt (Google) 39a7dc23a1 tracing: Fix blocked reader of snapshot buffer
If an application blocks on the snapshot or snapshot_raw files, expecting
to be woken up when a snapshot occurs, it will not happen. Or it may
happen with an unexpected result.

That result is that the application will be reading the main buffer
instead of the snapshot buffer. That is because when the snapshot occurs,
the main and snapshot buffers are swapped. But the reader has a descriptor
still pointing to the buffer that it originally connected to.

This is fine for the main buffer readers, as they may be blocked waiting
for a watermark to be hit, and when a snapshot occurs, the data that the
main readers want is now on the snapshot buffer.

But for waiters of the snapshot buffer, they are waiting for an event to
occur that will trigger the snapshot and they can then consume it quickly
to save the snapshot before the next snapshot occurs. But to do this, they
need to read the new snapshot buffer, not the old one that is now
receiving new data.

Also, it does not make sense to have a watermark "buffer_percent" on the
snapshot buffer, as the snapshot buffer is static and does not receive new
data except all at once.

Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: debdd57f51 ("tracing: Make a snapshot feature available from userspace")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-29 09:18:49 -05:00
Steven Rostedt (Google) 2f84b39f48 tracing: Update subbuffer with kilobytes not page order
Using page order for deciding what the size of the ring buffer sub buffers
are is exposing a bit too much of the implementation. Although the sub
buffers are only allocated in orders of pages, allow the user to specify
the minimum size of each sub-buffer via kilobytes like they can with the
buffer size itself.

If the user specifies 3 via:

  echo 3 > buffer_subbuf_size_kb

Then the sub-buffer size will round up to 4kb (on a 4kb page size system).

If they specify:

  echo 6 > buffer_subbuf_size_kb

The sub-buffer size will become 8kb.

and so on.

Link: https://lore.kernel.org/linux-trace-kernel/20231219185631.809766769@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 11:04:15 -05:00
Steven Rostedt (Google) fa4b54af5b tracing: Stop the tracing while changing the ring buffer subbuf size
Because the main buffer and the snapshot buffer need to be the same for
some tracers, otherwise it will fail and disable all tracing, the tracers
need to be stopped while updating the sub buffer sizes so that the tracers
see the main and snapshot buffers with the same sub buffer size.

Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.353222794@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Fixes: 2808e31ec1 ("ring-buffer: Add interface for configuring trace sub buffer size")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 11:00:56 -05:00
Steven Rostedt (Google) aa067682ad tracing: Update snapshot order along with main buffer order
When updating the order of the sub buffers for the main buffer, make sure
that if the snapshot buffer exists, that it gets its order updated as
well.

Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.054668186@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 10:55:57 -05:00
Steven Rostedt (Google) 4e958db34f ring-buffer: Make sure the spare sub buffer used for reads has same size
Now that the ring buffer specifies the size of its sub buffers, they all
need to be the same size. When doing a read, a swap is done with a spare
page. Make sure they are the same size before doing the swap, otherwise
the read will fail.

Link: https://lore.kernel.org/linux-trace-kernel/20231219185629.763664788@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 10:55:04 -05:00
Tzvetomir Stoyanov (VMware) bce761d757 ring-buffer: Read and write to ring buffers with custom sub buffer size
As the size of the ring sub buffer page can be changed dynamically,
the logic that reads and writes to the buffer should be fixed to take
that into account. Some internal ring buffer APIs are changed:
 ring_buffer_alloc_read_page()
 ring_buffer_free_read_page()
 ring_buffer_read_page()
A new API is introduced:
 ring_buffer_read_page_data()

Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-6-tz.stoyanov@gmail.com
Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.875145995@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com>
[ Fixed kerneldoc on data_page parameter in ring_buffer_free_read_page() ]
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-20 07:54:56 -05:00
Tzvetomir Stoyanov (VMware) 2808e31ec1 ring-buffer: Add interface for configuring trace sub buffer size
The trace ring buffer sub page size can be configured, per trace
instance. A new ftrace file "buffer_subbuf_order" is added to get and
set the size of the ring buffer sub page for current trace instance.
The size must be an order of system page size, that's why the new
interface works with system page order, instead of absolute page size:
0 means the ring buffer sub page is equal to 1 system page and so
forth:
0 - 1 system page
1 - 2 system pages
2 - 4 system pages
...
The ring buffer sub page size is limited between 1 and 128 system
pages. The default value is 1 system page.
New ring buffer APIs are introduced:
 ring_buffer_subbuf_order_set()
 ring_buffer_subbuf_order_get()
 ring_buffer_subbuf_size_get()

Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-4-tz.stoyanov@gmail.com
Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.298324722@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-20 07:54:55 -05:00
Tzvetomir Stoyanov (VMware) 139f840021 ring-buffer: Page size per ring buffer
Currently the size of one sub buffer page is global for all buffers and
it is hard coded to one system page. In order to introduce configurable
ring buffer sub page size, the internal logic should be refactored to
work with sub page size per ring buffer.

Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-3-tz.stoyanov@gmail.com
Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.009147038@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-20 07:54:55 -05:00
Steven Rostedt (Google) 76ca20c748 tracing: Increase size of trace_marker_raw to max ring buffer entry
There's no reason to give an arbitrary limit to the size of a raw trace
marker. Just let it be as big as the size that is allowed by the ring
buffer itself.

And there's also no reason to artificially break up the write to
TRACE_BUF_SIZE, as that's not even used.

Link: https://lore.kernel.org/linux-trace-kernel/20231213104218.2efc70c1@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18 23:14:16 -05:00
Steven Rostedt (Google) 9482341d9b tracing: Have trace_marker break up by lines by size of trace_seq
If a trace_marker write is bigger than what trace_seq can hold, then it
will print "LINE TOO BIG" message and not what was written.

Instead, check if the write is bigger than the trace_seq and break it
up by that size.

Ideally, we could make the trace_seq dynamic that could hold this. But
that's for another time.

Link: https://lore.kernel.org/linux-trace-kernel/20231212190422.1eaf224f@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18 23:14:16 -05:00
Steven Rostedt (Google) 40fc60e36c trace_seq: Increase the buffer size to almost two pages
Now that trace_marker can hold more than 1KB string, and can write as much
as the ring buffer can hold, the trace_seq is not big enough to hold
writes:

 ~# a="1234567890"
 ~# cnt=4080
 ~# s=""
 ~# while [ $cnt -gt 10 ]; do
 ~#	s="${s}${a}"
 ~#	cnt=$((cnt-10))
 ~# done
 ~# echo $s > trace_marker
 ~# cat trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-860     [002] .....   105.543465: tracing_mark_write[LINE TOO BIG]
            <...>-860     [002] .....   105.543496: tracing_mark_write: 789012345678901234567890

By increasing the trace_seq buffer to almost two pages, it can now print
out the first line.

This also subtracts the rest of the trace_seq fields from the buffer, so
that the entire trace_seq is now PAGE_SIZE aligned.

Link: https://lore.kernel.org/linux-trace-kernel/20231209175220.19867af4@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18 23:14:16 -05:00
Steven Rostedt (Google) 8ec90be7f1 tracing: Allow for max buffer data size trace_marker writes
Allow a trace write to be as big as the ring buffer tracing data will
allow. Currently, it only allows writes of 1KB in size, but there's no
reason that it cannot allow what the ring buffer can hold.

Link: https://lore.kernel.org/linux-trace-kernel/20231212131901.5f501e72@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18 23:14:16 -05:00
Steven Rostedt (Google) d23569979c tracing: Allow creating instances with specified system events
A trace instance may only need to enable specific events. As the eventfs
directory of an instance currently creates all events which adds overhead,
allow internal instances to be created with just the events in systems
that they care about. This currently only deals with systems and not
individual events, but this should bring down the overhead of creating
instances for specific use cases quite bit.

The trace_array_get_by_name() now has another parameter "systems". This
parameter is a const string pointer of a comma/space separated list of
event systems that should be created by the trace_array. (Note if the
trace_array already exists, this parameter is ignored).

The list of systems is saved and if a module is loaded, its events will
not be added unless the system for those events also match the systems
string.

Link: https://lore.kernel.org/linux-trace-kernel/20231213093701.03fddec0@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Sean Paul <seanpaul@chromium.org>
Cc: Arun Easi   <aeasi@marvell.com>
Cc: Daniel Wagner <dwagner@suse.de>
Tested-by: Dmytro Maluka <dmaluka@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18 23:14:16 -05:00
Zheng Yejian 1cc111b9cd tracing: Fix uaf issue when open the hist or hist_debug file
KASAN report following issue. The root cause is when opening 'hist'
file of an instance and accessing 'trace_event_file' in hist_show(),
but 'trace_event_file' has been freed due to the instance being removed.
'hist_debug' file has the same problem. To fix it, call
tracing_{open,release}_file_tr() in file_operations callback to have
the ref count and avoid 'trace_event_file' being freed.

  BUG: KASAN: slab-use-after-free in hist_show+0x11e0/0x1278
  Read of size 8 at addr ffff242541e336b8 by task head/190

  CPU: 4 PID: 190 Comm: head Not tainted 6.7.0-rc5-g26aff849438c #133
  Hardware name: linux,dummy-virt (DT)
  Call trace:
   dump_backtrace+0x98/0xf8
   show_stack+0x1c/0x30
   dump_stack_lvl+0x44/0x58
   print_report+0xf0/0x5a0
   kasan_report+0x80/0xc0
   __asan_report_load8_noabort+0x1c/0x28
   hist_show+0x11e0/0x1278
   seq_read_iter+0x344/0xd78
   seq_read+0x128/0x1c0
   vfs_read+0x198/0x6c8
   ksys_read+0xf4/0x1e0
   __arm64_sys_read+0x70/0xa8
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

