Commit graph

162 commits

Author SHA1 Message Date
Juergen Gross
f7af697762 x86/paravirt: Remove no longer needed paravirt patching code
Now that paravirt is using the alternatives patching infrastructure,
remove the paravirt patching code.

Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20231210062138.2417-6-jgross@suse.com
2023-12-10 23:34:37 +01:00
Josh Poimboeuf
34a3cae747 x86/srso: Disentangle rethunk-dependent options
CONFIG_RETHUNK, CONFIG_CPU_UNRET_ENTRY and CONFIG_CPU_SRSO are all
tangled up.  De-spaghettify the code a bit.

Some of the rethunk-related code has been shuffled around within the
'.text..__x86.return_thunk' section, but otherwise there are no
functional changes.  srso_alias_untrain_ret() and srso_alias_safe_ret()
((which are very address-sensitive) haven't moved.

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/2845084ed303d8384905db3b87b77693945302b4.1693889988.git.jpoimboe@kernel.org
2023-10-20 12:30:50 +02:00
Song Liu
65e710899f x86/build: Fix linker fill bytes quirk/incompatibility for ld.lld
With ":text =0xcccc", ld.lld fills unused text area with 0xcccc0000.
Example objdump -D output:

	ffffffff82b04203:       00 00                   add    %al,(%rax)
	ffffffff82b04205:       cc                      int3
	ffffffff82b04206:       cc                      int3
	ffffffff82b04207:       00 00                   add    %al,(%rax)
	ffffffff82b04209:       cc                      int3
	ffffffff82b0420a:       cc                      int3

Replace it with ":text =0xcccccccc", so we get the following instead:

	ffffffff82b04203:       cc                      int3
	ffffffff82b04204:       cc                      int3
	ffffffff82b04205:       cc                      int3
	ffffffff82b04206:       cc                      int3
	ffffffff82b04207:       cc                      int3
	ffffffff82b04208:       cc                      int3

gcc/ld doesn't seem to have the same issue. The generated code stays the
same for gcc/ld.

Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Fixes: 7705dc8557 ("x86/vmlinux: Use INT3 instead of NOP for linker fill bytes")
Link: https://lore.kernel.org/r/20230906175215.2236033-1-song@kernel.org
2023-09-06 23:49:12 +02:00
Peter Zijlstra
42be649dd1 x86/cpu: Rename srso_(.*)_alias to srso_alias_\1
For a more consistent namespace.

  [ bp: Fixup names in the doc too. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.976236447@infradead.org
2023-08-16 21:58:53 +02:00
Peter Zijlstra
d025b7bac0 x86/cpu: Rename original retbleed methods
Rename the original retbleed return thunk and untrain_ret to
retbleed_return_thunk() and retbleed_untrain_ret().

No functional changes.

Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.909378169@infradead.org
2023-08-16 21:47:53 +02:00
Peter Zijlstra
d43490d0ab x86/cpu: Clean up SRSO return thunk mess
Use the existing configurable return thunk. There is absolute no
justification for having created this __x86_return_thunk alternative.

To clarify, the whole thing looks like:

Zen3/4 does:

  srso_alias_untrain_ret:
	  nop2
	  lfence
	  jmp srso_alias_return_thunk
	  int3

  srso_alias_safe_ret: // aliasses srso_alias_untrain_ret just so
	  add $8, %rsp
	  ret
	  int3

  srso_alias_return_thunk:
	  call srso_alias_safe_ret
	  ud2

While Zen1/2 does:

  srso_untrain_ret:
	  movabs $foo, %rax
	  lfence
	  call srso_safe_ret           (jmp srso_return_thunk ?)
	  int3

  srso_safe_ret: // embedded in movabs instruction
	  add $8,%rsp
          ret
          int3

  srso_return_thunk:
	  call srso_safe_ret
	  ud2

While retbleed does:

  zen_untrain_ret:
	  test $0xcc, %bl
	  lfence
	  jmp zen_return_thunk
          int3

  zen_return_thunk: // embedded in the test instruction
	  ret
          int3

Where Zen1/2 flush the BTB entry using the instruction decoder trick
(test,movabs) Zen3/4 use BTB aliasing. SRSO adds a return sequence
(srso_safe_ret()) which forces the function return instruction to
speculate into a trap (UD2).  This RET will then mispredict and
execution will continue at the return site read from the top of the
stack.

Pick one of three options at boot (evey function can only ever return
once).

  [ bp: Fixup commit message uarch details and add them in a comment in
    the code too. Add a comment about the srso_select_mitigation()
    dependency on retbleed_select_mitigation(). Add moar ifdeffery for
    32-bit builds. Add a dummy srso_untrain_ret_alias() definition for
    32-bit alternatives needing the symbol. ]

Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.842775684@infradead.org
2023-08-16 21:47:24 +02:00
Petr Pavlu
833fd800bf x86/retpoline,kprobes: Skip optprobe check for indirect jumps with retpolines and IBT
The kprobes optimization check can_optimize() calls
insn_is_indirect_jump() to detect indirect jump instructions in
a target function. If any is found, creating an optprobe is disallowed
in the function because the jump could be from a jump table and could
potentially land in the middle of the target optprobe.

With retpolines, insn_is_indirect_jump() additionally looks for calls to
indirect thunks which the compiler potentially used to replace original
jumps. This extra check is however unnecessary because jump tables are
disabled when the kernel is built with retpolines. The same is currently
the case with IBT.

Based on this observation, remove the logic to look for calls to
indirect thunks and skip the check for indirect jumps altogether if the
kernel is built with retpolines or IBT. Remove subsequently the symbols
__indirect_thunk_start and __indirect_thunk_end which are no longer
needed.

Dropping this logic indirectly fixes a problem where the range
[__indirect_thunk_start, __indirect_thunk_end] wrongly included also the
return thunk. It caused that machines which used the return thunk as
a mitigation and didn't have it patched by any alternative ended up not
being able to use optprobes in any regular function.

Fixes: 0b53c374b9 ("x86/retpoline: Use -mfunction-return")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20230711091952.27944-3-petr.pavlu@suse.com
2023-08-14 11:46:51 +02:00
Petr Pavlu
79cd2a1122 x86/retpoline,kprobes: Fix position of thunk sections with CONFIG_LTO_CLANG
The linker script arch/x86/kernel/vmlinux.lds.S matches the thunk
sections ".text.__x86.*" from arch/x86/lib/retpoline.S as follows:

  .text {
    [...]
    TEXT_TEXT
    [...]
    __indirect_thunk_start = .;
    *(.text.__x86.*)
    __indirect_thunk_end = .;
    [...]
  }

Macro TEXT_TEXT references TEXT_MAIN which normally expands to only
".text". However, with CONFIG_LTO_CLANG, TEXT_MAIN becomes
".text .text.[0-9a-zA-Z_]*" which wrongly matches also the thunk
sections. The output layout is then different than expected. For
instance, the currently defined range [__indirect_thunk_start,
__indirect_thunk_end] becomes empty.

Prevent the problem by using ".." as the first separator, for example,
".text..__x86.indirect_thunk". This pattern is utilized by other
explicit section names which start with one of the standard prefixes,
such as ".text" or ".data", and that need to be individually selected in
the linker script.

  [ nathan: Fix conflicts with SRSO and fold in fix issue brought up by
    Andrew Cooper in post-review:
    https://lore.kernel.org/20230803230323.1478869-1-andrew.cooper3@citrix.com ]

Fixes: dc5723b02e ("kbuild: add support for Clang LTO")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230711091952.27944-2-petr.pavlu@suse.com
2023-08-14 11:44:19 +02:00
Nick Desaulniers
cbe8ded48b x86/srso: Fix build breakage with the LLVM linker
The assertion added to verify the difference in bits set of the
addresses of srso_untrain_ret_alias() and srso_safe_ret_alias() would fail
to link in LLVM's ld.lld linker with the following error:

  ld.lld: error: ./arch/x86/kernel/vmlinux.lds:210: at least one side of
  the expression must be absolute
  ld.lld: error: ./arch/x86/kernel/vmlinux.lds:211: at least one side of
  the expression must be absolute

Use ABSOLUTE to evaluate the expression referring to at least one of the
symbols so that LLD can evaluate the linker script.

