* 'spi/merge' of git://git.secretlab.ca/git/linux-2.6:
dt/fsldma: fix build warning caused by of_platform_device changes
spi: Fix race condition in stop_queue()
gpio/pch_gpio: Fix output value of pch_gpio_direction_output()
gpio/ml_ioh_gpio: Fix output value of ioh_gpio_direction_output()
gpio/pca953x: fix error handling path in probe() call
There's a race condition in stop_queue() in some drivers -
if drv_data->queue is empty, but drv_data->busy is still set
(or opposite situation) stop_queue will return -EBUSY.
So fix loop condition to check that both drv_data->queue is empty
and drv_data->busy is not set.
This patch affects following drivers:
pxa2xx_spi
spi_bfin5xx
amba-pl022
dw_spi
Signed-off-by: Vasily Khoruzhick <anarsoul@gmail.com>
Acked-by: Eric Miao <eric.y.miao@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
leverage the performance gain by change in low level
read/write batch operations
Signed-off-by: Alek Du <alek.du@intel.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Current poll transfer will read/write one word, then wait till the
hw is non-busy, it's not efficient. This patch will try to read/write
as many words as permitted by hardware FIFO depth.
Signed-off-by: Alek Du <alek.du@intel.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
The flush() is used to drain all the left data in rx fifo, currently
is is always called together with disabling hw. But from spec, disabling
hw will also reset all the fifo, so flush() is not needed.
Signed-off-by: Alek Du <alek.du@intel.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
The original version has many duplicated codes for null/u8/u16 case,
so unify them to make it cleaner
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
include/linux/dw_spi.h only includes driver internal data. It doesn't
expose a platform_data configuration structure or similar (at least
nothing in-tree). This patch moves the header into drivers/spi so
that the scope is limited to only the dw_spi_*.c driver files
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Cc: Feng Tang <feng.tang@intel.com>
Cc: spi-devel-general@lists.sourceforge.net
dw_spi driver in upstream only supports PIO mode, and this patch
will support it to cowork with the Designware dma controller used
on Intel Moorestown platform, at the same time it provides a general
framework to support dw_spi core to cowork with dma controllers on
other platforms
It has been tested with a Option GTM501L 3G modem and Infenion 60x60
modem. To use DMA mode, DMA controller 2 of Moorestown has to be enabled
Also change the dma interface suggested by Linus Walleij.
Acked-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
[Typo fix and renames to match intel_mid_dma renaming]
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
The SPI polling loop timeout only works with HZ=100 as the loop was
actually too short.
Also add appropriate cpu_relax() in the busy wait loops...
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
There is a possibility that the last word of a transaction will be lost
if data is not ready. Re-read in poll_transfer() to solve this issue
when poll_mode is enabled.
Verified on SPI touch screen device.
Signed-off-by: Major Lee <major_lee@wistron.com>
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
commit 052dc7c45i "spi/dw_spi: conditional transfer mode change"
introduced cs_control code, which has a bug by using bit offset
for spi mode to set transfer mode in control register. Also it
forces devices who don't need cs_control to re-configure the
control registers for each spi transfer. This patch will fix them
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Allow interrupt sharing since exclusive interrupt line for
DW SPI controller is not provided on every platform.
Signed-off-by: Yong Wang <yong.y.wang@intel.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
So that interface drivers could be built as modules
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
This allows the switching between transfer modes between 'transmit only',
'receive only' and 'transmit and receive' modes. Due to the design of the SPI
block, changing transfer modes requires that the block be disabled; in doing
so the chipselect line is inherently deasserted and (usually) the attached
device discards its state. Consequentially, switching modes requires that a
platform-specific chipselect function has been defined so that the chipselect
is not dropped during the change.
Signed-off-by: George Shore <george@georgeshore.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
The 'poll_transfer' function employs a conditional to test whether the
transmit buffer is valid; in doing so, on a receive operation no data is
clocked out, thus no data is clocked in and ultimately errors appear.
This removes the conditional as the transmit function will be set to a null
writer when the transmit buffer is invalid, allowing the driver to clock
0x00 out to the device to receive data from the device.
Signed-off-by: George Shore <george@georgeshore.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
FIFO depth is configurable for each implementation of DW core,
so add a depth detection for those interface drivers who don't set
the fifo_len explicitly
Signed-off-by: Feng Tang <feng.tang@intel.com>
Acked-by: Jean-Hugues Deschenes <jean-hugues.deschenes@octasic.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Now dw_spi core fully supports 3 transfer modes: pure polling,
DMA and IRQ mode. IRQ mode will use the FIFO half empty as
the IRQ trigger, so each interface driver need set the fifo_len,
so that core driver can handle it properly
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Make the driver wait at least for 1 jiffie before issuing the
warning, no matter what HZ is set to
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Driver for the Designware SPI core, it supports multipul interfaces like
PCI/APB etc. User can use "dw_apb_ssi_db.pdf" from Synopsys as HW
datasheet.
[randy.dunlap@oracle.com: fix build]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Feng Tang <feng.tang@intel.com>
Cc: David Brownell <david-b@pacbell.net>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>