Commit Graph

447 Commits

Author SHA1 Message Date
Linus Torvalds 902861e34c - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory.  Series
   "implement "memmap on memory" feature on s390".
 
 - More folio conversions from Matthew Wilcox in the series
 
 	"Convert memcontrol charge moving to use folios"
 	"mm: convert mm counter to take a folio"
 
 - Chengming Zhou has optimized zswap's rbtree locking, providing
   significant reductions in system time and modest but measurable
   reductions in overall runtimes.  The series is "mm/zswap: optimize the
   scalability of zswap rb-tree".
 
 - Chengming Zhou has also provided the series "mm/zswap: optimize zswap
   lru list" which provides measurable runtime benefits in some
   swap-intensive situations.
 
 - And Chengming Zhou further optimizes zswap in the series "mm/zswap:
   optimize for dynamic zswap_pools".  Measured improvements are modest.
 
 - zswap cleanups and simplifications from Yosry Ahmed in the series "mm:
   zswap: simplify zswap_swapoff()".
 
 - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
   contributed several DAX cleanups as well as adding a sysfs tunable to
   control the memmap_on_memory setting when the dax device is hotplugged
   as system memory.
 
 - Johannes Weiner has added the large series "mm: zswap: cleanups",
   which does that.
 
 - More DAMON work from SeongJae Park in the series
 
 	"mm/damon: make DAMON debugfs interface deprecation unignorable"
 	"selftests/damon: add more tests for core functionalities and corner cases"
 	"Docs/mm/damon: misc readability improvements"
 	"mm/damon: let DAMOS feeds and tame/auto-tune itself"
 
 - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
   extension" Rakie Kim has developed a new mempolicy interleaving policy
   wherein we allocate memory across nodes in a weighted fashion rather
   than uniformly.  This is beneficial in heterogeneous memory environments
   appearing with CXL.
 
 - Christophe Leroy has contributed some cleanup and consolidation work
   against the ARM pagetable dumping code in the series "mm: ptdump:
   Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
 
 - Luis Chamberlain has added some additional xarray selftesting in the
   series "test_xarray: advanced API multi-index tests".
 
 - Muhammad Usama Anjum has reworked the selftest code to make its
   human-readable output conform to the TAP ("Test Anything Protocol")
   format.  Amongst other things, this opens up the use of third-party
   tools to parse and process out selftesting results.
 
 - Ryan Roberts has added fork()-time PTE batching of THP ptes in the
   series "mm/memory: optimize fork() with PTE-mapped THP".  Mainly
   targeted at arm64, this significantly speeds up fork() when the process
   has a large number of pte-mapped folios.
 
 - David Hildenbrand also gets in on the THP pte batching game in his
   series "mm/memory: optimize unmap/zap with PTE-mapped THP".  It
   implements batching during munmap() and other pte teardown situations.
   The microbenchmark improvements are nice.
 
 - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan
   Roberts further utilizes arm's pte's contiguous bit ("contpte
   mappings").  Kernel build times on arm64 improved nicely.  Ryan's series
   "Address some contpte nits" provides some followup work.
 
 - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
   fixed an obscure hugetlb race which was causing unnecessary page faults.
   He has also added a reproducer under the selftest code.
 
 - In the series "selftests/mm: Output cleanups for the compaction test",
   Mark Brown did what the title claims.
 
 - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring".
 
 - Even more zswap material from Nhat Pham.  The series "fix and extend
   zswap kselftests" does as claimed.
 
 - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
   regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in
   our handling of DAX on archiecctures which have virtually aliasing data
   caches.  The arm architecture is the main beneficiary.
 
 - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic
   improvements in worst-case mmap_lock hold times during certain
   userfaultfd operations.
 
 - Some page_owner enhancements and maintenance work from Oscar Salvador
   in his series
 
 	"page_owner: print stacks and their outstanding allocations"
 	"page_owner: Fixup and cleanup"
 
 - Uladzislau Rezki has contributed some vmalloc scalability improvements
   in his series "Mitigate a vmap lock contention".  It realizes a 12x
   improvement for a certain microbenchmark.
 
 - Some kexec/crash cleanup work from Baoquan He in the series "Split
   crash out from kexec and clean up related config items".
 
 - Some zsmalloc maintenance work from Chengming Zhou in the series
 
 	"mm/zsmalloc: fix and optimize objects/page migration"
 	"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
 
 - Zi Yan has taught the MM to perform compaction on folios larger than
   order=0.  This a step along the path to implementaton of the merging of
   large anonymous folios.  The series is named "Enable >0 order folio
   memory compaction".
 
 - Christoph Hellwig has done quite a lot of cleanup work in the
   pagecache writeback code in his series "convert write_cache_pages() to
   an iterator".
 
 - Some modest hugetlb cleanups and speedups in Vishal Moola's series
   "Handle hugetlb faults under the VMA lock".
 
 - Zi Yan has changed the page splitting code so we can split huge pages
   into sizes other than order-0 to better utilize large folios.  The
   series is named "Split a folio to any lower order folios".
 
 - David Hildenbrand has contributed the series "mm: remove
   total_mapcount()", a cleanup.
 
 - Matthew Wilcox has sought to improve the performance of bulk memory
   freeing in his series "Rearrange batched folio freeing".
 
 - Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
   provides large improvements in bootup times on large machines which are
   configured to use large numbers of hugetlb pages.
 
 - Matthew Wilcox's series "PageFlags cleanups" does that.
 
 - Qi Zheng's series "minor fixes and supplement for ptdesc" does that
   also.  S390 is affected.
 
 - Cleanups to our pagemap utility functions from Peter Xu in his series
   "mm/treewide: Replace pXd_large() with pXd_leaf()".
 
 - Nico Pache has fixed a few things with our hugepage selftests in his
   series "selftests/mm: Improve Hugepage Test Handling in MM Selftests".
 
 - Also, of course, many singleton patches to many things.  Please see
   the individual changelogs for details.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA
 joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx
 TMNhHfyiHYDTx/GAV9NXW84tasJSDgA=
 =TG55
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
   from hotplugged memory rather than only from main memory. Series
   "implement "memmap on memory" feature on s390".

 - More folio conversions from Matthew Wilcox in the series

	"Convert memcontrol charge moving to use folios"
	"mm: convert mm counter to take a folio"

 - Chengming Zhou has optimized zswap's rbtree locking, providing
   significant reductions in system time and modest but measurable
   reductions in overall runtimes. The series is "mm/zswap: optimize the
   scalability of zswap rb-tree".

 - Chengming Zhou has also provided the series "mm/zswap: optimize zswap
   lru list" which provides measurable runtime benefits in some
   swap-intensive situations.

 - And Chengming Zhou further optimizes zswap in the series "mm/zswap:
   optimize for dynamic zswap_pools". Measured improvements are modest.

 - zswap cleanups and simplifications from Yosry Ahmed in the series
   "mm: zswap: simplify zswap_swapoff()".

 - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
   contributed several DAX cleanups as well as adding a sysfs tunable to
   control the memmap_on_memory setting when the dax device is
   hotplugged as system memory.

 - Johannes Weiner has added the large series "mm: zswap: cleanups",
   which does that.

 - More DAMON work from SeongJae Park in the series

	"mm/damon: make DAMON debugfs interface deprecation unignorable"
	"selftests/damon: add more tests for core functionalities and corner cases"
	"Docs/mm/damon: misc readability improvements"
	"mm/damon: let DAMOS feeds and tame/auto-tune itself"

 - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
   extension" Rakie Kim has developed a new mempolicy interleaving
   policy wherein we allocate memory across nodes in a weighted fashion
   rather than uniformly. This is beneficial in heterogeneous memory
   environments appearing with CXL.

 - Christophe Leroy has contributed some cleanup and consolidation work
   against the ARM pagetable dumping code in the series "mm: ptdump:
   Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".

 - Luis Chamberlain has added some additional xarray selftesting in the
   series "test_xarray: advanced API multi-index tests".