Also, add linker version info to the comment about XOR being unsupported
in either ld.bfd or ld.lld until somewhat recently.

Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Closes: https://lore.kernel.org/llvm/CA+G9fYsdUeNu-gwbs0+T6XHi4hYYk=Y9725-wFhZ7gJMspLDRA@mail.gmail.com/
Reported-by: Nathan Chancellor <nathan@kernel.org>
Reported-by: Daniel Kolesa <daniel@octaforge.org>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sven Volkinsfeld <thyrc@gmx.net>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://github.com/ClangBuiltLinux/linux/issues/1907
Link: https://lore.kernel.org/r/20230809-gds-v1-1-eaac90b0cbcc@google.com
2023-08-10 11:03:12 +02:00
Borislav Petkov (AMD)
fb3bd914b3 x86/srso: Add a Speculative RAS Overflow mitigation
Add a mitigation for the speculative return address stack overflow
vulnerability found on AMD processors.

The mitigation works by ensuring all RET instructions speculate to
a controlled location, similar to how speculation is controlled in the
retpoline sequence.  To accomplish this, the __x86_return_thunk forces
the CPU to mispredict every function return using a 'safe return'
sequence.

To ensure the safety of this mitigation, the kernel must ensure that the
safe return sequence is itself free from attacker interference.  In Zen3
and Zen4, this is accomplished by creating a BTB alias between the
untraining function srso_untrain_ret_alias() and the safe return
function srso_safe_ret_alias() which results in evicting a potentially
poisoned BTB entry and using that safe one for all function returns.

In older Zen1 and Zen2, this is accomplished using a reinterpretation
technique similar to Retbleed one: srso_untrain_ret() and
srso_safe_ret().

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-27 11:07:14 +02:00
Borislav Petkov (AMD)
f220125b99 x86/retbleed: Add __x86_return_thunk alignment checks
Add a linker assertion and compute the 0xcc padding dynamically so that
__x86_return_thunk is always cacheline-aligned. Leave the SYM_START()
macro in as the untraining doesn't need ENDBR annotations anyway.

Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com>
Link: https://lore.kernel.org/r/20230515140726.28689-1-bp@alien8.de
2023-05-17 12:14:21 +02:00
Peter Zijlstra
2b5a0e425e objtool/idle: Validate __cpuidle code as noinstr
Idle code is very like entry code in that RCU isn't available. As
such, add a little validation.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195540.373461409@infradead.org
2023-01-13 11:48:15 +01:00
Peter Zijlstra
931ab63664 x86/ibt: Implement FineIBT
Implement an alternative CFI scheme that merges both the fine-grained
nature of kCFI but also takes full advantage of the coarse grained
hardware CFI as provided by IBT.

To contrast:

  kCFI is a pure software CFI scheme and relies on being able to read
text -- specifically the instruction *before* the target symbol, and
does the hash validation *before* doing the call (otherwise control
flow is compromised already).

  FineIBT is a software and hardware hybrid scheme; by ensuring every
branch target starts with a hash validation it is possible to place
the hash validation after the branch. This has several advantages:

   o the (hash) load is avoided; no memop; no RX requirement.

   o IBT WAIT-FOR-ENDBR state is a speculation stop; by placing
     the hash validation in the immediate instruction after
     the branch target there is a minimal speculation window
     and the whole is a viable defence against SpectreBHB.

   o Kees feels obliged to mention it is slightly more vulnerable
     when the attacker can write code.

Obviously this patch relies on kCFI, but additionally it also relies
on the padding from the call-depth-tracking patches. It uses this
padding to place the hash-validation while the call-sites are
re-written to modify the indirect target to be 16 bytes in front of
the original target, thus hitting this new preamble.

Notably, there is no hardware that needs call-depth-tracking (Skylake)
and supports IBT (Tigerlake and onwards).

Suggested-by: Joao Moreira (Intel) <joao@overdrivepizza.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221027092842.634714496@infradead.org
2022-11-01 13:44:10 +01:00
Thomas Gleixner
e81dc127ef x86/callthunks: Add call patching for call depth tracking
Mitigating the Intel SKL RSB underflow issue in software requires to
track the call depth. That is every CALL and every RET need to be
intercepted and additional code injected.

The existing retbleed mitigations already include means of redirecting
RET to __x86_return_thunk; this can be re-purposed and RET can be
redirected to another function doing RET accounting.

CALL accounting will use the function padding introduced in prior
patches. For each CALL instruction, the destination symbol's padding
is rewritten to do the accounting and the CALL instruction is adjusted
to call into the padding.

This ensures only affected CPUs pay the overhead of this accounting.
Unaffected CPUs will leave the padding unused and have their 'JMP
__x86_return_thunk' replaced with an actual 'RET' instruction.

Objtool has been modified to supply a .call_sites section that lists
all the 'CALL' instructions. Additionally the paravirt instruction
sites are iterated since they will have been patched from an indirect
call to direct calls (or direct instructions in which case it'll be
ignored).

Module handling and the actual thunk code for SKL will be added in
subsequent steps.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.470877038@infradead.org
2022-10-17 16:41:13 +02:00
Peter Zijlstra
00abd38408 objtool: Add .call_sites section
In preparation for call depth tracking provide a section which collects all
direct calls.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111146.016511961@infradead.org
2022-10-17 16:41:07 +02:00
Thomas Gleixner
24a9c543d2 x86: Sanitize linker script
The section ordering in the text section is more than suboptimal:

    ALIGN_ENTRY_TEXT_BEGIN
    ENTRY_TEXT
    ALIGN_ENTRY_TEXT_END
    SOFTIRQENTRY_TEXT
    STATIC_CALL_TEXT
    INDIRECT_THUNK_TEXT

ENTRY_TEXT is in a seperate PMD so it can be mapped into the cpu entry area
when KPTI is enabled. That means the sections after it are also in a
seperate PMD. That's wasteful especially as the indirect thunk text is a
hotpath on retpoline enabled systems and the static call text is fairly hot
on 32bit.

Move the entry text section last so that the other sections share a PMD
with the text before it. This is obviously just best effort and not
guaranteed when the previous text is just at a PMD boundary.

The text section placement needs an overhaul in general. There is e.g. no
point to have debugfs, sysfs, cpuhotplug and other rarely used functions
next to hot path text.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111143.614728935@infradead.org
2022-10-17 16:40:57 +02:00
Linus Torvalds
ce114c8668 Just when you thought that all the speculation bugs were addressed and
solved and the nightmare is complete, here's the next one: speculating
 after RET instructions and leaking privileged information using the now
 pretty much classical covert channels.
 
