Commit graph

42955 commits

Author SHA1 Message Date
Daan De Meyer
1474a8aff1 bpf: Add bpf_sock_addr_set_sun_path() to allow writing unix sockaddr from bpf
[ Upstream commit 53e380d214 ]

As prep for adding unix socket support to the cgroup sockaddr hooks,
let's add a kfunc bpf_sock_addr_set_sun_path() that allows modifying a unix
sockaddr from bpf. While this is already possible for AF_INET and AF_INET6,
we'll need this kfunc when we add unix socket support since modifying the
address for those requires modifying both the address and the sockaddr
length.

Signed-off-by: Daan De Meyer <daan.j.demeyer@gmail.com>
Link: https://lore.kernel.org/r/20231011185113.140426-4-daan.j.demeyer@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Stable-dep-of: c5114710c8 ("xsk: fix usage of multi-buffer BPF helpers for ZC XDP")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-31 16:19:04 -08:00
Daan De Meyer
6d71331eb0 bpf: Propagate modified uaddrlen from cgroup sockaddr programs
[ Upstream commit fefba7d1ae ]

As prep for adding unix socket support to the cgroup sockaddr hooks,
let's propagate the sockaddr length back to the caller after running
a bpf cgroup sockaddr hook program. While not important for AF_INET or
AF_INET6, the sockaddr length is important when working with AF_UNIX
sockaddrs as the size of the sockaddr cannot be determined just from the
address family or the sockaddr's contents.

__cgroup_bpf_run_filter_sock_addr() is modified to take the uaddrlen as
an input/output argument. After running the program, the modified sockaddr
length is stored in the uaddrlen pointer.

Signed-off-by: Daan De Meyer <daan.j.demeyer@gmail.com>
Link: https://lore.kernel.org/r/20231011185113.140426-3-daan.j.demeyer@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Stable-dep-of: c5114710c8 ("xsk: fix usage of multi-buffer BPF helpers for ZC XDP")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-31 16:19:04 -08:00
Frederic Weisbecker
0d58883c3c rcu: Defer RCU kthreads wakeup when CPU is dying
[ Upstream commit e787644caf ]

When the CPU goes idle for the last time during the CPU down hotplug
process, RCU reports a final quiescent state for the current CPU. If
this quiescent state propagates up to the top, some tasks may then be
woken up to complete the grace period: the main grace period kthread
and/or the expedited main workqueue (or kworker).

If those kthreads have a SCHED_FIFO policy, the wake up can indirectly
arm the RT bandwith timer to the local offline CPU. Since this happens
after hrtimers have been migrated at CPUHP_AP_HRTIMERS_DYING stage, the
timer gets ignored. Therefore if the RCU kthreads are waiting for RT
bandwidth to be available, they may never be actually scheduled.

This triggers TREE03 rcutorture hangs:

	 rcu: INFO: rcu_preempt self-detected stall on CPU
	 rcu:     4-...!: (1 GPs behind) idle=9874/1/0x4000000000000000 softirq=0/0 fqs=20 rcuc=21071 jiffies(starved)
	 rcu:     (t=21035 jiffies g=938281 q=40787 ncpus=6)
	 rcu: rcu_preempt kthread starved for 20964 jiffies! g938281 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x0 ->cpu=0
	 rcu:     Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior.
	 rcu: RCU grace-period kthread stack dump:
	 task:rcu_preempt     state:R  running task     stack:14896 pid:14    tgid:14    ppid:2      flags:0x00004000
	 Call Trace:
	  <TASK>
	  __schedule+0x2eb/0xa80
	  schedule+0x1f/0x90
	  schedule_timeout+0x163/0x270
	  ? __pfx_process_timeout+0x10/0x10
	  rcu_gp_fqs_loop+0x37c/0x5b0
	  ? __pfx_rcu_gp_kthread+0x10/0x10
	  rcu_gp_kthread+0x17c/0x200
	  kthread+0xde/0x110
	  ? __pfx_kthread+0x10/0x10
	  ret_from_fork+0x2b/0x40
	  ? __pfx_kthread+0x10/0x10
	  ret_from_fork_asm+0x1b/0x30
	  </TASK>

The situation can't be solved with just unpinning the timer. The hrtimer
infrastructure and the nohz heuristics involved in finding the best
remote target for an unpinned timer would then also need to handle
enqueues from an offline CPU in the most horrendous way.

So fix this on the RCU side instead and defer the wake up to an online
CPU if it's too late for the local one.

Reported-by: Paul E. McKenney <paulmck@kernel.org>
Fixes: 5c0930ccaa ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-31 16:19:03 -08:00
Petr Pavlu
a1eebe76e1 tracing: Ensure visibility when inserting an element into tracing_map
[ Upstream commit 2b44760609 ]

Running the following two commands in parallel on a multi-processor
AArch64 machine can sporadically produce an unexpected warning about
duplicate histogram entries:

 $ while true; do
     echo hist:key=id.syscall:val=hitcount > \
       /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger
     cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
     sleep 0.001
   done
 $ stress-ng --sysbadaddr $(nproc)

The warning looks as follows:

[ 2911.172474] ------------[ cut here ]------------
[ 2911.173111] Duplicates detected: 1
[ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408
[ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E)
[ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1
[ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G            E      6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01
[ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018
[ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408
[ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408
[ 2911.185310] sp : ffff8000a1513900
[ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001
[ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008
[ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180
[ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff
[ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8
[ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731
[ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c
[ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8
[ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000
[ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480
[ 2911.194259] Call trace:
[ 2911.194626]  tracing_map_sort_entries+0x3e0/0x408
[ 2911.195220]  hist_show+0x124/0x800
[ 2911.195692]  seq_read_iter+0x1d4/0x4e8
[ 2911.196193]  seq_read+0xe8/0x138
[ 2911.196638]  vfs_read+0xc8/0x300
[ 2911.197078]  ksys_read+0x70/0x108
[ 2911.197534]  __arm64_sys_read+0x24/0x38
[ 2911.198046]  invoke_syscall+0x78/0x108
[ 2911.198553]  el0_svc_common.constprop.0+0xd0/0xf8
[ 2911.199157]  do_el0_svc+0x28/0x40
[ 2911.199613]  el0_svc+0x40/0x178
[ 2911.200048]  el0t_64_sync_handler+0x13c/0x158
[ 2911.200621]  el0t_64_sync+0x1a8/0x1b0
[ 2911.201115] ---[ end trace 0000000000000000 ]---

The problem appears to be caused by CPU reordering of writes issued from
__tracing_map_insert().