 - Muhammad Usama Anjum has reworked the selftest code to make its
   human-readable output conform to the TAP ("Test Anything Protocol")
   format. Amongst other things, this opens up the use of third-party
   tools to parse and process out selftesting results.

 - Ryan Roberts has added fork()-time PTE batching of THP ptes in the
   series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
   targeted at arm64, this significantly speeds up fork() when the
   process has a large number of pte-mapped folios.

 - David Hildenbrand also gets in on the THP pte batching game in his
   series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
   implements batching during munmap() and other pte teardown
   situations. The microbenchmark improvements are nice.

 - And in the series "Transparent Contiguous PTEs for User Mappings"
   Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
   mappings"). Kernel build times on arm64 improved nicely. Ryan's
   series "Address some contpte nits" provides some followup work.

 - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
   fixed an obscure hugetlb race which was causing unnecessary page
   faults. He has also added a reproducer under the selftest code.

 - In the series "selftests/mm: Output cleanups for the compaction
   test", Mark Brown did what the title claims.

 - Kinsey Ho has added the series "mm/mglru: code cleanup and
   refactoring".

 - Even more zswap material from Nhat Pham. The series "fix and extend
   zswap kselftests" does as claimed.

 - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
   regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
   in our handling of DAX on archiecctures which have virtually aliasing
   data caches. The arm architecture is the main beneficiary.

 - Lokesh Gidra's series "per-vma locks in userfaultfd" provides
   dramatic improvements in worst-case mmap_lock hold times during
   certain userfaultfd operations.

 - Some page_owner enhancements and maintenance work from Oscar Salvador
   in his series

	"page_owner: print stacks and their outstanding allocations"
	"page_owner: Fixup and cleanup"

 - Uladzislau Rezki has contributed some vmalloc scalability
   improvements in his series "Mitigate a vmap lock contention". It
   realizes a 12x improvement for a certain microbenchmark.

 - Some kexec/crash cleanup work from Baoquan He in the series "Split
   crash out from kexec and clean up related config items".

 - Some zsmalloc maintenance work from Chengming Zhou in the series

	"mm/zsmalloc: fix and optimize objects/page migration"
	"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"

 - Zi Yan has taught the MM to perform compaction on folios larger than
   order=0. This a step along the path to implementaton of the merging
   of large anonymous folios. The series is named "Enable >0 order folio
   memory compaction".

 - Christoph Hellwig has done quite a lot of cleanup work in the
   pagecache writeback code in his series "convert write_cache_pages()
   to an iterator".

 - Some modest hugetlb cleanups and speedups in Vishal Moola's series
   "Handle hugetlb faults under the VMA lock".

 - Zi Yan has changed the page splitting code so we can split huge pages
   into sizes other than order-0 to better utilize large folios. The
   series is named "Split a folio to any lower order folios".

 - David Hildenbrand has contributed the series "mm: remove
   total_mapcount()", a cleanup.

 - Matthew Wilcox has sought to improve the performance of bulk memory
   freeing in his series "Rearrange batched folio freeing".

 - Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
   provides large improvements in bootup times on large machines which
   are configured to use large numbers of hugetlb pages.

 - Matthew Wilcox's series "PageFlags cleanups" does that.

 - Qi Zheng's series "minor fixes and supplement for ptdesc" does that
   also. S390 is affected.

 - Cleanups to our pagemap utility functions from Peter Xu in his series
   "mm/treewide: Replace pXd_large() with pXd_leaf()".

 - Nico Pache has fixed a few things with our hugepage selftests in his
   series "selftests/mm: Improve Hugepage Test Handling in MM
   Selftests".

 - Also, of course, many singleton patches to many things. Please see
   the individual changelogs for details.

* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
  mm/zswap: remove the memcpy if acomp is not sleepable
  crypto: introduce: acomp_is_async to expose if comp drivers might sleep
  memtest: use {READ,WRITE}_ONCE in memory scanning
  mm: prohibit the last subpage from reusing the entire large folio
  mm: recover pud_leaf() definitions in nopmd case
  selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
  selftests/mm: skip uffd hugetlb tests with insufficient hugepages
  selftests/mm: dont fail testsuite due to a lack of hugepages
  mm/huge_memory: skip invalid debugfs new_order input for folio split
  mm/huge_memory: check new folio order when split a folio
  mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
  mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
  mm: fix list corruption in put_pages_list
  mm: remove folio from deferred split list before uncharging it
  filemap: avoid unnecessary major faults in filemap_fault()
  mm,page_owner: drop unnecessary check
  mm,page_owner: check for null stack_record before bumping its refcount
  mm: swap: fix race between free_swap_and_cache() and swapoff()
  mm/treewide: align up pXd_leaf() retval across archs
  mm/treewide: drop pXd_large()
  ...
2024-03-14 17:43:30 -07:00
Vlastimil Babka 803de9000f mm, vmscan: prevent infinite loop for costly GFP_NOIO | __GFP_RETRY_MAYFAIL allocations
Sven reports an infinite loop in __alloc_pages_slowpath() for costly order
__GFP_RETRY_MAYFAIL allocations that are also GFP_NOIO.  Such combination
can happen in a suspend/resume context where a GFP_KERNEL allocation can
have __GFP_IO masked out via gfp_allowed_mask.

Quoting Sven:

1. try to do a "costly" allocation (order > PAGE_ALLOC_COSTLY_ORDER)
   with __GFP_RETRY_MAYFAIL set.

2. page alloc's __alloc_pages_slowpath tries to get a page from the
   freelist. This fails because there is nothing free of that costly
   order.

3. page alloc tries to reclaim by calling __alloc_pages_direct_reclaim,
   which bails out because a zone is ready to be compacted; it pretends
   to have made a single page of progress.

4. page alloc tries to compact, but this always bails out early because
   __GFP_IO is not set (it's not passed by the snd allocator, and even
   if it were, we are suspending so the __GFP_IO flag would be cleared
   anyway).

5. page alloc believes reclaim progress was made (because of the
   pretense in item 3) and so it checks whether it should retry
   compaction. The compaction retry logic thinks it should try again,
   because:
    a) reclaim is needed because of the early bail-out in item 4
    b) a zonelist is suitable for compaction

6. goto 2. indefinite stall.

(end quote)

The immediate root cause is confusing the COMPACT_SKIPPED returned from
__alloc_pages_direct_compact() (step 4) due to lack of __GFP_IO to be
indicating a lack of order-0 pages, and in step 5 evaluating that in
should_compact_retry() as a reason to retry, before incrementing and
limiting the number of retries.  There are however other places that
wrongly assume that compaction can happen while we lack __GFP_IO.

To fix this, introduce gfp_compaction_allowed() to abstract the __GFP_IO
evaluation and switch the open-coded test in try_to_compact_pages() to use
it.

Also use the new helper in:
- compaction_ready(), which will make reclaim not bail out in step 3, so
  there's at least one attempt to actually reclaim, even if chances are
  small for a costly order
- in_reclaim_compaction() which will make should_continue_reclaim()
  return false and we don't over-reclaim unnecessarily
- in __alloc_pages_slowpath() to set a local variable can_compact,
  which is then used to avoid retrying reclaim/compaction for costly
  allocations (step 5) if we can't compact and also to skip the early
  compaction attempt that we do in some cases

Link: https://lkml.kernel.org/r/20240221114357.13655-2-vbabka@suse.cz
Fixes: 3250845d05 ("Revert "mm, oom: prevent premature OOM killer invocation for high order request"")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Sven van Ashbrook <svenva@chromium.org>
Closes: https://lore.kernel.org/all/CAG-rBihs_xMKb3wrMO1%2B-%2Bp4fowP9oy1pa_OTkfxBzPUVOZF%2Bg@mail.gmail.com/
Tested-by: Karthikeyan Ramasubramanian <kramasub@chromium.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Curtis Malainey <cujomalainey@chromium.org>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Takashi Iwai <tiwai@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04 16:40:32 -08:00
Zi Yan 73318e2caf mm/compaction: optimize >0 order folio compaction with free page split.
During migration in a memory compaction, free pages are placed in an array
of page lists based on their order.  But the desired free page order
(i.e., the order of a source page) might not be always present, thus
leading to migration failures and premature compaction termination.  Split
a high order free pages when source migration page has a lower order to
increase migration successful rate.