 It is called RETBleed and the mitigation effort and controlling
 functionality has been modelled similar to what already existing
 mitigations provide.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLKqAgACgkQEsHwGGHe
 VUoM5w/8CSvwPZ3otkhmu8MrJPtWc7eLDPjYN4qQP+19e+bt094MoozxeeWG2wmp
 hkDJAYHT2Oik/qDuEdhFgNYwS7XGgbV3Py3B8syO4//5SD5dkOSG+QqFXvXMdFri
 YsVqqNkjJOWk/YL9Ql5RS/xQewsrr0OqEyWWocuI6XAvfWV4kKvlRSd+6oPqtZEO
 qYlAHTXElyIrA/gjmxChk1HTt5HZtK3uJLf4twNlUfzw7LYFf3+sw3bdNuiXlyMr
 WcLXMwGpS0idURwP3mJa7JRuiVBzb4+kt8mWwWqA02FkKV45FRRRFhFUsy667r00
 cdZBaWdy+b7dvXeliO3FN/x1bZwIEUxmaNy1iAClph4Ifh0ySPUkxAr8EIER7YBy
 bstDJEaIqgYg8NIaD4oF1UrG0ZbL0ImuxVaFdhG1hopQsh4IwLSTLgmZYDhfn/0i
 oSqU0Le+A7QW9s2A2j6qi7BoAbRW+gmBuCgg8f8ECYRkFX1ZF6mkUtnQxYrU7RTq
 rJWGW9nhwM9nRxwgntZiTjUUJ2HtyXEgYyCNjLFCbEBfeG5QTg7XSGFhqDbgoymH
 85vsmSXYxgTgQ/kTW7Fs26tOqnP2h1OtLJZDL8rg49KijLAnISClEgohYW01CWQf
 ZKMHtz3DM0WBiLvSAmfGifScgSrLB5AjtvFHT0hF+5/okEkinVk=
 =09fW
 -----END PGP SIGNATURE-----

Merge tag 'x86_bugs_retbleed' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 retbleed fixes from Borislav Petkov:
 "Just when you thought that all the speculation bugs were addressed and
  solved and the nightmare is complete, here's the next one: speculating
  after RET instructions and leaking privileged information using the
  now pretty much classical covert channels.

  It is called RETBleed and the mitigation effort and controlling
  functionality has been modelled similar to what already existing
  mitigations provide"

* tag 'x86_bugs_retbleed' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
  x86/speculation: Disable RRSBA behavior
  x86/kexec: Disable RET on kexec
  x86/bugs: Do not enable IBPB-on-entry when IBPB is not supported
  x86/entry: Move PUSH_AND_CLEAR_REGS() back into error_entry
  x86/bugs: Add Cannon lake to RETBleed affected CPU list
  x86/retbleed: Add fine grained Kconfig knobs
  x86/cpu/amd: Enumerate BTC_NO
  x86/common: Stamp out the stepping madness
  KVM: VMX: Prevent RSB underflow before vmenter
  x86/speculation: Fill RSB on vmexit for IBRS
  KVM: VMX: Fix IBRS handling after vmexit
  KVM: VMX: Prevent guest RSB poisoning attacks with eIBRS
  KVM: VMX: Convert launched argument to flags
  KVM: VMX: Flatten __vmx_vcpu_run()
  objtool: Re-add UNWIND_HINT_{SAVE_RESTORE}
  x86/speculation: Remove x86_spec_ctrl_mask
  x86/speculation: Use cached host SPEC_CTRL value for guest entry/exit
  x86/speculation: Fix SPEC_CTRL write on SMT state change
  x86/speculation: Fix firmware entry SPEC_CTRL handling
  x86/speculation: Fix RSB filling with CONFIG_RETPOLINE=n
  ...
2022-07-11 18:15:25 -07:00
Juergen Gross
7e09ac27f4 x86: Fix .brk attribute in linker script
Commit in Fixes added the "NOLOAD" attribute to the .brk section as a
"failsafe" measure.

Unfortunately, this leads to the linker no longer covering the .brk
section in a program header, resulting in the kernel loader not knowing
that the memory for the .brk section must be reserved.

This has led to crashes when loading the kernel as PV dom0 under Xen,
but other scenarios could be hit by the same problem (e.g. in case an
uncompressed kernel is used and the initrd is placed directly behind
it).

So drop the "NOLOAD" attribute. This has been verified to correctly
cover the .brk section by a program header of the resulting ELF file.

Fixes: e32683c6f7 ("x86/mm: Fix RESERVE_BRK() for older binutils")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20220630071441.28576-4-jgross@suse.com
2022-07-01 11:12:43 +02:00
Peter Zijlstra
a149180fbc x86: Add magic AMD return-thunk
Note: needs to be in a section distinct from Retpolines such that the
Retpoline RET substitution cannot possibly use immediate jumps.

ORC unwinding for zen_untrain_ret() and __x86_return_thunk() is a
little tricky but works due to the fact that zen_untrain_ret() doesn't
have any stack ops and as such will emit a single ORC entry at the
start (+0x3f).

Meanwhile, unwinding an IP, including the __x86_return_thunk() one
(+0x40) will search for the largest ORC entry smaller or equal to the
IP, these will find the one ORC entry (+0x3f) and all works.

  [ Alexandre: SVM part. ]
  [ bp: Build fix, massages. ]

Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
2022-06-27 10:33:59 +02:00
Peter Zijlstra
15e67227c4 x86: Undo return-thunk damage
Introduce X86_FEATURE_RETHUNK for those afflicted with needing this.

  [ bp: Do only INT3 padding - simpler. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
2022-06-27 10:33:58 +02:00
Josh Poimboeuf
e32683c6f7 x86/mm: Fix RESERVE_BRK() for older binutils
With binutils 2.26, RESERVE_BRK() causes a build failure:

  /tmp/ccnGOKZ5.s: Assembler messages:
  /tmp/ccnGOKZ5.s:98: Error: missing ')'
  /tmp/ccnGOKZ5.s:98: Error: missing ')'
  /tmp/ccnGOKZ5.s:98: Error: missing ')'
  /tmp/ccnGOKZ5.s:98: Error: junk at end of line, first unrecognized
  character is `U'

The problem is this line:

  RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE)

Specifically, the INIT_PGT_BUF_SIZE macro which (via PAGE_SIZE's use
_AC()) has a "1UL", which makes older versions of the assembler unhappy.
Unfortunately the _AC() macro doesn't work for inline asm.

Inline asm was only needed here to convince the toolchain to add the
STT_NOBITS flag.  However, if a C variable is placed in a section whose
name is prefixed with ".bss", GCC and Clang automatically set
STT_NOBITS.  In fact, ".bss..page_aligned" already relies on this trick.

So fix the build failure (and simplify the macro) by allocating the
variable in C.

Also, add NOLOAD to the ".brk" output section clause in the linker
script.  This is a failsafe in case the ".bss" prefix magic trick ever
stops working somehow.  If there's a section type mismatch, the GNU
linker will force the ".brk" output section to be STT_NOBITS.  The LLVM
linker will fail with a "section type mismatch" error.

Note this also changes the name of the variable from .brk.##name to
__brk_##name.  The variable names aren't actually used anywhere, so it's
harmless.

Fixes: a1e2c031ec ("x86/mm: Simplify RESERVE_BRK()")
Reported-by: Joe Damato <jdamato@fastly.com>
Reported-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Joe Damato <jdamato@fastly.com>
Link: https://lore.kernel.org/r/22d07a44c80d8e8e1e82b9a806ddc8c6bbb2606e.1654759036.git.jpoimboe@kernel.org
2022-06-13 10:15:04 +02:00
Christoph Hellwig
78013eaadf x86: remove the IOMMU table infrastructure
The IOMMU table tries to separate the different IOMMUs into different
backends, but actually requires various cross calls.

Rewrite the code to do the generic swiotlb/swiotlb-xen setup directly
in pci-dma.c and then just call into the IOMMU drivers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2022-04-18 07:21:10 +02:00
Peter Zijlstra
89bc853eae objtool: Find unused ENDBR instructions
Find all ENDBR instructions which are never referenced and stick them
in a section such that the kernel can poison them, sealing the
functions from ever being an indirect call target.

This removes about 1-in-4 ENDBR instructions.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154319.763643193@infradead.org
2022-03-15 10:32:47 +01:00
Peter Zijlstra
e5eefda5aa x86: Remove .fixup section
No moar users, kill it dead.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20211110101326.201590122@infradead.org
2021-12-11 09:09:50 +01:00
Peter Zijlstra
134ab5bd18 objtool,x86: Replace alternatives with .retpoline_sites
Instead of writing complete alternatives, simply provide a list of all
the retpoline thunk calls. Then the kernel is free to do with them as
it pleases. Simpler code all-round.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120309.850007165@infradead.org
2021-10-28 23:25:25 +02:00
Arvind Sankar
ea3186b957 x86/build: Fix vmlinux size check on 64-bit
Commit

  b4e0409a36 ("x86: check vmlinux limits, 64-bit")

added a check that the size of the 64-bit kernel is less than
KERNEL_IMAGE_SIZE.