The check for the presence of an element with a given key in this
function is:

 val = READ_ONCE(entry->val);
 if (val && keys_match(key, val->key, map->key_size)) ...

The write of a new entry is:

 elt = get_free_elt(map);
 memcpy(elt->key, key, map->key_size);
 entry->val = elt;

The "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;"
stores may become visible in the reversed order on another CPU. This
second CPU might then incorrectly determine that a new key doesn't match
an already present val->key and subsequently insert a new element,
resulting in a duplicate.

Fix the problem by adding a write barrier between
"memcpy(elt->key, key, map->key_size);" and "entry->val = elt;", and for
good measure, also use WRITE_ONCE(entry->val, elt) for publishing the
element. The sequence pairs with the mentioned "READ_ONCE(entry->val);"
and the "val->key" check which has an address dependency.

The barrier is placed on a path executed when adding an element for
a new key. Subsequent updates targeting the same key remain unaffected.

From the user's perspective, the issue was introduced by commit
c193707dde ("tracing: Remove code which merges duplicates"), which
followed commit cbf4100efb ("tracing: Add support to detect and avoid
duplicates"). The previous code operated differently; it inherently
expected potential races which result in duplicates but merged them
later when they occurred.

Link: https://lore.kernel.org/linux-trace-kernel/20240122150928.27725-1-petr.pavlu@suse.com

Fixes: c193707dde ("tracing: Remove code which merges duplicates")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-31 16:19:01 -08:00
Eduard Zingerman
bfc5c19b4b bpf: keep track of max number of bpf_loop callback iterations
commit bb124da69c upstream.

In some cases verifier can't infer convergence of the bpf_loop()
iteration. E.g. for the following program:

    static int cb(__u32 idx, struct num_context* ctx)
    {
        ctx->i++;
        return 0;
    }

    SEC("?raw_tp")
    int prog(void *_)
    {
        struct num_context ctx = { .i = 0 };
        __u8 choice_arr[2] = { 0, 1 };

        bpf_loop(2, cb, &ctx, 0);
        return choice_arr[ctx.i];
    }

Each 'cb' simulation would eventually return to 'prog' and reach
'return choice_arr[ctx.i]' statement. At which point ctx.i would be
marked precise, thus forcing verifier to track multitude of separate
states with {.i=0}, {.i=1}, ... at bpf_loop() callback entry.

This commit allows "brute force" handling for such cases by limiting
number of callback body simulations using 'umax' value of the first
bpf_loop() parameter.

For this, extend bpf_func_state with 'callback_depth' field.
Increment this field when callback visiting state is pushed to states
traversal stack. For frame #N it's 'callback_depth' field counts how
many times callback with frame depth N+1 had been executed.
Use bpf_func_state specifically to allow independent tracking of
callback depths when multiple nested bpf_loop() calls are present.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-11-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:59 -08:00
Eduard Zingerman
1a5a03617b bpf: widening for callback iterators
commit cafe2c2150 upstream.

Callbacks are similar to open coded iterators, so add imprecise
widening logic for callback body processing. This makes callback based
loops behave identically to open coded iterators, e.g. allowing to
verify programs like below:

  struct ctx { u32 i; };
  int cb(u32 idx, struct ctx* ctx)
  {
          ++ctx->i;
          return 0;
  }
  ...
  struct ctx ctx = { .i = 0 };
  bpf_loop(100, cb, &ctx, 0);
  ...

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-9-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:59 -08:00
Eduard Zingerman
b43550d7d5 bpf: verify callbacks as if they are called unknown number of times
commit ab5cfac139 upstream.

Prior to this patch callbacks were handled as regular function calls,
execution of callback body was modeled exactly once.
This patch updates callbacks handling logic as follows:
- introduces a function push_callback_call() that schedules callback
  body verification in env->head stack;
- updates prepare_func_exit() to reschedule callback body verification
  upon BPF_EXIT;
- as calls to bpf_*_iter_next(), calls to callback invoking functions
  are marked as checkpoints;
- is_state_visited() is updated to stop callback based iteration when
  some identical parent state is found.

Paths with callback function invoked zero times are now verified first,
which leads to necessity to modify some selftests:
- the following negative tests required adding release/unlock/drop
  calls to avoid previously masked unrelated error reports:
  - cb_refs.c:underflow_prog
  - exceptions_fail.c:reject_rbtree_add_throw
  - exceptions_fail.c:reject_with_cp_reference
- the following precision tracking selftests needed change in expected
  log trace:
  - verifier_subprog_precision.c:callback_result_precise
    (note: r0 precision is no longer propagated inside callback and
           I think this is a correct behavior)
  - verifier_subprog_precision.c:parent_callee_saved_reg_precise_with_callback
  - verifier_subprog_precision.c:parent_stack_slot_precise_with_callback

Reported-by: Andrew Werner <awerner32@gmail.com>
Closes: https://lore.kernel.org/bpf/CA+vRuzPChFNXmouzGG+wsy=6eMcfr1mFG0F3g7rbg-sedGKW3w@mail.gmail.com/
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-7-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:59 -08:00
Eduard Zingerman
f661df8fe0 bpf: extract setup_func_entry() utility function
commit 58124a98cb upstream.