  Allocated by task 188:
   kasan_save_stack+0x28/0x50
   kasan_set_track+0x28/0x38
   kasan_save_alloc_info+0x20/0x30
   __kasan_slab_alloc+0x6c/0x80
   kmem_cache_alloc+0x15c/0x4a8
   trace_create_new_event+0x84/0x348
   __trace_add_new_event+0x18/0x88
   event_trace_add_tracer+0xc4/0x1a0
   trace_array_create_dir+0x6c/0x100
   trace_array_create+0x2e8/0x568
   instance_mkdir+0x48/0x80
   tracefs_syscall_mkdir+0x90/0xe8
   vfs_mkdir+0x3c4/0x610
   do_mkdirat+0x144/0x200
   __arm64_sys_mkdirat+0x8c/0xc0
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

  Freed by task 191:
   kasan_save_stack+0x28/0x50
   kasan_set_track+0x28/0x38
   kasan_save_free_info+0x34/0x58
   __kasan_slab_free+0xe4/0x158
   kmem_cache_free+0x19c/0x508
   event_file_put+0xa0/0x120
   remove_event_file_dir+0x180/0x320
   event_trace_del_tracer+0xb0/0x180
   __remove_instance+0x224/0x508
   instance_rmdir+0x44/0x78
   tracefs_syscall_rmdir+0xbc/0x140
   vfs_rmdir+0x1cc/0x4c8
   do_rmdir+0x220/0x2b8
   __arm64_sys_unlinkat+0xc0/0x100
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

Link: https://lore.kernel.org/linux-trace-kernel/20231214012153.676155-1-zhengyejian1@huawei.com

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-13 23:29:59 -05:00
Steven Rostedt (Google) d06aff1cb1 tracing: Update snapshot buffer on resize if it is allocated
The snapshot buffer is to mimic the main buffer so that when a snapshot is
needed, the snapshot and main buffer are swapped. When the snapshot buffer
is allocated, it is set to the minimal size that the ring buffer may be at
and still functional. When it is allocated it becomes the same size as the
main ring buffer, and when the main ring buffer changes in size, it should
do.

Currently, the resize only updates the snapshot buffer if it's used by the
current tracer (ie. the preemptirqsoff tracer). But it needs to be updated
anytime it is allocated.

When changing the size of the main buffer, instead of looking to see if
the current tracer is utilizing the snapshot buffer, just check if it is
allocated to know if it should be updated or not.

Also fix typo in comment just above the code change.

Link: https://lore.kernel.org/linux-trace-kernel/20231210225447.48476a6a@rorschach.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: ad909e21bb ("tracing: Add internal tracing_snapshot() functions")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-12 19:00:38 -05:00
Steven Rostedt (Google) b55b0a0d7c tracing: Have large events show up as '[LINE TOO BIG]' instead of nothing
If a large event was added to the ring buffer that is larger than what the
trace_seq can handle, it just drops the output:

 ~# cat /sys/kernel/tracing/trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-859     [001] .....   141.118951: tracing_mark_write           <...>-859     [001] .....   141.148201: tracing_mark_write: 78901234

Instead, catch this case and add some context:

 ~# cat /sys/kernel/tracing/trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-852     [001] .....   121.550551: tracing_mark_write[LINE TOO BIG]
            <...>-852     [001] .....   121.550581: tracing_mark_write: 78901234

This now emulates the same output as trace_pipe.

Link: https://lore.kernel.org/linux-trace-kernel/20231209171058.78c1a026@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-12 19:00:36 -05:00
Petr Pavlu c0591b1ccc tracing: Fix a possible race when disabling buffered events
Function trace_buffered_event_disable() is responsible for freeing pages
backing buffered events and this process can run concurrently with
trace_event_buffer_lock_reserve().

The following race is currently possible:

* Function trace_buffered_event_disable() is called on CPU 0. It
  increments trace_buffered_event_cnt on each CPU and waits via
  synchronize_rcu() for each user of trace_buffered_event to complete.

* After synchronize_rcu() is finished, function
  trace_buffered_event_disable() has the exclusive access to
  trace_buffered_event. All counters trace_buffered_event_cnt are at 1
  and all pointers trace_buffered_event are still valid.

* At this point, on a different CPU 1, the execution reaches
  trace_event_buffer_lock_reserve(). The function calls
  preempt_disable_notrace() and only now enters an RCU read-side
  critical section. The function proceeds and reads a still valid
  pointer from trace_buffered_event[CPU1] into the local variable
  "entry". However, it doesn't yet read trace_buffered_event_cnt[CPU1]
  which happens later.

* Function trace_buffered_event_disable() continues. It frees
  trace_buffered_event[CPU1] and decrements
  trace_buffered_event_cnt[CPU1] back to 0.

* Function trace_event_buffer_lock_reserve() continues. It reads and
  increments trace_buffered_event_cnt[CPU1] from 0 to 1. This makes it
  believe that it can use the "entry" that it already obtained but the
  pointer is now invalid and any access results in a use-after-free.