The check uses (_end - _text), but this is not enough. The initial
PMD used in startup_64() (level2_kernel_pgt) can only map upto
KERNEL_IMAGE_SIZE from __START_KERNEL_map, not from _text, and the
modules area (MODULES_VADDR) starts at KERNEL_IMAGE_SIZE.

The correct check is what is currently done for 32-bit, since
LOAD_OFFSET is defined appropriately for the two architectures. Just
check (_end - LOAD_OFFSET) against KERNEL_IMAGE_SIZE unconditionally.

Note that on 32-bit, the limit is not strict: KERNEL_IMAGE_SIZE is not
really used by the main kernel. The higher the kernel is located, the
less the space available for the vmalloc area. However, it is used by
KASLR in the compressed stub to limit the maximum address of the kernel
to a safe value.

Clean up various comments to clarify that despite the name,
KERNEL_IMAGE_SIZE is not a limit on the size of the kernel image, but a
limit on the maximum virtual address that the image can occupy.

Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201029161903.2553528-1-nivedita@alum.mit.edu
2020-10-29 21:54:35 +01:00
Linus Torvalds
dd502a8107 This tree introduces static_call(), which is the idea of static_branch()
applied to indirect function calls. Remove a data load (indirection) by
 modifying the text.
 
 They give the flexibility of function pointers, but with better
 performance. (This is especially important for cases where
 retpolines would otherwise be used, as retpolines can be pretty
 slow.)
 
 API overview:
 
   DECLARE_STATIC_CALL(name, func);
   DEFINE_STATIC_CALL(name, func);
   DEFINE_STATIC_CALL_NULL(name, typename);
 
   static_call(name)(args...);
   static_call_cond(name)(args...);
   static_call_update(name, func);
 
 x86 is supported via text patching, otherwise basic indirect calls are used,
 with function pointers.
 
 There's a second variant using inline code patching, inspired by jump-labels,
 implemented on x86 as well.
 
 The new APIs are utilized in the x86 perf code, a heavy user of function pointers,
 where static calls speed up the PMU handler by 4.2% (!).
 
 The generic implementation is not really excercised on other architectures,
 outside of the trivial test_static_call_init() self-test.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+EfAQRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1iEAw//divHeVCJnHhV+YBbuI9ROUsERkzu8VhK
 O1DEmW68Fvj7pszT8NZsMjtkt97ZtxDRK7aCJiiup0eItG9qCJ8lpCLb84ZbizHV
 HhCbhBLrpxSvTrWlQnkgP1OkPAbtoryIjVlZzWhjye2MY8UEbVnZWyviBolbAAxH
 Fk1Yi56fIMu19GO+9Ohzy9E2VDnVEH1iMx5YWoLD2H88Qbq/yEMP+U2tIj8hIVKT
 Y/jdogihNXRIau6QB+YPfDPisdty+RHxfU7zct4Rv8cFF5ylglZB5fD34C3sUQF2
 WqsaYz7zjUj9f02F8pw8hIaAT7InzArPhlNVITxf2oMfmdrNqBptnSCddZqCJLvv
 oDGew21k50Zcbqkv9amclpxXH5tTpRvJeqit2pz/85GMeqBRuhzHUAkCpht5YA73
 qJsHWS3z+qIxKi0tDbhDJswuwa51q5sgdUUwo1uCr3wT3DGDlqNhCAZBzX14dcty
 0shDSbv13TCwqAcb7asPzEoPwE15cwa+x+viGEIL901pyZKyQYjs/abDU26It3BW
 roWRkuVJZ9/QMdZJs1v7kaXw1L8YiKIDkBgke+xbfrDwEvvjudQkl2LUL66DB11j
 RJU3GyxKClvdY06SSRh/H13fqZLNKh1JZ0nPEWSTJECDFN9zcDjrDrod/7PFOcpY
 NAlawLoGG+s=
 =JvpF
 -----END PGP SIGNATURE-----

Merge tag 'core-static_call-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull static call support from Ingo Molnar:
 "This introduces static_call(), which is the idea of static_branch()
  applied to indirect function calls. Remove a data load (indirection)
  by modifying the text.

  They give the flexibility of function pointers, but with better
  performance. (This is especially important for cases where retpolines
  would otherwise be used, as retpolines can be pretty slow.)

  API overview:

      DECLARE_STATIC_CALL(name, func);
      DEFINE_STATIC_CALL(name, func);
      DEFINE_STATIC_CALL_NULL(name, typename);

      static_call(name)(args...);
      static_call_cond(name)(args...);
      static_call_update(name, func);

  x86 is supported via text patching, otherwise basic indirect calls are
  used, with function pointers.

  There's a second variant using inline code patching, inspired by
  jump-labels, implemented on x86 as well.

  The new APIs are utilized in the x86 perf code, a heavy user of
  function pointers, where static calls speed up the PMU handler by
  4.2% (!).

  The generic implementation is not really excercised on other
  architectures, outside of the trivial test_static_call_init()
  self-test"

* tag 'core-static_call-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
  static_call: Fix return type of static_call_init
  tracepoint: Fix out of sync data passing by static caller
  tracepoint: Fix overly long tracepoint names
  x86/perf, static_call: Optimize x86_pmu methods
  tracepoint: Optimize using static_call()
  static_call: Allow early init
  static_call: Add some validation
  static_call: Handle tail-calls
  static_call: Add static_call_cond()
  x86/alternatives: Teach text_poke_bp() to emulate RET
  static_call: Add simple self-test for static calls
  x86/static_call: Add inline static call implementation for x86-64
  x86/static_call: Add out-of-line static call implementation
  static_call: Avoid kprobes on inline static_call()s
  static_call: Add inline static call infrastructure
  static_call: Add basic static call infrastructure
  compiler.h: Make __ADDRESSABLE() symbol truly unique
  jump_label,module: Fix module lifetime for __jump_label_mod_text_reserved()
  module: Properly propagate MODULE_STATE_COMING failure
  module: Fix up module_notifier return values
  ...
2020-10-12 13:58:15 -07:00
Kees Cook
5354e84598 x86/build: Add asserts for unwanted sections
In preparation for warning on orphan sections, enforce other
expected-to-be-zero-sized sections (since discarding them might hide
problems with them suddenly gaining unexpected entries).

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200821194310.3089815-25-keescook@chromium.org
2020-09-01 10:03:18 +02:00
Kees Cook
815d680771 x86/build: Enforce an empty .got.plt section
The .got.plt section should always be zero (or filled only with the
linker-generated lazy dispatch entry). Enforce this with an assert and
mark the section as INFO. This is more sensitive than just blindly
discarding the section.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200821194310.3089815-24-keescook@chromium.org
2020-09-01 10:03:18 +02:00
Josh Poimboeuf
1e7e478838 x86/static_call: Add inline static call implementation for x86-64
Add the inline static call implementation for x86-64. The generated code
is identical to the out-of-line case, except we move the trampoline into
it's own section.

Objtool uses the trampoline naming convention to detect all the call
sites. It then annotates those call sites in the .static_call_sites
section.

During boot (and module init), the call sites are patched to call
directly into the destination function.  The temporary trampoline is
then no longer used.