Move code for simulated stack frame creation to a separate utility
function. This function would be used in the follow-up change for
callbacks handling.

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:59 -08:00
Eduard Zingerman
bb8bf2d3ca bpf: extract __check_reg_arg() utility function
commit 683b96f960 upstream.

Split check_reg_arg() into two utility functions:
- check_reg_arg() operating on registers from current verifier state;
- __check_reg_arg() operating on a specific set of registers passed as
  a parameter;

The __check_reg_arg() function would be used by a follow-up change for
callbacks handling.

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-5-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:59 -08:00
Eduard Zingerman
ae5e9c3ced bpf: print full verifier states on infinite loop detection
commit b4d8239534 upstream.

Additional logging in is_state_visited(): if infinite loop is detected
print full verifier state for both current and equivalent states.

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-8-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:59 -08:00
Eduard Zingerman
c8f6d28582 bpf: correct loop detection for iterators convergence
commit 2a0992829e upstream.

It turns out that .branches > 0 in is_state_visited() is not a
sufficient condition to identify if two verifier states form a loop
when iterators convergence is computed. This commit adds logic to
distinguish situations like below:

 (I)            initial       (II)            initial
                  |                             |
                  V                             V
     .---------> hdr                           ..
     |            |                             |
     |            V                             V
     |    .------...                    .------..
     |    |       |                     |       |
     |    V       V                     V       V
     |   ...     ...               .-> hdr     ..
     |    |       |                |    |       |
     |    V       V                |    V       V
     |   succ <- cur               |   succ <- cur
     |    |                        |    |
     |    V                        |    V
     |   ...                       |   ...
     |    |                        |    |
     '----'                        '----'

For both (I) and (II) successor 'succ' of the current state 'cur' was
previously explored and has branches count at 0. However, loop entry
'hdr' corresponding to 'succ' might be a part of current DFS path.
If that is the case 'succ' and 'cur' are members of the same loop
and have to be compared exactly.

Co-developed-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Co-developed-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reviewed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:58 -08:00
Eduard Zingerman
ab470fefce bpf: exact states comparison for iterator convergence checks
commit 2793a8b015 upstream.

Convergence for open coded iterators is computed in is_state_visited()
by examining states with branches count > 1 and using states_equal().
states_equal() computes sub-state relation using read and precision marks.
Read and precision marks are propagated from children states,
thus are not guaranteed to be complete inside a loop when branches
count > 1. This could be demonstrated using the following unsafe program:

     1. r7 = -16
     2. r6 = bpf_get_prandom_u32()
     3. while (bpf_iter_num_next(&fp[-8])) {
     4.   if (r6 != 42) {
     5.     r7 = -32
     6.     r6 = bpf_get_prandom_u32()
     7.     continue
     8.   }
     9.   r0 = r10
    10.   r0 += r7
    11.   r8 = *(u64 *)(r0 + 0)
    12.   r6 = bpf_get_prandom_u32()
    13. }

Here verifier would first visit path 1-3, create a checkpoint at 3
with r7=-16, continue to 4-7,3 with r7=-32.

Because instructions at 9-12 had not been visitied yet existing
checkpoint at 3 does not have read or precision mark for r7.
Thus states_equal() would return true and verifier would discard
current state, thus unsafe memory access at 11 would not be caught.

This commit fixes this loophole by introducing exact state comparisons
for iterator convergence logic:
- registers are compared using regs_exact() regardless of read or
  precision marks;
- stack slots have to have identical type.

Unfortunately, this is too strict even for simple programs like below:

    i = 0;
    while(iter_next(&it))
      i++;

At each iteration step i++ would produce a new distinct state and
eventually instruction processing limit would be reached.

To avoid such behavior speculatively forget (widen) range for
imprecise scalar registers, if those registers were not precise at the
end of the previous iteration and do not match exactly.

This a conservative heuristic that allows to verify wide range of
programs, however it precludes verification of programs that conjure
an imprecise value on the first loop iteration and use it as precise
on the second.

Test case iter_task_vma_for_each() presents one of such cases:

        unsigned int seen = 0;
        ...
        bpf_for_each(task_vma, vma, task, 0) {
                if (seen >= 1000)
                        break;
                ...
                seen++;
        }

Here clang generates the following code:

<LBB0_4>:
      24:       r8 = r6                          ; stash current value of
                ... body ...                       'seen'
      29:       r1 = r10
      30:       r1 += -0x8
      31:       call bpf_iter_task_vma_next
      32:       r6 += 0x1                        ; seen++;
      33:       if r0 == 0x0 goto +0x2 <LBB0_6>  ; exit on next() == NULL
      34:       r7 += 0x10
      35:       if r8 < 0x3e7 goto -0xc <LBB0_4> ; loop on seen < 1000

<LBB0_6>:
      ... exit ...

Note that counter in r6 is copied to r8 and then incremented,
conditional jump is done using r8. Because of this precision mark for
r6 lags one state behind of precision mark on r8 and widening logic
kicks in.

Adding barrier_var(seen) after conditional is sufficient to force
clang use the same register for both counting and conditional jump.

This issue was discussed in the thread [1] which was started by
Andrew Werner <awerner32@gmail.com> demonstrating a similar bug
in callback functions handling. The callbacks would be addressed
in a followup patch.

[1] https://lore.kernel.org/bpf/97a90da09404c65c8e810cf83c94ac703705dc0e.camel@gmail.com/

Co-developed-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Co-developed-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:58 -08:00
Eduard Zingerman
b8615d7ff2 bpf: extract same_callsites() as utility function
commit 4c97259abc upstream.