Note: merging free pages when a migration fails and a lower order free
page is returned via compaction_free() is possible, but there is too much
work.  Since the free pages are not buddy pages, it is hard to identify
these free pages using existing PFN-based page merging algorithm.

Link: https://lkml.kernel.org/r/20240220183220.1451315-5-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Adam Manzanares <a.manzanares@samsung.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:33 -08:00
Zi Yan 733aea0b3a mm/compaction: add support for >0 order folio memory compaction.
Before last commit, memory compaction only migrates order-0 folios and
skips >0 order folios.  Last commit splits all >0 order folios during
compaction.  This commit migrates >0 order folios during compaction by
keeping isolated free pages at their original size without splitting them
into order-0 pages and using them directly during migration process.

What is different from the prior implementation:
1. All isolated free pages are kept in a NR_PAGE_ORDERS array of page
   lists, where each page list stores free pages in the same order.
2. All free pages are not post_alloc_hook() processed nor buddy pages,
   although their orders are stored in first page's private like buddy
   pages.
3. During migration, in new page allocation time (i.e., in
   compaction_alloc()), free pages are then processed by post_alloc_hook().
   When migration fails and a new page is returned (i.e., in
   compaction_free()), free pages are restored by reversing the
   post_alloc_hook() operations using newly added
   free_pages_prepare_fpi_none().

Step 3 is done for a latter optimization that splitting and/or merging
free pages during compaction becomes easier.

Note: without splitting free pages, compaction can end prematurely due to
migration will return -ENOMEM even if there is free pages.  This happens
when no order-0 free page exist and compaction_alloc() return NULL.

Link: https://lkml.kernel.org/r/20240220183220.1451315-4-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Adam Manzanares <a.manzanares@samsung.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:33 -08:00
Zi Yan ee6f62fd34 mm/compaction: enable compacting >0 order folios.
migrate_pages() supports >0 order folio migration and during compaction,
even if compaction_alloc() cannot provide >0 order free pages,
migrate_pages() can split the source page and try to migrate the base
pages from the split.  It can be a baseline and start point for adding
support for compacting >0 order folios.

Link: https://lkml.kernel.org/r/20240220183220.1451315-3-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Suggested-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Adam Manzanares <a.manzanares@samsung.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:33 -08:00
Kefeng Wang f6f3f27597 mm: compaction: early termination in compact_nodes()
No need to continue try compact memory if pending fatal signal, allow loop
termination earlier in compact_nodes().

The existing fatal_signal_pending() check does make compact_zone()
break out of the while loop, but it still enters the next zone/next
nid, and some unnecessary functions(eg, lru_add_drain) are called. 
There was no observable benefit from the new test, it is just found
from code inspection when refactoring compact_node().

Link: https://lkml.kernel.org/r/20240208022508.1771534-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:31 -08:00
Baolin Wang 1883e8ac96 mm: compaction: limit the suitable target page order to be less than cc->order
It can not improve the fragmentation if we isolate the target free pages
exceeding cc->order, especially when the cc->order is less than
pageblock_order.  For example, suppose the pageblock_order is MAX_ORDER
(size is 4M) and cc->order is 2M THP size, we should not isolate other 2M
free pages to be the migration target, which can not improve the
fragmentation.

Moreover this is also applicable for large folio compaction.

Link: https://lkml.kernel.org/r/afcd9377351c259df7a25a388a4a0d5862b986f4.1705928395.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:16 -08:00
Kefeng Wang 3e40b3f417 mm: compaction: refactor compact_node()
Refactor compact_node() to handle both proactive and synchronous compact
memory, which cleanups code a bit.

Link: https://lkml.kernel.org/r/20240208013607.1731817-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:57 -08:00
Baolin Wang ab755bf424 mm: compaction: update the cc->nr_migratepages when allocating or freeing the freepages
Currently we will use 'cc->nr_freepages >= cc->nr_migratepages' comparison
to ensure that enough freepages are isolated in isolate_freepages(),
however it just decreases the cc->nr_freepages without updating
cc->nr_migratepages in compaction_alloc(), which will waste more CPU
cycles and cause too many freepages to be isolated.

So we should also update the cc->nr_migratepages when allocating or
freeing the freepages to avoid isolating excess freepages.  And I can see
fewer free pages are scanned and isolated when running thpcompact on my
Arm64 server:

                                       k6.7         k6.7_patched
Ops Compaction pages isolated      120692036.00   118160797.00
Ops Compaction migrate scanned     131210329.00   154093268.00
Ops Compaction free scanned       1090587971.00  1080632536.00
Ops Compact scan efficiency               12.03          14.26

Moreover, I did not see an obvious latency improvements, this is likely
because isolating freepages is not the bottleneck in the thpcompact test
case.

                              k6.7                  k6.7_patched
Amean     fault-both-1      1089.76 (   0.00%)     1080.16 *   0.88%*
Amean     fault-both-3      1616.48 (   0.00%)     1636.65 *  -1.25%*
Amean     fault-both-5      2266.66 (   0.00%)     2219.20 *   2.09%*
Amean     fault-both-7      2909.84 (   0.00%)     2801.90 *   3.71%*
Amean     fault-both-12     4861.26 (   0.00%)     4733.25 *   2.63%*
Amean     fault-both-18     7351.11 (   0.00%)     6950.51 *   5.45%*
Amean     fault-both-24     9059.30 (   0.00%)     9159.99 *  -1.11%*
Amean     fault-both-30    10685.68 (   0.00%)    11399.02 *  -6.68%*

Link: https://lkml.kernel.org/r/6440493f18da82298152b6305d6b41c2962a3ce6.1708409245.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:50 -08:00
Linus Torvalds 09d1c6a80f Generic:
- Use memdup_array_user() to harden against overflow.
 
 - Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures.
 
 - Clean up Kconfigs that all KVM architectures were selecting
 
 - New functionality around "guest_memfd", a new userspace API that
   creates an anonymous file and returns a file descriptor that refers
   to it.  guest_memfd files are bound to their owning virtual machine,
   cannot be mapped, read, or written by userspace, and cannot be resized.
   guest_memfd files do however support PUNCH_HOLE, which can be used to
   switch a memory area between guest_memfd and regular anonymous memory.
 
 - New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
   per-page attributes for a given page of guest memory; right now the
   only attribute is whether the guest expects to access memory via
   guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
   TDX or ARM64 pKVM is checked by firmware or hypervisor that guarantees
   confidentiality (AMD PSP, Intel TDX module, or EL2 in the case of pKVM).
 
 x86:
 
 - Support for "software-protected VMs" that can use the new guest_memfd
   and page attributes infrastructure.  This is mostly useful for testing,
   since there is no pKVM-like infrastructure to provide a meaningfully
   reduced TCB.
 
 - Fix a relatively benign off-by-one error when splitting huge pages during
   CLEAR_DIRTY_LOG.
 
 - Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf
   TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE.
 
 - Use more generic lockdep assertions in paths that don't actually care
   about whether the caller is a reader or a writer.
 
 - let Xen guests opt out of having PV clock reported as "based on a stable TSC",
   because some of them don't expect the "TSC stable" bit (added to the pvclock
   ABI by KVM, but never set by Xen) to be set.
 
 - Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL.
 
 - Advertise flush-by-ASID support for nSVM unconditionally, as KVM always
   flushes on nested transitions, i.e. always satisfies flush requests.  This
   allows running bleeding edge versions of VMware Workstation on top of KVM.
 
 - Sanity check that the CPU supports flush-by-ASID when enabling SEV support.
 
 - On AMD machines with vNMI, always rely on hardware instead of intercepting
   IRET in some cases to detect unmasking of NMIs
 
 - Support for virtualizing Linear Address Masking (LAM)
 
 - Fix a variety of vPMU bugs where KVM fail to stop/reset counters and other state
   prior to refreshing the vPMU model.
 