Fix the problem by making a second synchronize_rcu() call after all
trace_buffered_event values are set to NULL. This waits on all potential
users in trace_event_buffer_lock_reserve() that still read a previous
pointer from trace_buffered_event.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-4-petr.pavlu@suse.com

Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:17:00 -05:00
Petr Pavlu 34209fe83e tracing: Fix a warning when allocating buffered events fails
Function trace_buffered_event_disable() produces an unexpected warning
when the previous call to trace_buffered_event_enable() fails to
allocate pages for buffered events.

The situation can occur as follows:

* The counter trace_buffered_event_ref is at 0.

* The soft mode gets enabled for some event and
  trace_buffered_event_enable() is called. The function increments
  trace_buffered_event_ref to 1 and starts allocating event pages.

* The allocation fails for some page and trace_buffered_event_disable()
  is called for cleanup.

* Function trace_buffered_event_disable() decrements
  trace_buffered_event_ref back to 0, recognizes that it was the last
  use of buffered events and frees all allocated pages.

* The control goes back to trace_buffered_event_enable() which returns.
  The caller of trace_buffered_event_enable() has no information that
  the function actually failed.

* Some time later, the soft mode is disabled for the same event.
  Function trace_buffered_event_disable() is called. It warns on
  "WARN_ON_ONCE(!trace_buffered_event_ref)" and returns.

Buffered events are just an optimization and can handle failures. Make
trace_buffered_event_enable() exit on the first failure and left any
cleanup later to when trace_buffered_event_disable() is called.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-3-petr.pavlu@suse.com

Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:16:48 -05:00
Petr Pavlu 7fed14f7ac tracing: Fix incomplete locking when disabling buffered events
The following warning appears when using buffered events:

[  203.556451] WARNING: CPU: 53 PID: 10220 at kernel/trace/ring_buffer.c:3912 ring_buffer_discard_commit+0x2eb/0x420
[...]
[  203.670690] CPU: 53 PID: 10220 Comm: stress-ng-sysin Tainted: G            E      6.7.0-rc2-default #4 56e6d0fcf5581e6e51eaaecbdaec2a2338c80f3a
[  203.670704] Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017
[  203.670709] RIP: 0010:ring_buffer_discard_commit+0x2eb/0x420
[  203.735721] Code: 4c 8b 4a 50 48 8b 42 48 49 39 c1 0f 84 b3 00 00 00 49 83 e8 01 75 b1 48 8b 42 10 f0 ff 40 08 0f 0b e9 fc fe ff ff f0 ff 47 08 <0f> 0b e9 77 fd ff ff 48 8b 42 10 f0 ff 40 08 0f 0b e9 f5 fe ff ff
[  203.735734] RSP: 0018:ffffb4ae4f7b7d80 EFLAGS: 00010202
[  203.735745] RAX: 0000000000000000 RBX: ffffb4ae4f7b7de0 RCX: ffff8ac10662c000
[  203.735754] RDX: ffff8ac0c750be00 RSI: ffff8ac10662c000 RDI: ffff8ac0c004d400
[  203.781832] RBP: ffff8ac0c039cea0 R08: 0000000000000000 R09: 0000000000000000
[  203.781839] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
[  203.781842] R13: ffff8ac10662c000 R14: ffff8ac0c004d400 R15: ffff8ac10662c008
[  203.781846] FS:  00007f4cd8a67740(0000) GS:ffff8ad798880000(0000) knlGS:0000000000000000
[  203.781851] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  203.781855] CR2: 0000559766a74028 CR3: 00000001804c4000 CR4: 00000000001506f0
[  203.781862] Call Trace:
[  203.781870]  <TASK>
[  203.851949]  trace_event_buffer_commit+0x1ea/0x250
[  203.851967]  trace_event_raw_event_sys_enter+0x83/0xe0
[  203.851983]  syscall_trace_enter.isra.0+0x182/0x1a0
[  203.851990]  do_syscall_64+0x3a/0xe0
[  203.852075]  entry_SYSCALL_64_after_hwframe+0x6e/0x76
[  203.852090] RIP: 0033:0x7f4cd870fa77
[  203.982920] Code: 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 b8 89 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 43 0e 00 f7 d8 64 89 01 48
[  203.982932] RSP: 002b:00007fff99717dd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000089
[  203.982942] RAX: ffffffffffffffda RBX: 0000558ea1d7b6f0 RCX: 00007f4cd870fa77
[  203.982948] RDX: 0000000000000000 RSI: 00007fff99717de0 RDI: 0000558ea1d7b6f0
[  203.982957] RBP: 00007fff99717de0 R08: 00007fff997180e0 R09: 00007fff997180e0
[  203.982962] R10: 00007fff997180e0 R11: 0000000000000246 R12: 00007fff99717f40
[  204.049239] R13: 00007fff99718590 R14: 0000558e9f2127a8 R15: 00007fff997180b0
[  204.049256]  </TASK>

For instance, it can be triggered by running these two commands in
parallel:

 $ while true; do
    echo hist:key=id.syscall:val=hitcount > \
      /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger;
  done
 $ stress-ng --sysinfo $(nproc)

The warning indicates that the current ring_buffer_per_cpu is not in the
committing state. It happens because the active ring_buffer_event
doesn't actually come from the ring_buffer_per_cpu but is allocated from
trace_buffered_event.