Extract same_callsites() from clean_live_states() as a utility function.
This function would be used by the next patch in the set.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-3-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:58 -08:00
Eduard Zingerman
4c6352f35e bpf: move explored_state() closer to the beginning of verifier.c
commit 3c4e420cb6 upstream.

Subsequent patches would make use of explored_state() function.
Move it up to avoid adding unnecessary prototype.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:58 -08:00
James Gowans
ff8cb8bc46 kexec: do syscore_shutdown() in kernel_kexec
commit 7bb943806f upstream.

syscore_shutdown() runs driver and module callbacks to get the system into
a state where it can be correctly shut down.  In commit 6f389a8f1d ("PM
/ reboot: call syscore_shutdown() after disable_nonboot_cpus()")
syscore_shutdown() was removed from kernel_restart_prepare() and hence got
(incorrectly?) removed from the kexec flow.  This was innocuous until
commit 6735150b69 ("KVM: Use syscore_ops instead of reboot_notifier to
hook restart/shutdown") changed the way that KVM registered its shutdown
callbacks, switching from reboot notifiers to syscore_ops.shutdown.  As
syscore_shutdown() is missing from kexec, KVM's shutdown hook is not run
and virtualisation is left enabled on the boot CPU which results in triple
faults when switching to the new kernel on Intel x86 VT-x with VMXE
enabled.

Fix this by adding syscore_shutdown() to the kexec sequence.  In terms of
where to add it, it is being added after migrating the kexec task to the
boot CPU, but before APs are shut down.  It is not totally clear if this
is the best place: in commit 6f389a8f1d ("PM / reboot: call
syscore_shutdown() after disable_nonboot_cpus()") it is stated that
"syscore_ops operations should be carried with one CPU on-line and
interrupts disabled." APs are only offlined later in machine_shutdown(),
so this syscore_shutdown() is being run while APs are still online.  This
seems to be the correct place as it matches where syscore_shutdown() is
run in the reboot and halt flows - they also run it before APs are shut
down.  The assumption is that the commit message in commit 6f389a8f1d
("PM / reboot: call syscore_shutdown() after disable_nonboot_cpus()") is
no longer valid.

KVM has been discussed here as it is what broke loudly by not having
syscore_shutdown() in kexec, but this change impacts more than just KVM;
all drivers/modules which register a syscore_ops.shutdown callback will
now be invoked in the kexec flow.  Looking at some of them like x86 MCE it
is probably more correct to also shut these down during kexec.
Maintainers of all drivers which use syscore_ops.shutdown are added on CC
for visibility.  They are:

arch/powerpc/platforms/cell/spu_base.c  .shutdown = spu_shutdown,
arch/x86/kernel/cpu/mce/core.c	        .shutdown = mce_syscore_shutdown,
arch/x86/kernel/i8259.c                 .shutdown = i8259A_shutdown,
drivers/irqchip/irq-i8259.c	        .shutdown = i8259A_shutdown,
drivers/irqchip/irq-sun6i-r.c	        .shutdown = sun6i_r_intc_shutdown,
drivers/leds/trigger/ledtrig-cpu.c	.shutdown = ledtrig_cpu_syscore_shutdown,
drivers/power/reset/sc27xx-poweroff.c	.shutdown = sc27xx_poweroff_shutdown,
kernel/irq/generic-chip.c	        .shutdown = irq_gc_shutdown,
virt/kvm/kvm_main.c	                .shutdown = kvm_shutdown,

This has been tested by doing a kexec on x86_64 and aarch64.

Link: https://lkml.kernel.org/r/20231213064004.2419447-1-jgowans@amazon.com
Fixes: 6735150b69 ("KVM: Use syscore_ops instead of reboot_notifier to hook restart/shutdown")
Signed-off-by: James Gowans <jgowans@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Jernej Skrabec <jernej.skrabec@gmail.com>
Cc: Samuel Holland <samuel@sholland.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Orson Zhai <orsonzhai@gmail.com>
Cc: Alexander Graf <graf@amazon.de>
Cc: Jan H. Schoenherr <jschoenh@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:56 -08:00
Hongchen Zhang
7692e29d19 PM: hibernate: Enforce ordering during image compression/decompression
commit 71cd7e80cf upstream.

An S4 (suspend to disk) test on the LoongArch 3A6000 platform sometimes
fails with the following error messaged in the dmesg log:

	Invalid LZO compressed length

That happens because when compressing/decompressing the image, the
synchronization between the control thread and the compress/decompress/crc
thread is based on a relaxed ordering interface, which is unreliable, and the
following situation may occur:

CPU 0					CPU 1
save_image_lzo				lzo_compress_threadfn
					  atomic_set(&d->stop, 1);
  atomic_read(&data[thr].stop)
  data[thr].cmp = data[thr].cmp_len;
	  				  WRITE data[thr].cmp_len

Then CPU0 gets a stale cmp_len and writes it to disk. During resume from S4,
wrong cmp_len is loaded.

To maintain data consistency between the two threads, use the acquire/release
variants of atomic set and read operations.

Fixes: 081a9d043c ("PM / Hibernate: Improve performance of LZO/plain hibernation, checksum image")
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Hongchen Zhang <zhanghongchen@loongson.cn>
Co-developed-by: Weihao Li <liweihao@loongson.cn>
Signed-off-by: Weihao Li <liweihao@loongson.cn>
[ rjw: Subject rewrite and changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:49 -08:00
Rafael J. Wysocki
e400343c6e async: Introduce async_schedule_dev_nocall()
commit 7d4b5d7a37 upstream.

In preparation for subsequent changes, introduce a specialized variant
of async_schedule_dev() that will not invoke the argument function
synchronously when it cannot be scheduled for asynchronous execution.