 - Fix a double-overflow PMU bug by tracking emulated counter events using a
   dedicated field instead of snapshotting the "previous" counter.  If the
   hardware PMC count triggers overflow that is recognized in the same VM-Exit
   that KVM manually bumps an event count, KVM would pend PMIs for both the
   hardware-triggered overflow and for KVM-triggered overflow.
 
 - Turn off KVM_WERROR by default for all configs so that it's not
   inadvertantly enabled by non-KVM developers, which can be problematic for
   subsystems that require no regressions for W=1 builds.
 
 - Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
   "features".
 
 - Don't force a masterclock update when a vCPU synchronizes to the current TSC
   generation, as updating the masterclock can cause kvmclock's time to "jump"
   unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
 
 - Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
   partly as a super minor optimization, but mostly to make KVM play nice with
   position independent executable builds.
 
 - Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
   CONFIG_HYPERV as a minor optimization, and to self-document the code.
 
 - Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
   at build time.
 
 ARM64:
 
 - LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB
   base granule sizes. Branch shared with the arm64 tree.
 
 - Large Fine-Grained Trap rework, bringing some sanity to the
   feature, although there is more to come. This comes with
   a prefix branch shared with the arm64 tree.
 
 - Some additional Nested Virtualization groundwork, mostly
   introducing the NV2 VNCR support and retargetting the NV
   support to that version of the architecture.
 
 - A small set of vgic fixes and associated cleanups.
 
 Loongarch:
 
 - Optimization for memslot hugepage checking
 
 - Cleanup and fix some HW/SW timer issues
 
 - Add LSX/LASX (128bit/256bit SIMD) support
 
 RISC-V:
 
 - KVM_GET_REG_LIST improvement for vector registers
 
 - Generate ISA extension reg_list using macros in get-reg-list selftest
 
 - Support for reporting steal time along with selftest
 
 s390:
 
 - Bugfixes
 
 Selftests:
 
 - Fix an annoying goof where the NX hugepage test prints out garbage
   instead of the magic token needed to run the test.
 
 - Fix build errors when a header is delete/moved due to a missing flag
   in the Makefile.
 
 - Detect if KVM bugged/killed a selftest's VM and print out a helpful
   message instead of complaining that a random ioctl() failed.
 
 - Annotate the guest printf/assert helpers with __printf(), and fix the
   various bugs that were lurking due to lack of said annotation.
 
 There are two non-KVM patches buried in the middle of guest_memfd support:
 
   fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
   mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
 
 The first is small and mostly suggested-by Christian Brauner; the second
 a bit less so but it was written by an mm person (Vlastimil Babka).
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmWcMWkUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroO15gf/WLmmg3SET6Uzw9iEq2xo28831ZA+
 6kpILfIDGKozV5safDmMvcInlc/PTnqOFrsKyyN4kDZ+rIJiafJdg/loE0kPXBML
 wdR+2ix5kYI1FucCDaGTahskBDz8Lb/xTpwGg9BFLYFNmuUeHc74o6GoNvr1uliE
 4kLZL2K6w0cSMPybUD+HqGaET80ZqPwecv+s1JL+Ia0kYZJONJifoHnvOUJ7DpEi
 rgudVdgzt3EPjG0y1z6MjvDBXTCOLDjXajErlYuZD3Ej8N8s59Dh2TxOiDNTLdP4
 a4zjRvDmgyr6H6sz+upvwc7f4M4p+DBvf+TkWF54mbeObHUYliStqURIoA==
 =66Ws
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "Generic:

   - Use memdup_array_user() to harden against overflow.

   - Unconditionally advertise KVM_CAP_DEVICE_CTRL for all
     architectures.

   - Clean up Kconfigs that all KVM architectures were selecting

   - New functionality around "guest_memfd", a new userspace API that
     creates an anonymous file and returns a file descriptor that refers
     to it. guest_memfd files are bound to their owning virtual machine,
     cannot be mapped, read, or written by userspace, and cannot be
     resized. guest_memfd files do however support PUNCH_HOLE, which can
     be used to switch a memory area between guest_memfd and regular
     anonymous memory.

   - New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
     per-page attributes for a given page of guest memory; right now the
     only attribute is whether the guest expects to access memory via
     guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
     TDX or ARM64 pKVM is checked by firmware or hypervisor that
     guarantees confidentiality (AMD PSP, Intel TDX module, or EL2 in
     the case of pKVM).

  x86:

   - Support for "software-protected VMs" that can use the new
     guest_memfd and page attributes infrastructure. This is mostly
     useful for testing, since there is no pKVM-like infrastructure to
     provide a meaningfully reduced TCB.

   - Fix a relatively benign off-by-one error when splitting huge pages
     during CLEAR_DIRTY_LOG.

   - Fix a bug where KVM could incorrectly test-and-clear dirty bits in
     non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with
     a non-huge SPTE.

   - Use more generic lockdep assertions in paths that don't actually
     care about whether the caller is a reader or a writer.

   - let Xen guests opt out of having PV clock reported as "based on a
     stable TSC", because some of them don't expect the "TSC stable" bit
     (added to the pvclock ABI by KVM, but never set by Xen) to be set.

   - Revert a bogus, made-up nested SVM consistency check for
     TLB_CONTROL.

   - Advertise flush-by-ASID support for nSVM unconditionally, as KVM
     always flushes on nested transitions, i.e. always satisfies flush
     requests. This allows running bleeding edge versions of VMware
     Workstation on top of KVM.

   - Sanity check that the CPU supports flush-by-ASID when enabling SEV
     support.

   - On AMD machines with vNMI, always rely on hardware instead of
     intercepting IRET in some cases to detect unmasking of NMIs

   - Support for virtualizing Linear Address Masking (LAM)

   - Fix a variety of vPMU bugs where KVM fail to stop/reset counters
     and other state prior to refreshing the vPMU model.

   - Fix a double-overflow PMU bug by tracking emulated counter events
     using a dedicated field instead of snapshotting the "previous"
     counter. If the hardware PMC count triggers overflow that is
     recognized in the same VM-Exit that KVM manually bumps an event
     count, KVM would pend PMIs for both the hardware-triggered overflow
     and for KVM-triggered overflow.

   - Turn off KVM_WERROR by default for all configs so that it's not
     inadvertantly enabled by non-KVM developers, which can be
     problematic for subsystems that require no regressions for W=1
     builds.

   - Advertise all of the host-supported CPUID bits that enumerate
     IA32_SPEC_CTRL "features".

   - Don't force a masterclock update when a vCPU synchronizes to the
     current TSC generation, as updating the masterclock can cause
     kvmclock's time to "jump" unexpectedly, e.g. when userspace
     hotplugs a pre-created vCPU.

   - Use RIP-relative address to read kvm_rebooting in the VM-Enter
     fault paths, partly as a super minor optimization, but mostly to
     make KVM play nice with position independent executable builds.

   - Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
     CONFIG_HYPERV as a minor optimization, and to self-document the
     code.

   - Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV
     "emulation" at build time.

  ARM64:

   - LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB base
     granule sizes. Branch shared with the arm64 tree.

   - Large Fine-Grained Trap rework, bringing some sanity to the
     feature, although there is more to come. This comes with a prefix
     branch shared with the arm64 tree.

   - Some additional Nested Virtualization groundwork, mostly
     introducing the NV2 VNCR support and retargetting the NV support to
     that version of the architecture.

   - A small set of vgic fixes and associated cleanups.

  Loongarch:

   - Optimization for memslot hugepage checking

   - Cleanup and fix some HW/SW timer issues

   - Add LSX/LASX (128bit/256bit SIMD) support

  RISC-V:

   - KVM_GET_REG_LIST improvement for vector registers

   - Generate ISA extension reg_list using macros in get-reg-list
     selftest

   - Support for reporting steal time along with selftest

  s390:

   - Bugfixes

  Selftests:

   - Fix an annoying goof where the NX hugepage test prints out garbage
     instead of the magic token needed to run the test.

   - Fix build errors when a header is delete/moved due to a missing
     flag in the Makefile.