The bug is in function trace_buffered_event_disable() where the
following normally happens:

* The code invokes disable_trace_buffered_event() via
  smp_call_function_many() and follows it by synchronize_rcu(). This
  increments the per-CPU variable trace_buffered_event_cnt on each
  target CPU and grants trace_buffered_event_disable() the exclusive
  access to the per-CPU variable trace_buffered_event.

* Maintenance is performed on trace_buffered_event, all per-CPU event
  buffers get freed.

* The code invokes enable_trace_buffered_event() via
  smp_call_function_many(). This decrements trace_buffered_event_cnt and
  releases the access to trace_buffered_event.

A problem is that smp_call_function_many() runs a given function on all
target CPUs except on the current one. The following can then occur:

* Task X executing trace_buffered_event_disable() runs on CPU 0.

* The control reaches synchronize_rcu() and the task gets rescheduled on
  another CPU 1.

* The RCU synchronization finishes. At this point,
  trace_buffered_event_disable() has the exclusive access to all
  trace_buffered_event variables except trace_buffered_event[CPU0]
  because trace_buffered_event_cnt[CPU0] is never incremented and if the
  buffer is currently unused, remains set to 0.

* A different task Y is scheduled on CPU 0 and hits a trace event. The
  code in trace_event_buffer_lock_reserve() sees that
  trace_buffered_event_cnt[CPU0] is set to 0 and decides the use the
  buffer provided by trace_buffered_event[CPU0].

* Task X continues its execution in trace_buffered_event_disable(). The
  code incorrectly frees the event buffer pointed by
  trace_buffered_event[CPU0] and resets the variable to NULL.

* Task Y writes event data to the now freed buffer and later detects the
  created inconsistency.

The issue is observable since commit dea499781a ("tracing: Fix warning
in trace_buffered_event_disable()") which moved the call of
trace_buffered_event_disable() in __ftrace_event_enable_disable()
earlier, prior to invoking call->class->reg(.. TRACE_REG_UNREGISTER ..).
The underlying problem in trace_buffered_event_disable() is however
present since the original implementation in commit 0fc1b09ff1
("tracing: Use temp buffer when filtering events").

Fix the problem by replacing the two smp_call_function_many() calls with
on_each_cpu_mask() which invokes a given callback on all CPUs.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-2-petr.pavlu@suse.com

Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Fixes: dea499781a ("tracing: Fix warning in trace_buffered_event_disable()")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:13:51 -05:00
Steven Rostedt (Google) b538bf7d0e tracing: Disable snapshot buffer when stopping instance tracers
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). When stopping a tracer in an
instance would not disable the snapshot buffer. This could have some
unintended consequences if the irqsoff tracer is enabled.

Consolidate the tracing_start/stop() with tracing_start/stop_tr() so that
all instances behave the same. The tracing_start/stop() functions will
just call their respective tracing_start/stop_tr() with the global_array
passed in.

Link: https://lkml.kernel.org/r/20231205220011.041220035@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:06:12 -05:00
Steven Rostedt (Google) d78ab79270 tracing: Stop current tracer when resizing buffer
When the ring buffer is being resized, it can cause side effects to the
running tracer. For instance, there's a race with irqsoff tracer that
swaps individual per cpu buffers between the main buffer and the snapshot
buffer. The resize operation modifies the main buffer and then the
snapshot buffer. If a swap happens in between those two operations it will
break the tracer.

Simply stop the running tracer before resizing the buffers and enable it
again when finished.

Link: https://lkml.kernel.org/r/20231205220010.748996423@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 3928a8a2d9 ("ftrace: make work with new ring buffer")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:06:12 -05:00
Steven Rostedt (Google) 7be76461f3 tracing: Always update snapshot buffer size
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). The update of the ring buffer
size would check if the instance was the top level and if so, it would
also update the snapshot buffer as it needs to be the same as the main
buffer.

Now that lower level instances also has a snapshot buffer, they too need
to update their snapshot buffer sizes when the main buffer is changed,
otherwise the following can be triggered:

 # cd /sys/kernel/tracing
 # echo 1500 > buffer_size_kb
 # mkdir instances/foo
 # echo irqsoff > instances/foo/current_tracer
 # echo 1000 > instances/foo/buffer_size_kb

Produces:

 WARNING: CPU: 2 PID: 856 at kernel/trace/trace.c:1938 update_max_tr_single.part.0+0x27d/0x320

Which is:

	ret = ring_buffer_swap_cpu(tr->max_buffer.buffer, tr->array_buffer.buffer, cpu);

	if (ret == -EBUSY) {
		[..]
	}

	WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY);  <== here

That's because ring_buffer_swap_cpu() has:

	int ret = -EINVAL;

	[..]