[peterz: merged trampolines, put trampoline in section]

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20200818135804.864271425@infradead.org
2020-09-01 09:58:05 +02:00
Kees Cook
c604abc3f6 vmlinux.lds.h: Split ELF_DETAILS from STABS_DEBUG
The .comment section doesn't belong in STABS_DEBUG. Split it out into a
new macro named ELF_DETAILS. This will gain other non-debug sections
that need to be accounted for when linking with --orphan-handling=warn.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-arch@vger.kernel.org
Link: https://lore.kernel.org/r/20200821194310.3089815-5-keescook@chromium.org
2020-09-01 09:50:35 +02:00
Joerg Roedel
de2b41be8f x86, vmlinux.lds: Page-align end of ..page_aligned sections
On x86-32 the idt_table with 256 entries needs only 2048 bytes. It is
page-aligned, but the end of the .bss..page_aligned section is not
guaranteed to be page-aligned.

As a result, objects from other .bss sections may end up on the same 4k
page as the idt_table, and will accidentially get mapped read-only during
boot, causing unexpected page-faults when the kernel writes to them.

This could be worked around by making the objects in the page aligned
sections page sized, but that's wrong.

Explicit sections which store only page aligned objects have an implicit
guarantee that the object is alone in the page in which it is placed. That
works for all objects except the last one. That's inconsistent.

Enforcing page sized objects for these sections would wreckage memory
sanitizers, because the object becomes artificially larger than it should
be and out of bound access becomes legit.

Align the end of the .bss..page_aligned and .data..page_aligned section on
page-size so all objects places in these sections are guaranteed to have
their own page.

[ tglx: Amended changelog ]

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200721093448.10417-1-joro@8bytes.org
2020-07-22 09:38:37 +02:00
Linus Torvalds
076f14be7f The X86 entry, exception and interrupt code rework
This all started about 6 month ago with the attempt to move the Posix CPU
 timer heavy lifting out of the timer interrupt code and just have lockless
 quick checks in that code path. Trivial 5 patches.
 
 This unearthed an inconsistency in the KVM handling of task work and the
 review requested to move all of this into generic code so other
 architectures can share.
 
 Valid request and solved with another 25 patches but those unearthed
 inconsistencies vs. RCU and instrumentation.
 
 Digging into this made it obvious that there are quite some inconsistencies
 vs. instrumentation in general. The int3 text poke handling in particular
 was completely unprotected and with the batched update of trace events even
 more likely to expose to endless int3 recursion.
 
 In parallel the RCU implications of instrumenting fragile entry code came
 up in several discussions.
 
 The conclusion of the X86 maintainer team was to go all the way and make
 the protection against any form of instrumentation of fragile and dangerous
 code pathes enforcable and verifiable by tooling.
 
 A first batch of preparatory work hit mainline with commit d5f744f9a2.
 
 The (almost) full solution introduced a new code section '.noinstr.text'
 into which all code which needs to be protected from instrumentation of all
 sorts goes into. Any call into instrumentable code out of this section has
 to be annotated. objtool has support to validate this. Kprobes now excludes
 this section fully which also prevents BPF from fiddling with it and all
 'noinstr' annotated functions also keep ftrace off. The section, kprobes
 and objtool changes are already merged.
 
 The major changes coming with this are:
 
     - Preparatory cleanups
 
     - Annotating of relevant functions to move them into the noinstr.text
       section or enforcing inlining by marking them __always_inline so the
       compiler cannot misplace or instrument them.
 
     - Splitting and simplifying the idtentry macro maze so that it is now
       clearly separated into simple exception entries and the more
       interesting ones which use interrupt stacks and have the paranoid
       handling vs. CR3 and GS.
 
     - Move quite some of the low level ASM functionality into C code:
 
        - enter_from and exit to user space handling. The ASM code now calls
          into C after doing the really necessary ASM handling and the return
 	 path goes back out without bells and whistels in ASM.
 
        - exception entry/exit got the equivivalent treatment
 
        - move all IRQ tracepoints from ASM to C so they can be placed as
          appropriate which is especially important for the int3 recursion
          issue.
 
     - Consolidate the declaration and definition of entry points between 32
       and 64 bit. They share a common header and macros now.
 
     - Remove the extra device interrupt entry maze and just use the regular
       exception entry code.
 
     - All ASM entry points except NMI are now generated from the shared header
       file and the corresponding macros in the 32 and 64 bit entry ASM.
 
     - The C code entry points are consolidated as well with the help of
       DEFINE_IDTENTRY*() macros. This allows to ensure at one central point
       that all corresponding entry points share the same semantics. The
       actual function body for most entry points is in an instrumentable
       and sane state.
 
       There are special macros for the more sensitive entry points,
       e.g. INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
       They allow to put the whole entry instrumentation and RCU handling
       into safe places instead of the previous pray that it is correct
       approach.
 
     - The INT3 text poke handling is now completely isolated and the
       recursion issue banned. Aside of the entry rework this required other
       isolation work, e.g. the ability to force inline bsearch.
 
     - Prevent #DB on fragile entry code, entry relevant memory and disable
       it on NMI, #MC entry, which allowed to get rid of the nested #DB IST
       stack shifting hackery.
 
     - A few other cleanups and enhancements which have been made possible
       through this and already merged changes, e.g. consolidating and
       further restricting the IDT code so the IDT table becomes RO after
       init which removes yet another popular attack vector
 
     - About 680 lines of ASM maze are gone.
 
 There are a few open issues:
 
    - An escape out of the noinstr section in the MCE handler which needs
      some more thought but under the aspect that MCE is a complete
      trainwreck by design and the propability to survive it is low, this was
      not high on the priority list.
 
    - Paravirtualization
 
      When PV is enabled then objtool complains about a bunch of indirect
      calls out of the noinstr section. There are a few straight forward
      ways to fix this, but the other issues vs. general correctness were
      more pressing than parawitz.
 
    - KVM
 
      KVM is inconsistent as well. Patches have been posted, but they have
      not yet been commented on or picked up by the KVM folks.
 
    - IDLE
 
      Pretty much the same problems can be found in the low level idle code
      especially the parts where RCU stopped watching. This was beyond the
      scope of the more obvious and exposable problems and is on the todo
      list.
 
 The lesson learned from this brain melting exercise to morph the evolved
 code base into something which can be validated and understood is that once
 again the violation of the most important engineering principle
 "correctness first" has caused quite a few people to spend valuable time on
 problems which could have been avoided in the first place. The "features
 first" tinkering mindset really has to stop.
 
 With that I want to say thanks to everyone involved in contributing to this
 effort. Special thanks go to the following people (alphabetical order):
 
    Alexandre Chartre
    Andy Lutomirski
    Borislav Petkov
    Brian Gerst
    Frederic Weisbecker
    Josh Poimboeuf
    Juergen Gross
    Lai Jiangshan
    Macro Elver
    Paolo Bonzini
    Paul McKenney
    Peter Zijlstra
    Vitaly Kuznetsov
    Will Deacon
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7j510THHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoU2WD/4refvaNm08fG7aiVYem3JJzr0+Pq5O
 /opwnI/1D973ApApj5W/Nd53sN5tVqOiXncSKgywRBWZxRCAGjVYypl9rjpvXu4l
 HlMjhEKBmWkDryxxrM98Vr7hl3hnId5laR56oFfH+G4LUsItaV6Uak/HfXZ4Mq1k
 iYVbEtl2CN+KJjvSgZ6Y1l853Ab5mmGvmeGNHHWCj8ZyjF3cOLoelDTQNnsb0wXM
 crKXBcXJSsCWKYyJ5PTvB82crQCET7Su+LgwK06w/ZbW1//2hVIjSCiN5o/V+aRJ
 06BZNMj8v9tfglkN8LEQvRIjTlnEQ2sq3GxbrVtA53zxkzbBCBJQ96w8yYzQX0ux
 yhqQ/aIZJ1wTYEjJzSkftwLNMRHpaOUnKvJndXRKAYi+eGI7syF61qcZSYGKuAQ/
 bK3b/CzU6QWr1235oTADxh4isEwxA0Pg5wtJCfDDOG0MJ9ALMSOGUkhoiz5EqpkU
 mzFAwfG/Uj7hRjlkms7Yj2OjZfnU7iypj63GgpXghLjr5ksRFKEOMw8e1GXltVHs
 zzwghUjqp2EPq0VOOQn3lp9lol5Prc3xfFHczKpO+CJW6Rpa4YVdqJmejBqJy/on
 Hh/T/ST3wa2qBeAw89vZIeWiUJZZCsQ0f//+2hAbzJY45Y6DuR9vbTAPb9agRgOM
 xg+YaCfpQqFc1A==
 =llba
 -----END PGP SIGNATURE-----

Merge tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 entry updates from Thomas Gleixner:
 "The x86 entry, exception and interrupt code rework

  This all started about 6 month ago with the attempt to move the Posix
  CPU timer heavy lifting out of the timer interrupt code and just have
  lockless quick checks in that code path. Trivial 5 patches.