The new function, async_schedule_dev_nocall(), will be used for fixing
possible deadlocks in the system-wide power management core code.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com> for the series.
Tested-by: Youngmin Nam <youngmin.nam@samsung.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:49 -08:00
Rafael J. Wysocki
a40683bb7b async: Split async_schedule_node_domain()
commit 6aa09a5bcc upstream.

In preparation for subsequent changes, split async_schedule_node_domain()
in two pieces so as to allow the bottom part of it to be called from a
somewhat different code path.

No functional impact.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com>
Tested-by: Youngmin Nam <youngmin.nam@samsung.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:18:49 -08:00
Christophe JAILLET
99719bb0c2 kdb: Fix a potential buffer overflow in kdb_local()
[ Upstream commit 4f41d30cd6 ]

When appending "[defcmd]" to 'kdb_prompt_str', the size of the string
already in the buffer should be taken into account.

An option could be to switch from strncat() to strlcat() which does the
correct test to avoid such an overflow.

However, this actually looks as dead code, because 'defcmd_in_progress'
can't be true here.
See a more detailed explanation at [1].

[1]: https://lore.kernel.org/all/CAD=FV=WSh7wKN7Yp-3wWiDgX4E3isQ8uh0LCzTmd1v9Cg9j+nQ@mail.gmail.com/

Fixes: 5d5314d679 ("kdb: core for kgdb back end (1 of 2)")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:36:00 -08:00
Hao Sun
e8d3872b61 bpf: Reject variable offset alu on PTR_TO_FLOW_KEYS
[ Upstream commit 22c7fa171a ]

For PTR_TO_FLOW_KEYS, check_flow_keys_access() only uses fixed off
for validation. However, variable offset ptr alu is not prohibited
for this ptr kind. So the variable offset is not checked.

The following prog is accepted:

  func#0 @0
  0: R1=ctx() R10=fp0
  0: (bf) r6 = r1                       ; R1=ctx() R6_w=ctx()
  1: (79) r7 = *(u64 *)(r6 +144)        ; R6_w=ctx() R7_w=flow_keys()
  2: (b7) r8 = 1024                     ; R8_w=1024
  3: (37) r8 /= 1                       ; R8_w=scalar()
  4: (57) r8 &= 1024                    ; R8_w=scalar(smin=smin32=0,
  smax=umax=smax32=umax32=1024,var_off=(0x0; 0x400))
  5: (0f) r7 += r8
  mark_precise: frame0: last_idx 5 first_idx 0 subseq_idx -1
  mark_precise: frame0: regs=r8 stack= before 4: (57) r8 &= 1024
  mark_precise: frame0: regs=r8 stack= before 3: (37) r8 /= 1
  mark_precise: frame0: regs=r8 stack= before 2: (b7) r8 = 1024
  6: R7_w=flow_keys(smin=smin32=0,smax=umax=smax32=umax32=1024,var_off
  =(0x0; 0x400)) R8_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=1024,
  var_off=(0x0; 0x400))
  6: (79) r0 = *(u64 *)(r7 +0)          ; R0_w=scalar()
  7: (95) exit

This prog loads flow_keys to r7, and adds the variable offset r8
to r7, and finally causes out-of-bounds access:

  BUG: unable to handle page fault for address: ffffc90014c80038
  [...]
  Call Trace:
   <TASK>
   bpf_dispatcher_nop_func include/linux/bpf.h:1231 [inline]
   __bpf_prog_run include/linux/filter.h:651 [inline]
   bpf_prog_run include/linux/filter.h:658 [inline]
   bpf_prog_run_pin_on_cpu include/linux/filter.h:675 [inline]
   bpf_flow_dissect+0x15f/0x350 net/core/flow_dissector.c:991
   bpf_prog_test_run_flow_dissector+0x39d/0x620 net/bpf/test_run.c:1359
   bpf_prog_test_run kernel/bpf/syscall.c:4107 [inline]
   __sys_bpf+0xf8f/0x4560 kernel/bpf/syscall.c:5475
   __do_sys_bpf kernel/bpf/syscall.c:5561 [inline]
   __se_sys_bpf kernel/bpf/syscall.c:5559 [inline]
   __x64_sys_bpf+0x73/0xb0 kernel/bpf/syscall.c:5559
   do_syscall_x64 arch/x86/entry/common.c:52 [inline]
   do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:83
   entry_SYSCALL_64_after_hwframe+0x63/0x6b

Fix this by rejecting ptr alu with variable offset on flow_keys.
Applying the patch rejects the program with "R7 pointer arithmetic
on flow_keys prohibited".

Fixes: d58e468b11 ("flow_dissector: implements flow dissector BPF hook")
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/20240115082028.9992-1-sunhao.th@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:58 -08:00
Jiri Olsa
8c8bcd45e9 bpf: Fix re-attachment branch in bpf_tracing_prog_attach
commit 715d82ba63 upstream.

The following case can cause a crash due to missing attach_btf:

1) load rawtp program
2) load fentry program with rawtp as target_fd
3) create tracing link for fentry program with target_fd = 0
4) repeat 3

In the end we have:

- prog->aux->dst_trampoline == NULL
- tgt_prog == NULL (because we did not provide target_fd to link_create)
- prog->aux->attach_btf == NULL (the program was loaded with attach_prog_fd=X)
- the program was loaded for tgt_prog but we have no way to find out which one

    BUG: kernel NULL pointer dereference, address: 0000000000000058
    Call Trace:
     <TASK>
     ? __die+0x20/0x70
     ? page_fault_oops+0x15b/0x430
     ? fixup_exception+0x22/0x330
     ? exc_page_fault+0x6f/0x170
     ? asm_exc_page_fault+0x22/0x30
     ? bpf_tracing_prog_attach+0x279/0x560
     ? btf_obj_id+0x5/0x10
     bpf_tracing_prog_attach+0x439/0x560
     __sys_bpf+0x1cf4/0x2de0
     __x64_sys_bpf+0x1c/0x30
     do_syscall_64+0x41/0xf0
     entry_SYSCALL_64_after_hwframe+0x6e/0x76

Return -EINVAL in this situation.