	/* At least make sure the two buffers are somewhat the same */
	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
		goto out;

	[..]
 out:
	return ret;
 }

Instead, update all instances' snapshot buffer sizes when their main
buffer size is updated.

Link: https://lkml.kernel.org/r/20231205220010.454662151@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:06:12 -05:00
Steven Rostedt (Google) bb32500fb9 tracing: Have trace_event_file have ref counters
The following can crash the kernel:

 # cd /sys/kernel/tracing
 # echo 'p:sched schedule' > kprobe_events
 # exec 5>>events/kprobes/sched/enable
 # > kprobe_events
 # exec 5>&-

The above commands:

 1. Change directory to the tracefs directory
 2. Create a kprobe event (doesn't matter what one)
 3. Open bash file descriptor 5 on the enable file of the kprobe event
 4. Delete the kprobe event (removes the files too)
 5. Close the bash file descriptor 5

The above causes a crash!

 BUG: kernel NULL pointer dereference, address: 0000000000000028
 #PF: supervisor read access in kernel mode
 #PF: error_code(0x0000) - not-present page
 PGD 0 P4D 0
 Oops: 0000 [#1] PREEMPT SMP PTI
 CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
 RIP: 0010:tracing_release_file_tr+0xc/0x50

What happens here is that the kprobe event creates a trace_event_file
"file" descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the "enable" file gets a reference to the event "file" descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event "file"
descriptor.

But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event "file" descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event "file" descriptor that was just freed, causing a use-after-free bug.

To solve this, add a ref count to the event "file" descriptor as well as a
new flag called "FREED". The "file" will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there's still a reference to the event "file" descriptor.

Link: https://lore.kernel.org/linux-trace-kernel/20231031000031.1e705592@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231031122453.7a48b923@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes: f5ca233e2e ("tracing: Increase trace array ref count on enable and filter files")
Reported-by: Beau Belgrave <beaub@linux.microsoft.com>
Tested-by: Beau Belgrave <beaub@linux.microsoft.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-11-01 23:44:44 -04:00
Kees Cook dcc4e5728e seq_buf: Introduce DECLARE_SEQ_BUF and seq_buf_str()
Solve two ergonomic issues with struct seq_buf;

1) Too much boilerplate is required to initialize:

	struct seq_buf s;
	char buf[32];

	seq_buf_init(s, buf, sizeof(buf));

Instead, we can build this directly on the stack. Provide
DECLARE_SEQ_BUF() macro to do this:

	DECLARE_SEQ_BUF(s, 32);

2) %NUL termination is fragile and requires 2 steps to get a valid
   C String (and is a layering violation exposing the "internals" of
   seq_buf):

	seq_buf_terminate(s);
	do_something(s->buffer);

Instead, we can just return s->buffer directly after terminating it in
the refactored seq_buf_terminate(), now known as seq_buf_str():

	do_something(seq_buf_str(s));

Link: https://lore.kernel.org/linux-trace-kernel/20231027155634.make.260-kees@kernel.org
Link: https://lore.kernel.org/linux-trace-kernel/20231026194033.it.702-kees@kernel.org/

Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Justin Stitt <justinstitt@google.com>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Yun Zhou <yun.zhou@windriver.com>
Cc: Jacob Keller <jacob.e.keller@intel.com>
Cc: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-28 16:52:43 -04:00
Matthew Wilcox (Oracle) d0ed46b603 tracing: Move readpos from seq_buf to trace_seq
To make seq_buf more lightweight as a string buf, move the readpos member
from seq_buf to its container, trace_seq.  That puts the responsibility
of maintaining the readpos entirely in the tracing code.  If some future
users want to package up the readpos with a seq_buf, we can define a
new struct then.

Link: https://lore.kernel.org/linux-trace-kernel/20231020033545.2587554-2-willy@infradead.org

Cc: Kees Cook <keescook@chromium.org>
Cc: Justin Stitt <justinstitt@google.com>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-20 12:16:10 -04:00
Steven Rostedt (Google) 5790b1fb3d eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.

struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
						const struct eventfs_entry *entries,
						int size, void *data);

is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:

struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
					 const struct eventfs_entry *entries,
					 int size, void *data);

where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.

The entries are defined by:

typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
				const struct file_operations **fops);

struct eventfs_entry {
	const char			*name;
	eventfs_callback		callback;
};

Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.

If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.

This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.

The "show_events_dentry" file has been updated to show the directories,
and any files they have.