  This unearthed an inconsistency in the KVM handling of task work and
  the review requested to move all of this into generic code so other
  architectures can share.

  Valid request and solved with another 25 patches but those unearthed
  inconsistencies vs. RCU and instrumentation.

  Digging into this made it obvious that there are quite some
  inconsistencies vs. instrumentation in general. The int3 text poke
  handling in particular was completely unprotected and with the batched
  update of trace events even more likely to expose to endless int3
  recursion.

  In parallel the RCU implications of instrumenting fragile entry code
  came up in several discussions.

  The conclusion of the x86 maintainer team was to go all the way and
  make the protection against any form of instrumentation of fragile and
  dangerous code pathes enforcable and verifiable by tooling.

  A first batch of preparatory work hit mainline with commit
  d5f744f9a2 ("Pull x86 entry code updates from Thomas Gleixner")

  That (almost) full solution introduced a new code section
  '.noinstr.text' into which all code which needs to be protected from
  instrumentation of all sorts goes into. Any call into instrumentable
  code out of this section has to be annotated. objtool has support to
  validate this.

  Kprobes now excludes this section fully which also prevents BPF from
  fiddling with it and all 'noinstr' annotated functions also keep
  ftrace off. The section, kprobes and objtool changes are already
  merged.

  The major changes coming with this are:

    - Preparatory cleanups

    - Annotating of relevant functions to move them into the
      noinstr.text section or enforcing inlining by marking them
      __always_inline so the compiler cannot misplace or instrument
      them.

    - Splitting and simplifying the idtentry macro maze so that it is
      now clearly separated into simple exception entries and the more
      interesting ones which use interrupt stacks and have the paranoid
      handling vs. CR3 and GS.

    - Move quite some of the low level ASM functionality into C code:

       - enter_from and exit to user space handling. The ASM code now
         calls into C after doing the really necessary ASM handling and
         the return path goes back out without bells and whistels in
         ASM.

       - exception entry/exit got the equivivalent treatment

       - move all IRQ tracepoints from ASM to C so they can be placed as
         appropriate which is especially important for the int3
         recursion issue.

    - Consolidate the declaration and definition of entry points between
      32 and 64 bit. They share a common header and macros now.

    - Remove the extra device interrupt entry maze and just use the
      regular exception entry code.

    - All ASM entry points except NMI are now generated from the shared
      header file and the corresponding macros in the 32 and 64 bit
      entry ASM.

    - The C code entry points are consolidated as well with the help of
      DEFINE_IDTENTRY*() macros. This allows to ensure at one central
      point that all corresponding entry points share the same
      semantics. The actual function body for most entry points is in an
      instrumentable and sane state.

      There are special macros for the more sensitive entry points, e.g.
      INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
      They allow to put the whole entry instrumentation and RCU handling
      into safe places instead of the previous pray that it is correct
      approach.

    - The INT3 text poke handling is now completely isolated and the
      recursion issue banned. Aside of the entry rework this required
      other isolation work, e.g. the ability to force inline bsearch.

    - Prevent #DB on fragile entry code, entry relevant memory and
      disable it on NMI, #MC entry, which allowed to get rid of the
      nested #DB IST stack shifting hackery.

    - A few other cleanups and enhancements which have been made
      possible through this and already merged changes, e.g.
      consolidating and further restricting the IDT code so the IDT
      table becomes RO after init which removes yet another popular
      attack vector

    - About 680 lines of ASM maze are gone.

  There are a few open issues:

   - An escape out of the noinstr section in the MCE handler which needs
     some more thought but under the aspect that MCE is a complete
     trainwreck by design and the propability to survive it is low, this
     was not high on the priority list.

   - Paravirtualization

     When PV is enabled then objtool complains about a bunch of indirect
     calls out of the noinstr section. There are a few straight forward
     ways to fix this, but the other issues vs. general correctness were
     more pressing than parawitz.

   - KVM

     KVM is inconsistent as well. Patches have been posted, but they
     have not yet been commented on or picked up by the KVM folks.

   - IDLE

     Pretty much the same problems can be found in the low level idle
     code especially the parts where RCU stopped watching. This was
     beyond the scope of the more obvious and exposable problems and is
     on the todo list.

  The lesson learned from this brain melting exercise to morph the
  evolved code base into something which can be validated and understood
  is that once again the violation of the most important engineering
  principle "correctness first" has caused quite a few people to spend
  valuable time on problems which could have been avoided in the first
  place. The "features first" tinkering mindset really has to stop.

  With that I want to say thanks to everyone involved in contributing to
  this effort. Special thanks go to the following people (alphabetical
  order): Alexandre Chartre, Andy Lutomirski, Borislav Petkov, Brian
  Gerst, Frederic Weisbecker, Josh Poimboeuf, Juergen Gross, Lai
  Jiangshan, Macro Elver, Paolo Bonzin,i Paul McKenney, Peter Zijlstra,
  Vitaly Kuznetsov, and Will Deacon"

* tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (142 commits)
  x86/entry: Force rcu_irq_enter() when in idle task
  x86/entry: Make NMI use IDTENTRY_RAW
  x86/entry: Treat BUG/WARN as NMI-like entries
  x86/entry: Unbreak __irqentry_text_start/end magic
  x86/entry: __always_inline CR2 for noinstr
  lockdep: __always_inline more for noinstr
  x86/entry: Re-order #DB handler to avoid *SAN instrumentation
  x86/entry: __always_inline arch_atomic_* for noinstr
  x86/entry: __always_inline irqflags for noinstr
  x86/entry: __always_inline debugreg for noinstr
  x86/idt: Consolidate idt functionality
  x86/idt: Cleanup trap_init()
  x86/idt: Use proper constants for table size
  x86/idt: Add comments about early #PF handling
  x86/idt: Mark init only functions __init
  x86/entry: Rename trace_hardirqs_off_prepare()
  x86/entry: Clarify irq_{enter,exit}_rcu()
  x86/entry: Remove DBn stacks
  x86/entry: Remove debug IDT frobbing
  x86/entry: Optimize local_db_save() for virt
  ...
2020-06-13 10:05:47 -07:00
Thomas Gleixner
f0178fc01f x86/entry: Unbreak __irqentry_text_start/end magic
The entry rework moved interrupt entry code from the irqentry to the
noinstr section which made the irqentry section empty.

This breaks boundary checks which rely on the __irqentry_text_start/end
markers to find out whether a function in a stack trace is
interrupt/exception entry code. This affects the function graph tracer and
filter_irq_stacks().

As the IDT entry points are all sequentialy emitted this is rather simple
to unbreak by injecting __irqentry_text_start/end as global labels.