   - Detect if KVM bugged/killed a selftest's VM and print out a helpful
     message instead of complaining that a random ioctl() failed.

   - Annotate the guest printf/assert helpers with __printf(), and fix
     the various bugs that were lurking due to lack of said annotation"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (185 commits)
  x86/kvm: Do not try to disable kvmclock if it was not enabled
  KVM: x86: add missing "depends on KVM"
  KVM: fix direction of dependency on MMU notifiers
  KVM: introduce CONFIG_KVM_COMMON
  KVM: arm64: Add missing memory barriers when switching to pKVM's hyp pgd
  KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache
  RISC-V: KVM: selftests: Add get-reg-list test for STA registers
  RISC-V: KVM: selftests: Add steal_time test support
  RISC-V: KVM: selftests: Add guest_sbi_probe_extension
  RISC-V: KVM: selftests: Move sbi_ecall to processor.c
  RISC-V: KVM: Implement SBI STA extension
  RISC-V: KVM: Add support for SBI STA registers
  RISC-V: KVM: Add support for SBI extension registers
  RISC-V: KVM: Add SBI STA info to vcpu_arch
  RISC-V: KVM: Add steal-update vcpu request
  RISC-V: KVM: Add SBI STA extension skeleton
  RISC-V: paravirt: Implement steal-time support
  RISC-V: Add SBI STA extension definitions
  RISC-V: paravirt: Add skeleton for pv-time support
  RISC-V: KVM: Fix indentation in kvm_riscv_vcpu_set_reg_csr()
  ...
2024-01-17 13:03:37 -08:00
Kirill A. Shutemov 5e0a760b44 mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
commit 23baf831a3 ("mm, treewide: redefine MAX_ORDER sanely") has
changed the definition of MAX_ORDER to be inclusive.  This has caused
issues with code that was not yet upstream and depended on the previous
definition.

To draw attention to the altered meaning of the define, rename MAX_ORDER
to MAX_PAGE_ORDER.

Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-08 15:27:15 -08:00
Kirill A. Shutemov fd37721803 mm, treewide: introduce NR_PAGE_ORDERS
NR_PAGE_ORDERS defines the number of page orders supported by the page
allocator, ranging from 0 to MAX_ORDER, MAX_ORDER + 1 in total.

NR_PAGE_ORDERS assists in defining arrays of page orders and allows for
more natural iteration over them.

[kirill.shutemov@linux.intel.com: fixup for kerneldoc warning]
  Link: https://lkml.kernel.org/r/20240101111512.7empzyifq7kxtzk3@box
Link: https://lkml.kernel.org/r/20231228144704.14033-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-08 15:27:15 -08:00
Barry Song d19b1a1797 mm: compaction: avoid fast_isolate_freepages blindly choose improper pageblock
Testing shows fast_isolate_freepages can blindly choose an unsuitable
pageblock from time to time particularly while the min mark is used from
XXX path:

 if (!page) {
         cc->fast_search_fail++;
         if (scan_start) {
                 /*
                  * Use the highest PFN found above min. If one was
                  * not found, be pessimistic for direct compaction
                  * and use the min mark.
                  */
                 if (highest >= min_pfn) {
                         page = pfn_to_page(highest);
                         cc->free_pfn = highest;
                 } else {
                         if (cc->direct_compaction && pfn_valid(min_pfn)) { /* XXX */
                                 page = pageblock_pfn_to_page(min_pfn,
                                         min(pageblock_end_pfn(min_pfn),
                                             zone_end_pfn(cc->zone)),
                                         cc->zone);
                                 cc->free_pfn = min_pfn;
                         }
                 }
         }
 }

The reason is that no code is doing any check on the min_pfn
 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));

In contrast, slow path of isolate_freepages() is always skipping
unsuitable pageblocks in a decent way.

This issue doesn't happen quite often.  When running 25 machines with
16GiB memory for one night, most of them can hit this unexpected code
path.  However the frequency isn't like many times per second.  It might
be one time in a couple of hours.  Thus, it is very hard to measure the
visible performance impact in my machines though the affection of choosing
the unsuitable migration_target should be negative in theory.

I feel it's still worth fixing this to at least make the code
theoretically self-explanatory as it is quite odd an unsuitable
migration_target can be still migration_target.

Link: https://lkml.kernel.org/r/20231206110054.61617-1-v-songbaohua@oppo.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reported-by: Zhanyuan Hu <huzhanyuan@oppo.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12 10:57:08 -08:00
Paolo Bonzini 6c370dc653 Merge branch 'kvm-guestmemfd' into HEAD
Introduce several new KVM uAPIs to ultimately create a guest-first memory
subsystem within KVM, a.k.a. guest_memfd.  Guest-first memory allows KVM
to provide features, enhancements, and optimizations that are kludgly
or outright impossible to implement in a generic memory subsystem.

The core KVM ioctl() for guest_memfd is KVM_CREATE_GUEST_MEMFD, which
similar to the generic memfd_create(), creates an anonymous file and
returns a file descriptor that refers to it.  Again like "regular"
memfd files, guest_memfd files live in RAM, have volatile storage,
and are automatically released when the last reference is dropped.
The key differences between memfd files (and every other memory subystem)
is that guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
convert a guest memory area between the shared and guest-private states.

A second KVM ioctl(), KVM_SET_MEMORY_ATTRIBUTES, allows userspace to
specify attributes for a given page of guest memory.  In the long term,
it will likely be extended to allow userspace to specify per-gfn RWX
protections, including allowing memory to be writable in the guest
without it also being writable in host userspace.

The immediate and driving use case for guest_memfd are Confidential
(CoCo) VMs, specifically AMD's SEV-SNP, Intel's TDX, and KVM's own pKVM.
For such use cases, being able to map memory into KVM guests without
requiring said memory to be mapped into the host is a hard requirement.
While SEV+ and TDX prevent untrusted software from reading guest private
data by encrypting guest memory, pKVM provides confidentiality and
integrity *without* relying on memory encryption.  In addition, with
SEV-SNP and especially TDX, accessing guest private memory can be fatal
to the host, i.e. KVM must be prevent host userspace from accessing
guest memory irrespective of hardware behavior.

Long term, guest_memfd may be useful for use cases beyond CoCo VMs,
for example hardening userspace against unintentional accesses to guest
memory.  As mentioned earlier, KVM's ABI uses userspace VMA protections to
define the allow guest protection (with an exception granted to mapping
guest memory executable), and similarly KVM currently requires the guest
mapping size to be a strict subset of the host userspace mapping size.
Decoupling the mappings sizes would allow userspace to precisely map
only what is needed and with the required permissions, without impacting
guest performance.

A guest-first memory subsystem also provides clearer line of sight to
things like a dedicated memory pool (for slice-of-hardware VMs) and
elimination of "struct page" (for offload setups where userspace _never_
needs to DMA from or into guest memory).

guest_memfd is the result of 3+ years of development and exploration;
taking on memory management responsibilities in KVM was not the first,
second, or even third choice for supporting CoCo VMs.  But after many
failed attempts to avoid KVM-specific backing memory, and looking at
where things ended up, it is quite clear that of all approaches tried,
guest_memfd is the simplest, most robust, and most extensible, and the
right thing to do for KVM and the kernel at-large.

The "development cycle" for this version is going to be very short;
ideally, next week I will merge it as is in kvm/next, taking this through
the KVM tree for 6.8 immediately after the end of the merge window.
The series is still based on 6.6 (plus KVM changes for 6.7) so it
will require a small fixup for changes to get_file_rcu() introduced in
6.7 by commit 0ede61d858 ("file: convert to SLAB_TYPESAFE_BY_RCU").
The fixup will be done as part of the merge commit, and most of the text
above will become the commit message for the merge.

Pending post-merge work includes:
- hugepage support
- looking into using the restrictedmem framework for guest memory
- introducing a testing mechanism to poison memory, possibly using
  the same memory attributes introduced here
- SNP and TDX support

There are two non-KVM patches buried in the middle of this series:

  fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
  mm: Add AS_UNMOVABLE to mark mapping as completely unmovable

The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
2023-11-14 08:31:31 -05:00
Sean Christopherson 0003e2a414 mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
Add an "unmovable" flag for mappings that cannot be migrated under any
circumstance.  KVM will use the flag for its upcoming GUEST_MEMFD support,
which will not support compaction/migration, at least not in the
foreseeable future.

