Commit graph

20 commits

Author SHA1 Message Date
Brian Foster
066a18845f xfs: use sparse chunk alignment for min. inode allocation requirement
xfs_ialloc_ag_select() iterates through the allocation groups looking
for free inodes or free space to determine whether to allow an inode
allocation to proceed. If no free inodes are available, it assumes that
an AG must have an extent longer than mp->m_ialloc_blks.

Sparse inode chunk support currently allows for allocations smaller than
the traditional inode chunk size specified in m_ialloc_blks. The current
minimum sparse allocation is set in the superblock sb_spino_align field
at mkfs time. Create a new m_ialloc_min_blks field in xfs_mount and use
this to represent the minimum supported allocation size for inode
chunks. Initialize m_ialloc_min_blks at mount time based on whether
sparse inodes are supported.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29 08:55:20 +10:00
Brian Foster
fb4f2b4e5a xfs: add sparse inode chunk alignment superblock field
Add sb_spino_align to the superblock to specify sparse inode chunk
alignment. This also currently represents the minimum allowable sparse
chunk allocation size.

Signed-off-by: Brian Foster <bfoster@redhat.com>
2015-05-29 08:54:03 +10:00
Dave Chinner
4225441a1e Merge branch 'xfs-generic-sb-counters' into for-next
Conflicts:
	fs/xfs/xfs_super.c
2015-02-24 10:27:28 +11:00
Wang Sheng-Hui
dd5e71274a xfs: remove old and redundant comment in xfs_mount_validate_sb
The error messages document the reason for the checks better than the comment
and the comments about volume mounts date back to Irix and so aren't relevant
any more. So just remove the old and redundant comment.

Signed-off-by: Wang Sheng-Hui <shhuiw@foxmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-24 10:15:04 +11:00
Dave Chinner
5681ca4006 xfs: Remove icsb infrastructure
Now that the in-core superblock infrastructure has been replaced with
generic per-cpu counters, we don't need it anymore. Nuke it from
orbit so we are sure that it won't haunt us again...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23 21:22:31 +11:00
Dave Chinner
0d485ada40 xfs: use generic percpu counters for free block counter
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. The free block counter is
special in that it is used for ENOSPC detection outside transaction
contexts for for delayed allocation. This means that the counter
needs to be accurate at zero. The current per-cpu counter code jumps
through lots of hoops to ensure we never run past zero, but we don't
need to make all those jumps with the generic counter
implementation.

The generic counter implementation allows us to pass a "batch"
threshold at which the addition/subtraction to the counter value
will be folded back into global value under lock. We can use this
feature to reduce the batch size as we approach 0 in a very similar
manner to the existing counters and their rebalance algorithm. If we
use a batch size of 1 as we approach 0, then every addition and
subtraction will be done against the global value and hence allow
accurate detection of zero threshold crossing.

Hence we can replace the handrolled, accurate-at-zero counters with
generic percpu counters.

Note: this removes just enough of the icsb infrastructure to compile
without warnings. The rest will go in subsequent commits.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23 21:22:03 +11:00
Dave Chinner
e88b64ea1f xfs: use generic percpu counters for free inode counter
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. The free inode counter is not
used for any limit enforcement - the per-AG free inode counters are
used during allocation to determine if there are inode available for
allocation.

Hence we don't need any of the complexity of the hand-rolled
counters and we can simply replace them with generic per-cpu
counters similar to the inode counter.

This version introduces a xfs_mod_ifree() helper function from
Christoph Hellwig.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23 21:19:53 +11:00
Dave Chinner
501ab32387 xfs: use generic percpu counters for inode counter
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. There are some warts around
the  use of them for the inode counter as the hand rolled counter is
designed to be accurate at zero, but has no specific accurracy at
any other value. This design causes problems for the maximum inode
count threshold enforcement, as there is no trigger that balances
the counters as they get close tothe maximum threshold.

Instead of designing new triggers for balancing, just replace the
handrolled per-cpu counter with a generic counter.  This enables us
to update the counter through the normal superblock modification
funtions, but rather than do that we add a xfs_mod_icount() helper
function (from Christoph Hellwig) and keep the percpu counter
outside the superblock in the struct xfs_mount.