Fixes: f3a9507554 ("bpf: Allow trampoline re-attach for tracing and lsm programs")
Cc: stable@vger.kernel.org
Signed-off-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Dmitrii Dolgov <9erthalion6@gmail.com>
Link: https://lore.kernel.org/r/20240103190559.14750-4-9erthalion6@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-25 15:35:46 -08:00
Heiko Carstens
7fc3dd358a tick-sched: Fix idle and iowait sleeptime accounting vs CPU hotplug
commit 71fee48fb7 upstream.

When offlining and onlining CPUs the overall reported idle and iowait
times as reported by /proc/stat jump backward and forward:

cpu  132 0 176 225249 47 6 6 21 0 0
cpu0 80 0 115 112575 33 3 4 18 0 0
cpu1 52 0 60 112673 13 3 1 2 0 0

cpu  133 0 177 226681 47 6 6 21 0 0
cpu0 80 0 116 113387 33 3 4 18 0 0

cpu  133 0 178 114431 33 6 6 21 0 0 <---- jump backward
cpu0 80 0 116 114247 33 3 4 18 0 0
cpu1 52 0 61 183 0 3 1 2 0 0        <---- idle + iowait start with 0

cpu  133 0 178 228956 47 6 6 21 0 0 <---- jump forward
cpu0 81 0 117 114929 33 3 4 18 0 0

Reason for this is that get_idle_time() in fs/proc/stat.c has different
sources for both values depending on if a CPU is online or offline:

- if a CPU is online the values may be taken from its per cpu
  tick_cpu_sched structure

- if a CPU is offline the values are taken from its per cpu cpustat
  structure

The problem is that the per cpu tick_cpu_sched structure is set to zero on
CPU offline. See tick_cancel_sched_timer() in kernel/time/tick-sched.c.

Therefore when a CPU is brought offline and online afterwards both its idle
and iowait sleeptime will be zero, causing a jump backward in total system
idle and iowait sleeptime. In a similar way if a CPU is then brought
offline again the total idle and iowait sleeptimes will jump forward.

It looks like this behavior was introduced with commit 4b0c0f294f
("tick: Cleanup NOHZ per cpu data on cpu down").

This was only noticed now on s390, since we switched to generic idle time
reporting with commit be76ea6144 ("s390/idle: remove arch_cpu_idle_time()
and corresponding code").

Fix this by preserving the values of idle_sleeptime and iowait_sleeptime
members of the per-cpu tick_sched structure on CPU hotplug.

Fixes: 4b0c0f294f ("tick: Cleanup NOHZ per cpu data on cpu down")
Reported-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240115163555.1004144-1-hca@linux.ibm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-25 15:35:42 -08:00
Hou Tao
3bc29c780a bpf: Use c->unit_size to select target cache during free
[ Upstream commit 7ac5c53e00 ]

At present, bpf memory allocator uses check_obj_size() to ensure that
ksize() of allocated pointer is equal with the unit_size of used
bpf_mem_cache. Its purpose is to prevent bpf_mem_free() from selecting
a bpf_mem_cache which has different unit_size compared with the
bpf_mem_cache used for allocation. But as reported by lkp, the return
value of ksize() or kmalloc_size_roundup() may change due to slab merge
and it will lead to the warning report in check_obj_size().

The reported warning happened as follows:
(1) in bpf_mem_cache_adjust_size(), kmalloc_size_roundup(96) returns the
object_size of kmalloc-96 instead of kmalloc-cg-96. The object_size of
kmalloc-96 is 96, so size_index for 96 is not adjusted accordingly.
(2) the object_size of kmalloc-cg-96 is adjust from 96 to 128 due to
slab merge in __kmem_cache_alias(). For SLAB, SLAB_HWCACHE_ALIGN is
enabled by default for kmalloc slab, so align is 64 and size is 128 for
kmalloc-cg-96. SLUB has a similar merge logic, but its object_size will
not be changed, because its align is 8 under x86-64.
(3) when unit_alloc() does kmalloc_node(96, __GFP_ACCOUNT, node),
ksize() returns 128 instead of 96 for the returned pointer.
(4) the warning in check_obj_size() is triggered.

Considering the slab merge can happen in anytime (e.g, a slab created in
a new module), the following case is also possible: during the
initialization of bpf_global_ma, there is no slab merge and ksize() for
a 96-bytes object returns 96. But after that a new slab created by a
kernel module is merged to kmalloc-cg-96 and the object_size of
kmalloc-cg-96 is adjust from 96 to 128 (which is possible for x86-64 +
CONFIG_SLAB, because its alignment requirement is 64 for 96-bytes slab).
So soon or later, when bpf_global_ma frees a 96-byte-sized pointer
which is allocated from bpf_mem_cache with unit_size=96, bpf_mem_free()
will free the pointer through a bpf_mem_cache in which unit_size is 128,
because the return value of ksize() changes. The warning for the
mismatch will be triggered again.

A feasible fix is introducing similar APIs compared with ksize() and
kmalloc_size_roundup() to return the actually-allocated size instead of
size which may change due to slab merge, but it will introduce
unnecessary dependency on the implementation details of mm subsystem.

As for now the pointer of bpf_mem_cache is saved in the 8-bytes area
(or 4-bytes under 32-bit host) above the returned pointer, using
unit_size in the saved bpf_mem_cache to select the target cache instead
of inferring the size from the pointer itself. Beside no extra
dependency on mm subsystem, the performance for bpf_mem_free_rcu() is
also improved as shown below.