To make this work correctly:

  - Remove the IRQENTRY_TEXT section from the x86 linker script
  - Define __irqentry so it breaks the build if it's used
  - Adjust the entry mirroring in PTI
  - Remove the redundant kprobes and unwinder bound checks

Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2020-06-11 15:15:29 +02:00
Bob Haarman
d8ad6d39c3 x86_64: Fix jiffies ODR violation
'jiffies' and 'jiffies_64' are meant to alias (two different symbols that
share the same address).  Most architectures make the symbols alias to the
same address via a linker script assignment in their
arch/<arch>/kernel/vmlinux.lds.S:

jiffies = jiffies_64;

which is effectively a definition of jiffies.

jiffies and jiffies_64 are both forward declared for all architectures in
include/linux/jiffies.h. jiffies_64 is defined in kernel/time/timer.c.

x86_64 was peculiar in that it wasn't doing the above linker script
assignment, but rather was:
1. defining jiffies in arch/x86/kernel/time.c instead via the linker script.
2. overriding the symbol jiffies_64 from kernel/time/timer.c in
arch/x86/kernel/vmlinux.lds.s via 'jiffies_64 = jiffies;'.

As Fangrui notes:

  In LLD, symbol assignments in linker scripts override definitions in
  object files. GNU ld appears to have the same behavior. It would
  probably make sense for LLD to error "duplicate symbol" but GNU ld
  is unlikely to adopt for compatibility reasons.

This results in an ODR violation (UB), which seems to have survived
thus far. Where it becomes harmful is when;

1. -fno-semantic-interposition is used:

As Fangrui notes:

  Clang after LLVM commit 5b22bcc2b70d
  ("[X86][ELF] Prefer to lower MC_GlobalAddress operands to .Lfoo$local")
  defaults to -fno-semantic-interposition similar semantics which help
  -fpic/-fPIC code avoid GOT/PLT when the referenced symbol is defined
  within the same translation unit. Unlike GCC
  -fno-semantic-interposition, Clang emits such relocations referencing
  local symbols for non-pic code as well.

This causes references to jiffies to refer to '.Ljiffies$local' when
jiffies is defined in the same translation unit. Likewise, references to
jiffies_64 become references to '.Ljiffies_64$local' in translation units
that define jiffies_64.  Because these differ from the names used in the
linker script, they will not be rewritten to alias one another.

2. Full LTO

Full LTO effectively treats all source files as one translation
unit, causing these local references to be produced everywhere.  When
the linker processes the linker script, there are no longer any
references to jiffies_64' anywhere to replace with 'jiffies'.  And
thus '.Ljiffies$local' and '.Ljiffies_64$local' no longer alias
at all.

In the process of porting patches enabling Full LTO from arm64 to x86_64,
spooky bugs have been observed where the kernel appeared to boot, but init
doesn't get scheduled.

Avoid the ODR violation by matching other architectures and define jiffies
only by linker script.  For -fno-semantic-interposition + Full LTO, there
is no longer a global definition of jiffies for the compiler to produce a
local symbol which the linker script won't ensure aliases to jiffies_64.

Fixes: 40747ffa5a ("asmlinkage: Make jiffies visible")
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Reported-by: Alistair Delva <adelva@google.com>
Debugged-by: Nick Desaulniers <ndesaulniers@google.com>
Debugged-by: Sami Tolvanen <samitolvanen@google.com>
Suggested-by: Fangrui Song <maskray@google.com>
Signed-off-by: Bob Haarman <inglorion@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # build+boot on
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: stable@vger.kernel.org
Link: https://github.com/ClangBuiltLinux/linux/issues/852
Link: https://lkml.kernel.org/r/20200602193100.229287-1-inglorion@google.com
2020-06-09 10:50:56 +02:00
Linus Torvalds
97cddfc345 Merge branch 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 build updates from Ingo Molnar:
 "A handful of updates: two linker script cleanups and a stock
  defconfig+allmodconfig bootability fix"

* 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/vdso: Discard .note.gnu.property sections in vDSO
  x86, vmlinux.lds: Add RUNTIME_DISCARD_EXIT to generic DISCARDS
  x86/Kconfig: Make CMDLINE_OVERRIDE depend on non-empty CMDLINE
2020-03-31 10:51:12 -07:00
H.J. Lu
84d5f77fc2 x86, vmlinux.lds: Add RUNTIME_DISCARD_EXIT to generic DISCARDS
In the x86 kernel, .exit.text and .exit.data sections are discarded at
runtime, not by the linker. Add RUNTIME_DISCARD_EXIT to generic DISCARDS
and define it in the x86 kernel linker script to keep them.

The sections are added before the DISCARD directive so document here
only the situation explicitly as this change doesn't have any effect on
the generated kernel. Also, other architectures like ARM64 will use it
too so generalize the approach with the RUNTIME_DISCARD_EXIT define.

 [ bp: Massage and extend commit message. ]

Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200326193021.255002-1-hjl.tools@gmail.com
2020-03-27 11:52:11 +01:00
Arvind Sankar
6f8f0dc980 x86/vmlinux: Drop unneeded linker script discard of .eh_frame
Now that .eh_frame sections for the files in setup.elf and realmode.elf
are not generated anymore, the linker scripts don't need the special
output section name /DISCARD/ any more.

Remove the one in the main kernel linker script as well, since there are
no .eh_frame sections already, and fix up a comment referencing .eh_frame.

Update the comment in asm/dwarf2.h referring to .eh_frame so it continues
to make sense, as well as being more specific.

 [ bp: Touch up commit message. ]

Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Link: https://lkml.kernel.org/r/20200224232129.597160-3-nivedita@alum.mit.edu
2020-02-25 14:51:29 +01:00
Dmitry Safonov
64b302ab66 x86/vdso: Provide vdso_data offset on vvar_page
VDSO support for time namespaces needs to set up a page with the same
layout as VVAR. That timens page will be placed on position of VVAR page
inside namespace. That page has vdso_data->seq set to 1 to enforce
the slow path and vdso_data->clock_mode set to VCLOCK_TIMENS to enforce
the time namespace handling path.

To prepare the time namespace page the kernel needs to know the vdso_data
offset.  Provide arch_get_vdso_data() helper for locating vdso_data on VVAR
page.

Co-developed-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20191112012724.250792-22-dima@arista.com
2020-01-14 12:20:57 +01:00
Kees Cook
7705dc8557 x86/vmlinux: Use INT3 instead of NOP for linker fill bytes
Instead of using 0x90 (NOP) to fill bytes between functions, which makes
it easier to sloppily target functions in function pointer overwrite
attacks, fill with 0xCC (INT3) to force a trap. Also drop the space
between "=" and the value to better match the binutils documentation

  https://sourceware.org/binutils/docs/ld/Output-Section-Fill.html#Output-Section-Fill

Example "objdump -d" before:

  ...
  ffffffff810001e0 <start_cpu0>:
  ffffffff810001e0:       48 8b 25 e1 b1 51 01    mov 0x151b1e1(%rip),%rsp        # ffffffff8251b3c8 <initial_stack>
  ffffffff810001e7:       e9 d5 fe ff ff          jmpq   ffffffff810000c1 <secondary_startup_64+0x91>
  ffffffff810001ec:       90                      nop
  ffffffff810001ed:       90                      nop
  ffffffff810001ee:       90                      nop
  ffffffff810001ef:       90                      nop

  ffffffff810001f0 <__startup_64>:
  ...

After:

  ...
  ffffffff810001e0 <start_cpu0>:
  ffffffff810001e0:       48 8b 25 41 79 53 01    mov 0x1537941(%rip),%rsp        # ffffffff82537b28 <initial_stack>
  ffffffff810001e7:       e9 d5 fe ff ff          jmpq   ffffffff810000c1 <secondary_startup_64+0x91>
  ffffffff810001ec:       cc                      int3
  ffffffff810001ed:       cc                      int3
  ffffffff810001ee:       cc                      int3
  ffffffff810001ef:       cc                      int3

  ffffffff810001f0 <__startup_64>:
  ...