This means we still need to initialise the per-cpu counter
specifically when we read the superblock, and vice versa when we
log/write it, but it does mean that we don't need to change any
other code.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23 21:19:28 +11:00
Dave Chinner
074e427ba7 xfs: sanitise sb_bad_features2 handling
We currently have to ensure that every time we update sb_features2
that we update sb_bad_features2. Now that we log and format the
superblock in it's entirety we actually don't have to care because
we can simply update the sb_bad_features2 when we format it into the
buffer. This removes the need for anything but the mount and
superblock formatting code to care about sb_bad_features2, and
hence removes the possibility that we forget to update bad_features2
when necessary in the future.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-01-22 09:10:33 +11:00
Dave Chinner
61e63ecb57 xfs: consolidate superblock logging functions
We now have several superblock loggin functions that are identical
except for the transaction reservation and whether it shoul dbe a
synchronous transaction or not. Consolidate these all into a single
function, a single reserveration and a sync flag and call it
xfs_sync_sb().

Also, xfs_mod_sb() is not really a modification function - it's the
operation of logging the superblock buffer. hence change the name of
it to reflect this.

Note that we have to change the mp->m_update_flags that are passed
around at mount time to a boolean simply to indicate a superblock
update is needed.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-01-22 09:10:31 +11:00
Dave Chinner
4d11a40239 xfs: remove bitfield based superblock updates
When we log changes to the superblock, we first have to write them
to the on-disk buffer, and then log that. Right now we have a
complex bitfield based arrangement to only write the modified field
to the buffer before we log it.

This used to be necessary as a performance optimisation because we
logged the superblock buffer in every extent or inode allocation or
freeing, and so performance was extremely important. We haven't done
this for years, however, ever since the lazy superblock counters
pulled the superblock logging out of the transaction commit
fast path.

Hence we have a bunch of complexity that is not necessary that makes
writing the in-core superblock to disk much more complex than it
needs to be. We only need to log the superblock now during
management operations (e.g. during mount, unmount or quota control
operations) so it is not a performance critical path anymore.

As such, remove the complex field based logging mechanism and
replace it with a simple conversion function similar to what we use
for all other on-disk structures.

This means we always log the entirity of the superblock, but again
because we rarely modify the superblock this is not an issue for log
bandwidth or CPU time. Indeed, if we do log the superblock
frequently, delayed logging will minimise the impact of this
overhead.

[Fixed gquota/pquota inode sharing regression noticed by bfoster.]

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-01-22 09:10:26 +11:00
Christoph Hellwig
4fb6e8ade2 xfs: merge xfs_ag.h into xfs_format.h
More on-disk format consolidation.  A few declarations that weren't on-disk
format related move into better suitable spots.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-11-28 14:25:04 +11:00
Christoph Hellwig
6d3ebaae7c xfs: merge xfs_dinode.h into xfs_format.h
More consolidatation for the on-disk format defintions.  Note that the
XFS_IS_REALTIME_INODE moves to xfs_linux.h instead as it is not related
to the on disk format, but depends on a CONFIG_ option.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-11-28 14:24:06 +11:00
Eric Sandeen
04dd1a0d4b xfs: fix crc field handling in xfs_sb_to/from_disk
I discovered this in userspace, but the same change applies
to the kernel.

If we xfs_mdrestore an image from a non-crc filesystem, lo
and behold the restored image has gained a CRC:

# db/xfs_metadump.sh -o /dev/sdc1 - | xfs_mdrestore - test.img
# xfs_db -c "sb 0" -c "p crc" /dev/sdc1
crc = 0 (correct)
# xfs_db -c "sb 0" -c "p crc" test.img
crc = 0xb6f8d6a0 (correct)

This is because xfs_sb_from_disk doesn't fill in sb_crc,
but xfs_sb_to_disk(XFS_SB_ALL_BITS) does write the in-memory
CRC to disk - so we get uninitialized memory on disk.

Fix this by always initializing sb_crc to 0 when we read
the superblock, and masking out the CRC bit from ALL_BITS
when we write it.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-10-02 09:24:11 +10:00
Eric Sandeen
e1b05723ed xfs: add a few more verifier tests
These were exposed by fsfuzzer runs; without them we fail
in various exciting and sometimes convoluted ways when we
encounter disk corruption.