Test AS_UNMOVABLE under folio lock as already done for the async
compaction/dirty folio case, as the mapping can be removed by truncation
while compaction is running.  To avoid having to lock every folio with a
mapping, assume/require that unmovable mappings are also unevictable, and
have mapping_set_unmovable() also set AS_UNEVICTABLE.

Cc: Matthew Wilcox <willy@infradead.org>
Co-developed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-13 05:31:38 -05:00
Kemeng Shi e19a3f595a mm/compaction: factor out code to test if we should run compaction for target order
We always do zone_watermark_ok check and compaction_suitable check
together to test if compaction for target order should be ran.  Factor
these code out to remove repeat code.

Link: https://lkml.kernel.org/r/20230901155141.249860-7-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:19 -07:00
Kemeng Shi 9cc17ede51 mm/compaction: improve comment of is_via_compact_memory
We do proactive compaction with order == -1 via
1. /proc/sys/vm/compact_memory
2. /sys/devices/system/node/nodex/compact
3. /proc/sys/vm/compaction_proactiveness
Add missed situation in which order == -1.

Link: https://lkml.kernel.org/r/20230901155141.249860-6-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:19 -07:00
Kemeng Shi 8df4e28c64 mm/compaction: remove repeat compact_blockskip_flush check in reset_isolation_suitable
We have compact_blockskip_flush check in __reset_isolation_suitable, just
remove repeat check before __reset_isolation_suitable in
compact_blockskip_flush.

Link: https://lkml.kernel.org/r/20230901155141.249860-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:19 -07:00
Kemeng Shi 3da0272a4c mm/compaction: correctly return failure with bogus compound_order in strict mode
In strict mode, we should return 0 if there is any hole in pageblock.  If
we successfully isolated pages at beginning at pageblock and then have a
bogus compound_order outside pageblock in next page.  We will abort search
loop with blockpfn > end_pfn.  Although we will limit blockpfn to end_pfn,
we will treat it as a successful isolation in strict mode as blockpfn is
not < end_pfn and return partial isolated pages.  Then
isolate_freepages_range may success unexpectly with hole in isolated
range.

Link: https://lkml.kernel.org/r/20230901155141.249860-4-shikemeng@huaweicloud.com
Fixes: 9fcd6d2e05 ("mm, compaction: skip compound pages by order in free scanner")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:19 -07:00
Kemeng Shi 4c17989116 mm/compaction: call list_is_{first}/{last} more intuitively in move_freelist_{head}/{tail}
We use move_freelist_head after list_for_each_entry_reverse to skip recent
pages.  And there is no need to do actual move if all freepages are
searched in list_for_each_entry_reverse, e.g.  freepage point to first
page in freelist.  It's more intuitively to call list_is_first with list
entry as the first argument and list head as the second argument to check
if list entry is the first list entry instead of call list_is_last with
list entry and list head passed in reverse.

Similarly, call list_is_last in move_freelist_tail is more intuitively.

Link: https://lkml.kernel.org/r/20230901155141.249860-3-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:19 -07:00
Kemeng Shi bbefa0fc04 mm/compaction: use correct list in move_freelist_{head}/{tail}
Patch series "Fixes and cleanups to compaction", v3.

This is a series to do fix and clean up to compaction.
Patch 1-2 fix and clean up freepage list operation.
Patch 3-4 fix and clean up isolation of freepages
Patch 7 factor code to check if compaction is needed for allocation order.

More details can be found in respective patches. 


This patch (of 6):

The freepage is chained with buddy_list in freelist head. Use buddy_list
instead of lru to correct the list operation.

Link: https://lkml.kernel.org/r/20230901155141.249860-1-shikemeng@huaweicloud.com
Link: https://lkml.kernel.org/r/20230901155141.249860-2-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:19 -07:00
Andrew Morton 5994eabf3b merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes 2023-08-21 14:26:20 -07:00
Kemeng Shi 8fbb92bd10 mm/compaction: remove unused parameter pgdata of fragmentation_score_wmark
Parameter pgdat is not used in fragmentation_score_wmark. Just remove it.

Link: https://lkml.kernel.org/r/20230809094910.3092446-1-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:50 -07:00
Kemeng Shi 18c59d58ba mm/compaction: only set skip flag if cc->no_set_skip_hint is false
Keep the same logic as update_pageblock_skip, only set skip if
no_set_skip_hint is false which is more reasonable.

Link: https://lkml.kernel.org/r/20230804110454.2935878-9-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:43 -07:00
Kemeng Shi f82024cbfa mm/compaction: remove unnecessary return for void function
Remove unnecessary return for void function

Link: https://lkml.kernel.org/r/20230804110454.2935878-8-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:43 -07:00
Kemeng Shi c3750cc772 mm/compaction: correct comment to complete migration failure
Commit cfccd2e63e ("mm, compaction: finish pageblocks on complete
migration failure") convert cc->order aligned check to page block order
aligned check.  Correct comment relevant with it.

Link: https://lkml.kernel.org/r/20230804110454.2935878-7-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:43 -07:00
Kemeng Shi cf043a007e mm/compaction: correct comment of cached migrate pfn update
Commit e380bebe47 ("mm, compaction: keep migration source private to a
single compaction instance") moved update of async and sync
compact_cached_migrate_pfn from update_pageblock_skip to
update_cached_migrate but left the comment behind.  Move the relevant
comment to correct this.

Link: https://lkml.kernel.org/r/20230804110454.2935878-6-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:42 -07:00
Kemeng Shi 0aa8ea3c5d mm/compaction: correct comment of fast_find_migrateblock in isolate_migratepages
After 90ed667c03 ("Revert "Revert "mm/compaction: fix set skip in
fast_find_migrateblock"""), we remove skip set in fast_find_migrateblock. 
Correct comment that fast_find_block is used to avoid isolation_suitable
check for pageblock returned from fast_find_migrateblock because
fast_find_migrateblock will mark found pageblock skipped.

Instead, comment that fast_find_block is used to avoid a redundant check
of fast found pageblock which is already checked skip flag inside
fast_find_migrateblock.

Link: https://lkml.kernel.org/r/20230804110454.2935878-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:42 -07:00
Kemeng Shi 7545e2f20a mm/compaction: skip page block marked skip in isolate_migratepages_block
Move migrate_pfn to page block end when block is marked skip to avoid
   unnecessary scan retry of that block from upper caller.  For example,
   compact_zone may wrongly rescan skip page block with finish_pageblock
   set as following:

1. cc->migrate point to the start of page block

2. compact_zone record last_migrated_pfn to cc->migrate

3. compact_zone->isolate_migratepages->isolate_migratepages_block
   tries to scan the block.  The low_pfn maybe moved forward to middle of
   block because of free pages at beginning of block.

4. we find first lru page could be isolated but block was exclusive
   marked skip.

5. abort isolate_migratepages_block and make cc->migrate_pfn point to
   found lru page at middle of block.

6. compact_zone find cc->migrate_pfn and last_migrated_pfn are in the
   same block and wrongly rescan the block with finish_pageblock set.

Link: https://lkml.kernel.org/r/20230804110454.2935878-4-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:42 -07:00
Kemeng Shi 7c0a84bd0d mm/compaction: correct last_migrated_pfn update in compact_zone
We record start pfn of last isolated page block with last_migrated_pfn. And
then:

1. We check if we mark the page block skip for exclusive access in
   isolate_migratepages_block by test if next migrate pfn is still in last
   isolated page block.  If so, we will set finish_pageblock to do the
   rescan.

2. We check if a full cc->order block is scanned by test if last scan
   range passes the cc->order block boundary.  If so, we flush the pages
   were freed.