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Ross Zwisler <zwisler@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-30-keescook@chromium.org
2019-11-04 19:10:08 +01:00
Kees Cook
f0d7ee17d5 x86/vmlinux: Move EXCEPTION_TABLE to RO_DATA segment
The exception table was needlessly marked executable. In preparation
for execute-only memory, move the table into the RO_DATA segment via
the new macro that can be used by any architectures that want to make
a similar consolidation.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Ross Zwisler <zwisler@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-17-keescook@chromium.org
2019-11-04 17:55:02 +01:00
Kees Cook
b907693883 x86/vmlinux: Actually use _etext for the end of the text segment
Various calculations are using the end of the exception table (which
does not need to be executable) as the end of the text segment. Instead,
in preparation for moving the exception table into RO_DATA, move _etext
after the exception table and update the calculations.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Ross Zwisler <zwisler@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-16-keescook@chromium.org
2019-11-04 17:54:16 +01:00
Kees Cook
eaf937075c vmlinux.lds.h: Move NOTES into RO_DATA
The .notes section should be non-executable read-only data. As such,
move it to the RO_DATA macro instead of being per-architecture defined.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-11-keescook@chromium.org
2019-11-04 15:34:41 +01:00
Kees Cook
fbe6a8e618 vmlinux.lds.h: Move Program Header restoration into NOTES macro
In preparation for moving NOTES into RO_DATA, make the Program Header
assignment restoration be part of the NOTES macro itself.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-10-keescook@chromium.org
2019-11-04 15:34:39 +01:00
Kees Cook
441110a547 vmlinux.lds.h: Provide EMIT_PT_NOTE to indicate export of .notes
In preparation for moving NOTES into RO_DATA, provide a mechanism for
architectures that want to emit a PT_NOTE Program Header to do so.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-9-keescook@chromium.org
2019-11-04 15:34:38 +01:00
Kees Cook
7a42d41d9d x86/vmlinux: Restore "text" Program Header with dummy section
In a linker script, if one places a section in one or more segments using
":PHDR", then the linker will place all subsequent allocatable sections,
which do not specify ":PHDR", into the same segments. In order to have
the NOTES section in both PT_LOAD (":text") and PT_NOTE (":note"), both
segments are marked, and the only way to undo this to keep subsequent
sections out of PT_NOTE is to mark the following section with just the
single desired PT_LOAD (":text").

In preparation for having a common NOTES macro, perform the segment
assignment using a dummy section (as done by other architectures).

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191029211351.13243-8-keescook@chromium.org
2019-11-04 15:34:36 +01:00
Linus Torvalds
753c8d9b7d Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
 "A collection of assorted fixes:

   - Fix for the pinned cr0/4 fallout which escaped all testing efforts
     because the kvm-intel module was never loaded when the kernel was
     compiled with CONFIG_PARAVIRT=n. The cr0/4 accessors are moved out
     of line and static key is now solely used in the core code and
     therefore can stay in the RO after init section. So the kvm-intel
     and other modules do not longer reference the (read only) static
     key which the module loader tried to update.

   - Prevent an infinite loop in arch_stack_walk_user() by breaking out
     of the loop once the return address is detected to be 0.

   - Prevent the int3_emulate_call() selftest from corrupting the stack
     when KASAN is enabled. KASASN clobbers more registers than covered
     by the emulated call implementation. Convert the int3_magic()
     selftest to a ASM function so the compiler cannot KASANify it.

   - Unbreak the build with old GCC versions and with the Gold linker by
     reverting the 'Move of _etext to the actual end of .text'. In both
     cases the build fails with 'Invalid absolute R_X86_64_32S
     relocation: _etext'

   - Initialize the context lock for init_mm, which was never an issue
     until the alternatives code started to use a temporary mm for
     patching.

   - Fix a build warning vs. the LOWMEM_PAGES constant where clang
     complains rightfully about a signed integer overflow in the shift
     operation by converting the operand to an ULL.

   - Adjust the misnamed ENDPROC() of common_spurious in the 32bit entry
     code"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/stacktrace: Prevent infinite loop in arch_stack_walk_user()
  x86/asm: Move native_write_cr0/4() out of line
  x86/pgtable/32: Fix LOWMEM_PAGES constant
  x86/alternatives: Fix int3_emulate_call() selftest stack corruption
  x86/entry/32: Fix ENDPROC of common_spurious
  Revert "x86/build: Move _etext to actual end of .text"
  x86/ldt: Initialize the context lock for init_mm
2019-07-11 13:54:00 -07:00
Ross Zwisler
013c66edf2 Revert "x86/build: Move _etext to actual end of .text"
This reverts commit 392bef7096.

Per the discussion here:

  https://lkml.kernel.org/r/201906201042.3BF5CD6@keescook

the above referenced commit breaks kernel compilation with old GCC
toolchains as well as current versions of the Gold linker.

Revert it to fix the regression and to keep the ability to compile the
kernel with these tools.

Signed-off-by: Ross Zwisler <zwisler@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Cc: <stable@vger.kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Johannes Hirte <johannes.hirte@datenkhaos.de>
Cc: Klaus Kusche <klaus.kusche@computerix.info>
Cc: samitolvanen@google.com
Cc: Guenter Roeck <groeck@google.com>
Link: https://lkml.kernel.org/r/20190701155208.211815-1-zwisler@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-09 13:57:31 +02:00
Thomas Lendacky
e1bfa87399 x86/mm: Create a workarea in the kernel for SME early encryption
In order for the kernel to be encrypted "in place" during boot, a workarea
outside of the kernel must be used. This SME workarea used during early
encryption of the kernel is situated on a 2MB boundary after the end of
the kernel text, data, etc. sections (_end).

This works well during initial boot of a compressed kernel because of
the relocation used for decompression of the kernel. But when performing
a kexec boot, there's a chance that the SME workarea may not be mapped
by the kexec pagetables or that some of the other data used by kexec
could exist in this range.

Create a section for SME in vmlinux.lds.S. Position it after "_end", which
is after "__end_of_kernel_reserve", so that the memory will be reclaimed
during boot and since this area is all zeroes, it compresses well. This
new section will be part of the kernel image, so kexec will account for it
in pagetable mappings and placement of data after the kernel.

Here's an example of a kernel size without and with the SME section:

	without:
		vmlinux:	36,501,616
		bzImage:	 6,497,344

		100000000-47f37ffff : System RAM
		  1e4000000-1e47677d4 : Kernel code	(0x7677d4)
		  1e47677d5-1e4e2e0bf : Kernel data	(0x6c68ea)
		  1e5074000-1e5372fff : Kernel bss	(0x2fefff)

	with:
		vmlinux:	44,419,408
		bzImage:	 6,503,136

		880000000-c7ff7ffff : System RAM
		  8cf000000-8cf7677d4 : Kernel code	(0x7677d4)
		  8cf7677d5-8cfe2e0bf : Kernel data	(0x6c68ea)
		  8d0074000-8d0372fff : Kernel bss	(0x2fefff)

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Lianbo Jiang <lijiang@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/3c483262eb4077b1654b2052bd14a8d011bffde3.1560969363.git.thomas.lendacky@amd.com
2019-06-20 09:44:26 +02:00
Thomas Lendacky
c603a309cc x86/mm: Identify the end of the kernel area to be reserved
The memory occupied by the kernel is reserved using memblock_reserve()
in setup_arch(). Currently, the area is from symbols _text to __bss_stop.
Everything after __bss_stop must be specifically reserved otherwise it
is discarded. This is not clearly documented.

Add a new symbol, __end_of_kernel_reserve, that more readily identifies
what is reserved, along with comments that indicate what is reserved,
what is discarded and what needs to be done to prevent a section from
being discarded.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Lianbo Jiang <lijiang@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert Richter <rrichter@marvell.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/7db7da45b435f8477f25e66f292631ff766a844c.1560969363.git.thomas.lendacky@amd.com
2019-06-20 09:22:47 +02:00