Without the MAXLEVELS tests we tend to walk off the end of
an array in a loop like this:

        for (i = 0; i < cur->bc_nlevels; i++) {
                if (cur->bc_bufs[i])

Without the dirblklog test we try to allocate more memory
than we could possibly hope for and loop forever:

xfs_dabuf_map()
	nfsb = mp->m_dir_geo->fsbcount;
	irecs = kmem_zalloc(sizeof(irec) * nfsb, KM_SLEEP...

As for the logbsize check, that's the convoluted one.

If logbsize is specified at mount time, it's sanitized
in xfs_parseargs; in particular it makes sure that it's
not > XLOG_MAX_RECORD_BSIZE.

If not specified at mount time, it comes from the superblock
via sb_logsunit; this is limited to 256k at mkfs time as well;
it's copied into m_logbsize in xfs_finish_flags().

However, if for some reason the on-disk value is corrupt and
too large, nothing catches it.  It's a circuitous path, but
that size eventually finds its way to places that make the kernel
very unhappy, leading to oopses in xlog_pack_data() because we
use the size as an index into iclog->ic_data, but the array
is not necessarily that big.

Anyway - bounds checking when we read from disk is a good thing!

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-09 11:47:24 +10:00
Dave Chinner
645f985721 Merge branch 'xfs-misc-fixes-3.17-2' into for-next 2014-08-04 13:55:27 +10:00
Eric Sandeen
5ef828c415 xfs: avoid false quotacheck after unclean shutdown
The commit

83e782e xfs: Remove incore use of XFS_OQUOTA_ENFD and XFS_OQUOTA_CHKD

added a new function xfs_sb_quota_from_disk() which swaps
on-disk XFS_OQUOTA_* flags for in-core XFS_GQUOTA_* and XFS_PQUOTA_*
flags after the superblock is read.

However, if log recovery is required, the superblock is read again,
and the modified in-core flags are re-read from disk, so we have
XFS_OQUOTA_* flags in memory again.  This causes the
XFS_QM_NEED_QUOTACHECK() test to be true, because the XFS_OQUOTA_CHKD
is still set, and not XFS_GQUOTA_CHKD or XFS_PQUOTA_CHKD.

Change xfs_sb_from_disk to call xfs_sb_quota_from disk and always
convert the disk flags to in-memory flags.

Add a lower-level function which can be called with "false" to
not convert the flags, so that the sb verifier can verify
exactly what was on disk, per Brian Foster's suggestion.

Reported-by: Cyril B. <cbay@excellency.fr>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
2014-08-04 11:35:44 +10:00
Dave Chinner
7f8a058f6d Merge branch 'xfs-libxfs-restructure' into for-next 2014-07-15 07:37:18 +10:00
Dave Chinner
2451337dd0 xfs: global error sign conversion
Convert all the errors the core XFs code to negative error signs
like the rest of the kernel and remove all the sign conversion we
do in the interface layers.

Errors for conversion (and comparison) found via searches like:

$ git grep " E" fs/xfs
$ git grep "return E" fs/xfs
$ git grep " E[A-Z].*;$" fs/xfs

Negation points found via searches like:

$ git grep "= -[a-z,A-Z]" fs/xfs
$ git grep "return -[a-z,A-D,F-Z]" fs/xfs
$ git grep " -[a-z].*;" fs/xfs

[ with some bits I missed from Brian Foster ]

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-06-25 14:58:08 +10:00
Dave Chinner
69116a1317 xfs: create libxfs infrastructure
To minimise the differences between kernel and userspace code,
split the kernel code into the same structure as the userspace code.
That is, the gneric core functionality of XFS is moved to a libxfs/
directory and treat it as a layering barrier in the XFS code.

This patch introduces the libxfs directory, the build infrastructure
and an initial source and header file to build. The libxfs directory
will contain the header files that are needed to build libxfs - most
of userspace does not care about the location of these header files
as they are accessed indirectly. Hence keeping them inside libxfs
makes it easy to track the changes and script the sync process as
the directory structure will be identical.

To allow this changeover to occur in the kernel code, there are some
temporary infrastructure in the makefiles to grab the header
filesystem from both locations. Once all the files are moved,
modifications will be made in the source code that will make the
need for these include directives go away.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-06-25 14:57:22 +10:00
Renamed from fs/xfs/xfs_sb.c (Browse further)