With just the eventfs_file allocations:

 Before after deltas for meminfo (in kB):

   MemFree:		-14360
   MemAvailable:	-14260
   Buffers:		40
   Cached:		24
   Active:		44
   Inactive:		48
   Inactive(anon):	28
   Active(file):	44
   Inactive(file):	20
   Dirty:		-4
   AnonPages:		28
   Mapped:		4
   KReclaimable:	132
   Slab:		1604
   SReclaimable:	132
   SUnreclaim:		1472
   Committed_AS:	12

 Before after deltas for slabinfo:

   <slab>:		<objects>	[ * <size> = <total>]

   ext4_inode_cache	27		[* 1184 = 31968 ]
   extent_status	102		[*   40 = 4080 ]
   tracefs_inode_cache	144		[*  656 = 94464 ]
   buffer_head		39		[*  104 = 4056 ]
   shmem_inode_cache	49		[*  800 = 39200 ]
   filp			-53		[*  256 = -13568 ]
   dentry		251		[*  192 = 48192 ]
   lsm_file_cache	277		[*   32 = 8864 ]
   vm_area_struct	-14		[*  184 = -2576 ]
   trace_event_file	1748		[*   88 = 153824 ]
   kmalloc-1k		35		[* 1024 = 35840 ]
   kmalloc-256		49		[*  256 = 12544 ]
   kmalloc-192		-28		[*  192 = -5376 ]
   kmalloc-128		-30		[*  128 = -3840 ]
   kmalloc-96		10581		[*   96 = 1015776 ]
   kmalloc-64		3056		[*   64 = 195584 ]
   kmalloc-32		1291		[*   32 = 41312 ]
   kmalloc-16		2310		[*   16 = 36960 ]
   kmalloc-8		9216		[*    8 = 73728 ]

 Free memory dropped by 14,360 kB
 Available memory dropped by 14,260 kB
 Total slab additions in size: 1,771,032 bytes

With this change:

 Before after deltas for meminfo (in kB):

   MemFree:		-12084
   MemAvailable:	-11976
   Buffers:		32
   Cached:		32
   Active:		72
   Inactive:		168
   Inactive(anon):	176
   Active(file):	72
   Inactive(file):	-8
   Dirty:		24
   AnonPages:		196
   Mapped:		8
   KReclaimable:	148
   Slab:		836
   SReclaimable:	148
   SUnreclaim:		688
   Committed_AS:	324

 Before after deltas for slabinfo:

   <slab>:		<objects>	[ * <size> = <total>]

   tracefs_inode_cache	144		[* 656 = 94464 ]
   shmem_inode_cache	-23		[* 800 = -18400 ]
   filp			-92		[* 256 = -23552 ]
   dentry		179		[* 192 = 34368 ]
   lsm_file_cache	-3		[* 32 = -96 ]
   vm_area_struct	-13		[* 184 = -2392 ]
   trace_event_file	1748		[* 88 = 153824 ]
   kmalloc-1k		-49		[* 1024 = -50176 ]
   kmalloc-256		-27		[* 256 = -6912 ]
   kmalloc-128		1864		[* 128 = 238592 ]
   kmalloc-64		4685		[* 64 = 299840 ]
   kmalloc-32		-72		[* 32 = -2304 ]
   kmalloc-16		256		[* 16 = 4096 ]
   total = 721352

 Free memory dropped by 12,084 kB
 Available memory dropped by 11,976 kB
 Total slab additions in size:  721,352 bytes

That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.

Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-04 17:11:50 -04:00
Zheng Yejian a1f157c7a3 tracing: Expand all ring buffers individually
The ring buffer of global_trace is set to the minimum size in
order to save memory on boot up and then it will be expand when
some trace feature enabled.

However currently operations under an instance can also cause
global_trace ring buffer being expanded, and the expanded memory
would be wasted if global_trace then not being used.

See following case, we enable 'sched_switch' event in instance 'A', then
ring buffer of global_trace is unexpectedly expanded to be 1410KB, also
the '(expanded: 1408)' from 'buffer_size_kb' of instance is confusing.

  # cd /sys/kernel/tracing
  # mkdir instances/A
  # cat buffer_size_kb
  7 (expanded: 1408)
  # cat instances/A/buffer_size_kb
  1410 (expanded: 1408)
  # echo sched:sched_switch > instances/A/set_event
  # cat buffer_size_kb
  1410
  # cat instances/A/buffer_size_kb
  1410

To fix it, we can:
  - Make 'ring_buffer_expanded' as a member of 'struct trace_array';
  - Make 'ring_buffer_expanded' of instance is defaultly true,
    global_trace is defaultly false;
  - In order not to expose 'global_trace' outside of file
    'kernel/trace/trace.c', introduce trace_set_ring_buffer_expanded()
    to set 'ring_buffer_expanded' as 'true';
  - Pass the expected trace_array to tracing_update_buffers().

Link: https://lore.kernel.org/linux-trace-kernel/20230906091837.3998020-1-zhengyejian1@huawei.com

Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-10-03 19:02:06 -04:00
Linus Torvalds 99214f6778 Tracing fixes for 6.6:
- Add missing LOCKDOWN checks for eventfs callers
   When LOCKDOWN is active for tracing, it causes inconsistent state
   when some functions succeed and others fail.
 
 - Use dput() to free the top level eventfs descriptor
   There was a race between accesses and freeing it.
 