We treat cc->migrate_pfn before isolate_migratepages as the start pfn of
last isolated page range.  However, we always align migrate_pfn to page
block or move to another page block in fast_find_migrateblock or in
linearly scan forward in isolate_migratepages before do page isolation in
isolate_migratepages_block.

Update last_migrated_pfn with pageblock_start_pfn(cc->migrate_pfn - 1)
after scan to correctly set start pfn of last isolated page range. To
avoid that:

1. Miss a rescan with finish_pageblock set as last_migrate_pfn does
   not point to right pageblock and the migrate will not be in pageblock
   of last_migrate_pfn as it should be.

2. Wrongly issue flush by test cc->order block boundary with wrong
   last_migrate_pfn.

Link: https://lkml.kernel.org/r/20230804110454.2935878-3-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:42 -07:00
Kemeng Shi 13cfd63f3f mm/compaction: remove unnecessary "else continue" at end of loop in isolate_freepages_block
There is no behavior change to remove "else continue" code at end of scan
loop.  Just remove it to make code cleaner.

Link: https://lkml.kernel.org/r/20230803094901.2915942-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kemeng Shi <shikemeng@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:39 -07:00
Kemeng Shi dc13292ccc mm/compaction: remove unnecessary cursor page in isolate_freepages_block
The cursor is only used for page forward currently.  We can simply move
page forward directly to remove unnecessary cursor.

Link: https://lkml.kernel.org/r/20230803094901.2915942-4-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kemeng Shi <shikemeng@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:39 -07:00
Kemeng Shi a2864a6745 mm/compaction: merge end_pfn boundary check in isolate_freepages_range
Merge the end_pfn boundary check for single page block forward and
multiple page blocks forward to avoid do twice boundary check for multiple
page blocks forward.

Link: https://lkml.kernel.org/r/20230803094901.2915942-3-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:39 -07:00
Kemeng Shi 1695178900 mm/compaction: set compact_cached_free_pfn correctly in update_pageblock_skip
Patch series "Fixes and cleanups to compaction", v2.

This series contains random fixes and cleanups to free page isolation in
compaction.  This is based on another compact series[1].  More details can
be found in respective patches.


This patch (of 4):

We will set skip to page block of block_start_pfn, it's more reasonable to
set compact_cached_free_pfn to page block before the block_start_pfn.

Link: https://lkml.kernel.org/r/20230803094901.2915942-1-shikemeng@huaweicloud.com
Link: https://lkml.kernel.org/r/20230803094901.2915942-2-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Kemeng Shi <shikemeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:39 -07:00
Matthew Wilcox 866ff80176 mm: improve the comment in isolate_migratepages_block()
A recent patch shows that not everybody understands that "stabilise the
mapping" really means "prevent the mapping from being freed", so change
the wording to hopefully make that more clear.

Link: https://lkml.kernel.org/r/ZMLWEB4m3zvX6SBN@casper.infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:30 -07:00
Kemeng Shi 3c099a2b0b mm/compaction: avoid unneeded pageblock_end_pfn when no_set_skip_hint is set
Move pageblock_end_pfn after no_set_skip_hint check to avoid unneeded
pageblock_end_pfn if no_set_skip_hint is set.

Link: https://lkml.kernel.org/r/20230721150957.2058634-3-shikemeng@huawei.com
Signed-off-by: Kemeng Shi <shikemeng@huawei.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:44 -07:00
Kemeng Shi e6bd14eca2 mm/compaction: correct comment of candidate pfn in fast_isolate_freepages
Patch series "Two minor cleanups for compaction", v2.

This series contains two random cleanups for compaction.


This patch (of 2):

If no preferred one was not found, we will use candidate page with maximum
pfn > min_pfn which is saved in high_pfn.  Correct "minimum" to "maximum
candidate" in comment.

Link: https://lkml.kernel.org/r/20230721150957.2058634-1-shikemeng@huawei.com
Link: https://lkml.kernel.org/r/20230721150957.2058634-2-shikemeng@huawei.com
Signed-off-by: Kemeng Shi <shikemeng@huawei.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:44 -07:00
Baolin Wang e6e0c76730 mm: compaction: skip the memory hole rapidly when isolating free pages
Just like commit 9721fd8235 ("mm: compaction: skip memory hole
rapidly when isolating migratable pages"), I can see it will also take
more time to skip the larger memory hole (range: 0x1000000000 -
0x1800000000) when isolating free pages on my machine with below memory
layout.  So like commit 9721fd8235, adding a new helper to skip the
memory hole rapidly, which can reduce the time consumed from about 70us
to less than 1us.

[    0.000000] Zone ranges:
[    0.000000]   DMA      [mem 0x0000000040000000-0x00000000ffffffff]
[    0.000000]   DMA32    empty
[    0.000000]   Normal   [mem 0x0000000100000000-0x0000001fa7ffffff]
[    0.000000] Movable zone start for each node
[    0.000000] Early memory node ranges
[    0.000000]   node   0: [mem 0x0000000040000000-0x0000000fffffffff]
[    0.000000]   node   0: [mem 0x0000001800000000-0x0000001fa3c7ffff]
[    0.000000]   node   0: [mem 0x0000001fa3c80000-0x0000001fa3ffffff]
[    0.000000]   node   0: [mem 0x0000001fa4000000-0x0000001fa402ffff]
[    0.000000]   node   0: [mem 0x0000001fa4030000-0x0000001fa40effff]
[    0.000000]   node   0: [mem 0x0000001fa40f0000-0x0000001fa73cffff]
[    0.000000]   node   0: [mem 0x0000001fa73d0000-0x0000001fa745ffff]
[    0.000000]   node   0: [mem 0x0000001fa7460000-0x0000001fa746ffff]
[    0.000000]   node   0: [mem 0x0000001fa7470000-0x0000001fa758ffff]
[    0.000000]   node   0: [mem 0x0000001fa7590000-0x0000001fa7ffffff]

[shikemeng@huaweicloud.com: avoid missing last page block in section after skip offline sections]
  Link: https://lkml.kernel.org/r/20230804110454.2935878-1-shikemeng@huaweicloud.com
  Link: https://lkml.kernel.org/r/20230804110454.2935878-2-shikemeng@huaweicloud.com
Link: https://lkml.kernel.org/r/d2ba7e41ee566309b594311207ffca736375fc16.1688715750.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:14 -07:00
Baolin Wang 94ec20035b mm: compaction: use the correct type of list for free pages
Use the page->buddy_list instead of page->lru to clarify the correct type
of list for free pages.

Link: https://lkml.kernel.org/r/b21cd8e2e32b9a1d9bc9e43ebf8acaf35e87f8df.1688715750.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:13 -07:00
Johannes Weiner 493614da0d mm: compaction: fix endless looping over same migrate block
During stress testing, the following situation was observed:

     70 root      39  19       0      0      0 R 100.0   0.0 959:29.92 khugepaged
 310936 root      20   0   84416  25620    512 R  99.7   1.5 642:37.22 hugealloc

Tracing shows isolate_migratepages_block() endlessly looping over the
first block in the DMA zone:

       hugealloc-310936  [001] ..... 237297.415718: mm_compaction_finished: node=0 zone=DMA      order=9 ret=no_suitable_page
       hugealloc-310936  [001] ..... 237297.415718: mm_compaction_isolate_migratepages: range=(0x1 ~ 0x400) nr_scanned=513 nr_taken=0
       hugealloc-310936  [001] ..... 237297.415718: mm_compaction_finished: node=0 zone=DMA      order=9 ret=no_suitable_page
       hugealloc-310936  [001] ..... 237297.415718: mm_compaction_isolate_migratepages: range=(0x1 ~ 0x400) nr_scanned=513 nr_taken=0
       hugealloc-310936  [001] ..... 237297.415718: mm_compaction_finished: node=0 zone=DMA      order=9 ret=no_suitable_page
       hugealloc-310936  [001] ..... 237297.415718: mm_compaction_isolate_migratepages: range=(0x1 ~ 0x400) nr_scanned=513 nr_taken=0
       hugealloc-310936  [001] ..... 237297.415718: mm_compaction_finished: node=0 zone=DMA      order=9 ret=no_suitable_page
       hugealloc-310936  [001] ..... 237297.415718: mm_compaction_isolate_migratepages: range=(0x1 ~ 0x400) nr_scanned=513 nr_taken=0

The problem is that the functions tries to test and set the skip bit once
on the block, to avoid skipping on its own skip-set, using
pageblock_aligned() on the pfn as a test.  But because this is the DMA
zone which starts at pfn 1, this is never true for the first block, and
the skip bit isn't set or tested at all.  As a result,
fast_find_migrateblock() returns the same pageblock over and over.

If the pfn isn't pageblock-aligned, also check if it's the start of the
zone to ensure test-and-set-exactly-once on unaligned ranges.

Thanks to Vlastimil Babka for the help in debugging this.

Link: https://lkml.kernel.org/r/20230731172450.1632195-1-hannes@cmpxchg.org
Fixes: 90ed667c03 ("Revert "Revert "mm/compaction: fix set skip in fast_find_migrateblock""")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-04 13:03:42 -07:00
Kefeng Wang 56ae0bb349 mm: compaction: convert to use a folio in isolate_migratepages_block()
Directly use a folio instead of page_folio() when page successfully
isolated (hugepage and movable page) and after folio_get_nontail_page(),
which removes several calls to compound_head().

Link: https://lkml.kernel.org/r/20230619110718.65679-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-23 16:59:31 -07:00
Baolin Wang 9721fd8235 mm: compaction: skip memory hole rapidly when isolating migratable pages
On some machines, the normal zone can have a large memory hole like below
memory layout, and we can see the range from 0x100000000 to 0x1800000000
is a hole.  So when isolating some migratable pages, the scanner can meet
the hole and it will take more time to skip the large hole.  From my
measurement, I can see the isolation scanner will take 80us ~ 100us to
skip the large hole [0x100000000 - 0x1800000000].

So adding a new helper to fast search next online memory section to skip
the large hole can help to find next suitable pageblock efficiently.  With
this patch, I can see the large hole scanning only takes < 1us.

[    0.000000] Zone ranges:
[    0.000000]   DMA      [mem 0x0000000040000000-0x00000000ffffffff]
[    0.000000]   DMA32    empty
[    0.000000]   Normal   [mem 0x0000000100000000-0x0000001fa7ffffff]
[    0.000000] Movable zone start for each node
[    0.000000] Early memory node ranges
[    0.000000]   node   0: [mem 0x0000000040000000-0x0000000fffffffff]
[    0.000000]   node   0: [mem 0x0000001800000000-0x0000001fa3c7ffff]
[    0.000000]   node   0: [mem 0x0000001fa3c80000-0x0000001fa3ffffff]
[    0.000000]   node   0: [mem 0x0000001fa4000000-0x0000001fa402ffff]
[    0.000000]   node   0: [mem 0x0000001fa4030000-0x0000001fa40effff]
[    0.000000]   node   0: [mem 0x0000001fa40f0000-0x0000001fa73cffff]
[    0.000000]   node   0: [mem 0x0000001fa73d0000-0x0000001fa745ffff]
[    0.000000]   node   0: [mem 0x0000001fa7460000-0x0000001fa746ffff]
[    0.000000]   node   0: [mem 0x0000001fa7470000-0x0000001fa758ffff]
[    0.000000]   node   0: [mem 0x0000001fa7590000-0x0000001fa7ffffff]

[baolin.wang@linux.alibaba.com: limit next_ptn to not exceed cc->free_pfn]
  Link: https://lkml.kernel.org/r/a1d859c28af0c7e85e91795e7473f553eb180a9d.1686813379.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/75b4c8ca36bf44ad8c42bf0685ac19d272e426ec.1686705221.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-23 16:59:25 -07:00
Miaohe Lin 833dfc0090 mm: compaction: mark kcompactd_run() and kcompactd_stop() __meminit
Add __meminit to kcompactd_run() and kcompactd_stop() to ensure they're
default to __init when memory hotplug is not enabled.

Link: https://lkml.kernel.org/r/20230610034615.997813-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:28 -07:00
Baolin Wang a8d13355c6 mm: compaction: skip fast freepages isolation if enough freepages are isolated
I've observed that fast isolation often isolates more pages than
cc->migratepages, and the excess freepages will be released back to the
buddy system.  So skip fast freepages isolation if enough freepages are
isolated to save some CPU cycles.

Link: https://lkml.kernel.org/r/f39c2c07f2dba2732fd9c0843572e5bef96f7f67.1685018752.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:43 -07:00
Baolin Wang 447ba88658 mm: compaction: add trace event for fast freepages isolation
The fast_isolate_freepages() can also isolate freepages, but we can not
know the fast isolation efficiency to understand the fast isolation
pressure.  So add a trace event to show some numbers to help to understand
the efficiency for fast freepages isolation.

Link: https://lkml.kernel.org/r/78d2932d0160d122c15372aceb3f2c45460a17fc.1685018752.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:43 -07:00
Baolin Wang 8b71b499ff mm: compaction: only set skip flag if cc->no_set_skip_hint is false
To keep the same logic as test_and_set_skip(), only set the skip flag if
cc->no_set_skip_hint is false, which makes code more reasonable.

Link: https://lkml.kernel.org/r/0eb2cd2407ffb259ae6e3071e10f70f2d41d0f3e.1685018752.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:42 -07:00
Baolin Wang cf650342f8 mm: compaction: skip more fully scanned pageblock
In fast_isolate_around(), it assumes the pageblock is fully scanned if
cc->nr_freepages < cc->nr_migratepages after trying to isolate some free
pages, and will set skip flag to avoid scanning in future.  However this
can miss setting the skip flag for a fully scanned pageblock (returned
'start_pfn' is equal to 'end_pfn') in the case where cc->nr_freepages is
larger than cc->nr_migratepages.

So using the returned 'start_pfn' from isolate_freepages_block() and
'end_pfn' to decide if a pageblock is fully scanned makes more sense.  It
can also cover the case where cc->nr_freepages < cc->nr_migratepages,
which means the 'start_pfn' is usually equal to 'end_pfn' except some
uncommon fatal error occurs after non-strict mode isolation.

Link: https://lkml.kernel.org/r/f4efd2fa08735794a6d809da3249b6715ba6ad38.1685018752.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:42 -07:00
Baolin Wang 2dbd90054f mm: compaction: change fast_isolate_freepages() to void type
No caller cares about the return value of fast_isolate_freepages(), void
it.

Link: https://lkml.kernel.org/r/759fca20b22ebf4c81afa30496837b9e0fb2e53b.1685018752.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:42 -07:00
Baolin Wang 75990f6459 mm: compaction: drop the redundant page validation in update_pageblock_skip()
Patch series "Misc cleanups and improvements for compaction".

This series cantains some cleanups and improvements for compaction.


This patch (of 6):

The caller has validated the page before calling
update_pageblock_skip(), thus drop the redundant page validation in
update_pageblock_skip().

Link: https://lkml.kernel.org/r/5142e15b9295fe8c447dbb39b7907a20177a1413.1685018752.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:42 -07:00
Johannes Weiner 4fbbb3fde3 mm: compaction: avoid GFP_NOFS ABBA deadlock
During stress testing with higher-order allocations, a deadlock scenario
was observed in compaction: One GFP_NOFS allocation was sleeping on
mm/compaction.c::too_many_isolated(), while all CPUs in the system were
busy with compactors spinning on buffer locks held by the sleeping
GFP_NOFS allocation.

Reclaim is susceptible to this same deadlock; we fixed it by granting
GFP_NOFS allocations additional LRU isolation headroom, to ensure it makes
forward progress while holding fs locks that other reclaimers might
acquire.  Do the same here.

This code has been like this since compaction was initially merged, and I
only managed to trigger this with out-of-tree patches that dramatically
increase the contexts that do GFP_NOFS compaction.  While the issue is
real, it seems theoretical in nature given existing allocation sites. 
Worth fixing now, but no Fixes tag or stable CC.

Link: https://lkml.kernel.org/r/20230519111359.40475-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:37 -07:00