 - Fix a long standing bug that eventfs exposed due to changing timings
   by dynamically creating files. That is, If a event file is opened
   for an instance, there's nothing preventing the instance from being
   removed which will make accessing the files cause use-after-free bugs.
 
 - Fix a ring buffer race that happens when iterating over the ring
   buffer while writers are active. Check to make sure not to read
   the event meta data if it's beyond the end of the ring buffer sub buffer.
 
 - Fix the print trigger that disappeared because the test to create it
   was looking for the event dir field being filled, but now it has the
   "ef" field filled for the eventfs structure.
 
 - Remove the unused "dir" field from the event structure.
 
 - Fix the order of the trace_dynamic_info as it had it backwards for the
   offset and len fields for which one was for which endianess.
 
 - Fix NULL pointer dereference with eventfs_remove_rec()
   If an allocation fails in one of the eventfs_add_*() functions,
   the caller of it in event_subsystem_dir() or event_create_dir()
   assigns the result to the structure. But it's assigning the ERR_PTR
   and not NULL. This was passed to eventfs_remove_rec() which expects
   either a good pointer or a NULL, not ERR_PTR. The fix is to not
   assign the ERR_PTR to the structure, but to keep it NULL on error.
 
 - Fix list_for_each_rcu() to use list_for_each_srcu() in
   dcache_dir_open_wrapper(). One iteration of the code used RCU
   but because it had to call sleepable code, it had to be changed
   to use SRCU, but one of the iterations was missed.
 
 - Fix synthetic event print function to use "as_u64" instead of
   passing in a pointer to the union. To fix big/little endian issues,
   the u64 that represented several types was turned into a union to
   define the types properly.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZQCvoBQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qtgrAP9MiYiCMU+90oJ+61DFchbs3y7BNidP
 s3lLRDUMJ935NQD/SSAm54PqWb+YXMpD7m9+3781l6xqwfabBMXNaEl+FwA=
 =tlZu
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing fixes from Steven Rostedt:

 - Add missing LOCKDOWN checks for eventfs callers

   When LOCKDOWN is active for tracing, it causes inconsistent state
   when some functions succeed and others fail.

 - Use dput() to free the top level eventfs descriptor

   There was a race between accesses and freeing it.

 - Fix a long standing bug that eventfs exposed due to changing timings
   by dynamically creating files. That is, If a event file is opened for
   an instance, there's nothing preventing the instance from being
   removed which will make accessing the files cause use-after-free
   bugs.

 - Fix a ring buffer race that happens when iterating over the ring
   buffer while writers are active. Check to make sure not to read the
   event meta data if it's beyond the end of the ring buffer sub buffer.

 - Fix the print trigger that disappeared because the test to create it
   was looking for the event dir field being filled, but now it has the
   "ef" field filled for the eventfs structure.

 - Remove the unused "dir" field from the event structure.

 - Fix the order of the trace_dynamic_info as it had it backwards for
   the offset and len fields for which one was for which endianess.

 - Fix NULL pointer dereference with eventfs_remove_rec()

   If an allocation fails in one of the eventfs_add_*() functions, the
   caller of it in event_subsystem_dir() or event_create_dir() assigns
   the result to the structure. But it's assigning the ERR_PTR and not
   NULL. This was passed to eventfs_remove_rec() which expects either a
   good pointer or a NULL, not ERR_PTR. The fix is to not assign the
   ERR_PTR to the structure, but to keep it NULL on error.

 - Fix list_for_each_rcu() to use list_for_each_srcu() in
   dcache_dir_open_wrapper(). One iteration of the code used RCU but
   because it had to call sleepable code, it had to be changed to use
   SRCU, but one of the iterations was missed.

 - Fix synthetic event print function to use "as_u64" instead of passing
   in a pointer to the union. To fix big/little endian issues, the u64
   that represented several types was turned into a union to define the
   types properly.

* tag 'trace-v6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  eventfs: Fix the NULL pointer dereference bug in eventfs_remove_rec()
  tracefs/eventfs: Use list_for_each_srcu() in dcache_dir_open_wrapper()
  tracing/synthetic: Print out u64 values properly
  tracing/synthetic: Fix order of struct trace_dynamic_info
  selftests/ftrace: Fix dependencies for some of the synthetic event tests
  tracing: Remove unused trace_event_file dir field
  tracing: Use the new eventfs descriptor for print trigger
  ring-buffer: Do not attempt to read past "commit"
  tracefs/eventfs: Free top level files on removal
  ring-buffer: Avoid softlockup in ring_buffer_resize()
  tracing: Have event inject files inc the trace array ref count
  tracing: Have option files inc the trace array ref count
  tracing: Have current_trace inc the trace array ref count
  tracing: Have tracing_max_latency inc the trace array ref count
  tracing: Increase trace array ref count on enable and filter files
  tracefs/eventfs: Use dput to free the toplevel events directory
  tracefs/eventfs: Add missing lockdown checks
  tracefs: Add missing lockdown check to tracefs_create_dir()
2023-09-13 11:30:11 -07:00