Before applying the patch, the performances of bpf_mem_alloc() and
bpf_mem_free_rcu() on 8-CPUs VM with one producer are as follows:

kmalloc : alloc 11.69 ± 0.28M/s free 29.58 ± 0.93M/s
percpu  : alloc 14.11 ± 0.52M/s free 14.29 ± 0.99M/s

After apply the patch, the performance for bpf_mem_free_rcu() increases
9% and 146% for kmalloc memory and per-cpu memory respectively:

kmalloc: alloc 11.01 ± 0.03M/s free   32.42 ± 0.48M/s
percpu:  alloc 12.84 ± 0.12M/s free   35.24 ± 0.23M/s

After the fixes, there is no need to adjust size_index to fix the
mismatch between allocation and free, so remove it as well. Also return
NULL instead of ZERO_SIZE_PTR for zero-sized alloc in bpf_mem_alloc(),
because there is no bpf_mem_cache pointer saved above ZERO_SIZE_PTR.

Fixes: 9077fc228f ("bpf: Use kmalloc_size_roundup() to adjust size_index")
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/bpf/202310302113.9f8fe705-oliver.sang@intel.com
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231216131052.27621-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:28 -08:00
Hou Tao
63ddf081e1 bpf: Use pcpu_alloc_size() in bpf_mem_free{_rcu}()
[ Upstream commit 3f2189e4f7 ]

For bpf_global_percpu_ma, the pointer passed to bpf_mem_free_rcu() is
allocated by kmalloc() and its size is fixed (16-bytes on x86-64). So
no matter which cache allocates the dynamic per-cpu area, on x86-64
cache[2] will always be used to free the per-cpu area.

Fix the unbalance by checking whether the bpf memory allocator is
per-cpu or not and use pcpu_alloc_size() instead of ksize() to
find the correct cache for per-cpu free.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231020133202.4043247-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 7ac5c53e00 ("bpf: Use c->unit_size to select target cache during free")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:28 -08:00
Hou Tao
62752b6732 bpf: Re-enable unit_size checking for global per-cpu allocator
[ Upstream commit baa8fdecd8 ]

With pcpu_alloc_size() in place, check whether or not the size of
the dynamic per-cpu area is matched with unit_size.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231020133202.4043247-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 7ac5c53e00 ("bpf: Use c->unit_size to select target cache during free")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:28 -08:00
Hou Tao
3d83b820bf bpf: Limit the number of kprobes when attaching program to multiple kprobes
[ Upstream commit d6d1e6c17c ]

An abnormally big cnt may also be assigned to kprobe_multi.cnt when
attaching multiple kprobes. It will trigger the following warning in
kvmalloc_node():

	if (unlikely(size > INT_MAX)) {
	    WARN_ON_ONCE(!(flags & __GFP_NOWARN));
	    return NULL;
	}

Fix the warning by limiting the maximal number of kprobes in
bpf_kprobe_multi_link_attach(). If the number of kprobes is greater than
MAX_KPROBE_MULTI_CNT, the attachment will fail and return -E2BIG.

Fixes: 0dcac27254 ("bpf: Add multi kprobe link")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231215100708.2265609-3-houtao@huaweicloud.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:26 -08:00
Hou Tao
5735054af3 bpf: Limit the number of uprobes when attaching program to multiple uprobes
[ Upstream commit 8b2efe51ba ]

An abnormally big cnt may be passed to link_create.uprobe_multi.cnt,
and it will trigger the following warning in kvmalloc_node():

	if (unlikely(size > INT_MAX)) {
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
		return NULL;
	}

Fix the warning by limiting the maximal number of uprobes in
bpf_uprobe_multi_link_attach(). If the number of uprobes is greater than
MAX_UPROBE_MULTI_CNT, the attachment will return -E2BIG.

Fixes: 89ae89f53d ("bpf: Add multi uprobe link")
Reported-by: Xingwei Lee <xrivendell7@gmail.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Closes: https://lore.kernel.org/bpf/CABOYnLwwJY=yFAGie59LFsUsBAgHfroVqbzZ5edAXbFE3YiNVA@mail.gmail.com
Link: https://lore.kernel.org/bpf/20231215100708.2265609-2-houtao@huaweicloud.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:26 -08:00
Joakim Zhang
849ca053be dma-mapping: clear dev->dma_mem to NULL after freeing it
[ Upstream commit b07bc23476 ]

Reproduced with below sequence:
dma_declare_coherent_memory()->dma_release_coherent_memory()
->dma_declare_coherent_memory()->"return -EBUSY" error

It will return -EBUSY from the dma_assign_coherent_memory()
in dma_declare_coherent_memory(), the reason is that dev->dma_mem
pointer has not been set to NULL after it's freed.

Fixes: cf65a0f6f6 ("dma-mapping: move all DMA mapping code to kernel/dma")
Signed-off-by: Joakim Zhang <joakim.zhang@cixtech.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:26 -08:00
Yonghong Song
d048dced8e bpf: Fix a race condition between btf_put() and map_free()
[ Upstream commit 59e5791f59 ]

When running `./test_progs -j` in my local vm with latest kernel,
I once hit a kasan error like below:

  [ 1887.184724] BUG: KASAN: slab-use-after-free in bpf_rb_root_free+0x1f8/0x2b0
  [ 1887.185599] Read of size 4 at addr ffff888106806910 by task kworker/u12:2/2830
  [ 1887.186498]
  [ 1887.186712] CPU: 3 PID: 2830 Comm: kworker/u12:2 Tainted: G           OEL     6.7.0-rc3-00699-g90679706d486-dirty #494
  [ 1887.188034] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  [ 1887.189618] Workqueue: events_unbound bpf_map_free_deferred
  [ 1887.190341] Call Trace:
  [ 1887.190666]  <TASK>
  [ 1887.190949]  dump_stack_lvl+0xac/0xe0
  [ 1887.191423]  ? nf_tcp_handle_invalid+0x1b0/0x1b0
  [ 1887.192019]  ? panic+0x3c0/0x3c0
  [ 1887.192449]  print_report+0x14f/0x720
  [ 1887.192930]  ? preempt_count_sub+0x1c/0xd0
  [ 1887.193459]  ? __virt_addr_valid+0xac/0x120
  [ 1887.194004]  ? bpf_rb_root_free+0x1f8/0x2b0
  [ 1887.194572]  kasan_report+0xc3/0x100
  [ 1887.195085]  ? bpf_rb_root_free+0x1f8/0x2b0
  [ 1887.195668]  bpf_rb_root_free+0x1f8/0x2b0
  [ 1887.196183]  ? __bpf_obj_drop_impl+0xb0/0xb0
  [ 1887.196736]  ? preempt_count_sub+0x1c/0xd0
  [ 1887.197270]  ? preempt_count_sub+0x1c/0xd0
  [ 1887.197802]  ? _raw_spin_unlock+0x1f/0x40
  [ 1887.198319]  bpf_obj_free_fields+0x1d4/0x260
  [ 1887.198883]  array_map_free+0x1a3/0x260
  [ 1887.199380]  bpf_map_free_deferred+0x7b/0xe0
  [ 1887.199943]  process_scheduled_works+0x3a2/0x6c0
  [ 1887.200549]  worker_thread+0x633/0x890
  [ 1887.201047]  ? __kthread_parkme+0xd7/0xf0
  [ 1887.201574]  ? kthread+0x102/0x1d0
  [ 1887.202020]  kthread+0x1ab/0x1d0
  [ 1887.202447]  ? pr_cont_work+0x270/0x270
  [ 1887.202954]  ? kthread_blkcg+0x50/0x50
  [ 1887.203444]  ret_from_fork+0x34/0x50
  [ 1887.203914]  ? kthread_blkcg+0x50/0x50
  [ 1887.204397]  ret_from_fork_asm+0x11/0x20
  [ 1887.204913]  </TASK>
  [ 1887.204913]  </TASK>
  [ 1887.205209]
  [ 1887.205416] Allocated by task 2197:
  [ 1887.205881]  kasan_set_track+0x3f/0x60
  [ 1887.206366]  __kasan_kmalloc+0x6e/0x80
  [ 1887.206856]  __kmalloc+0xac/0x1a0
  [ 1887.207293]  btf_parse_fields+0xa15/0x1480
  [ 1887.207836]  btf_parse_struct_metas+0x566/0x670
  [ 1887.208387]  btf_new_fd+0x294/0x4d0
  [ 1887.208851]  __sys_bpf+0x4ba/0x600
  [ 1887.209292]  __x64_sys_bpf+0x41/0x50
  [ 1887.209762]  do_syscall_64+0x4c/0xf0
  [ 1887.210222]  entry_SYSCALL_64_after_hwframe+0x63/0x6b
  [ 1887.210868]
  [ 1887.211074] Freed by task 36:
  [ 1887.211460]  kasan_set_track+0x3f/0x60
  [ 1887.211951]  kasan_save_free_info+0x28/0x40
  [ 1887.212485]  ____kasan_slab_free+0x101/0x180
  [ 1887.213027]  __kmem_cache_free+0xe4/0x210
  [ 1887.213514]  btf_free+0x5b/0x130
  [ 1887.213918]  rcu_core+0x638/0xcc0
  [ 1887.214347]  __do_softirq+0x114/0x37e

The error happens at bpf_rb_root_free+0x1f8/0x2b0:

  00000000000034c0 <bpf_rb_root_free>:
  ; {
    34c0: f3 0f 1e fa                   endbr64
    34c4: e8 00 00 00 00                callq   0x34c9 <bpf_rb_root_free+0x9>
    34c9: 55                            pushq   %rbp
    34ca: 48 89 e5                      movq    %rsp, %rbp
  ...
  ;       if (rec && rec->refcount_off >= 0 &&
    36aa: 4d 85 ed                      testq   %r13, %r13
    36ad: 74 a9                         je      0x3658 <bpf_rb_root_free+0x198>
    36af: 49 8d 7d 10                   leaq    0x10(%r13), %rdi
    36b3: e8 00 00 00 00                callq   0x36b8 <bpf_rb_root_free+0x1f8>
                                        <==== kasan function
    36b8: 45 8b 7d 10                   movl    0x10(%r13), %r15d
                                        <==== use-after-free load
    36bc: 45 85 ff                      testl   %r15d, %r15d
    36bf: 78 8c                         js      0x364d <bpf_rb_root_free+0x18d>

So the problem is at rec->refcount_off in the above.

I did some source code analysis and find the reason.
                                  CPU A                        CPU B
  bpf_map_put:
    ...
    btf_put with rcu callback
    ...
    bpf_map_free_deferred
      with system_unbound_wq
    ...                          ...                           ...
    ...                          btf_free_rcu:                 ...
    ...                          ...                           bpf_map_free_deferred:
    ...                          ...
    ...         --------->       btf_struct_metas_free()
    ...         | race condition ...
    ...         --------->                                     map->ops->map_free()
    ...
    ...                          btf->struct_meta_tab = NULL

In the above, map_free() corresponds to array_map_free() and eventually
calling bpf_rb_root_free() which calls:
  ...
  __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
  ...

Here, 'value_rec' is assigned in btf_check_and_fixup_fields() with following code:

  meta = btf_find_struct_meta(btf, btf_id);
  if (!meta)
    return -EFAULT;
  rec->fields[i].graph_root.value_rec = meta->record;

So basically, 'value_rec' is a pointer to the record in struct_metas_tab.
And it is possible that that particular record has been freed by
btf_struct_metas_free() and hence we have a kasan error here.

Actually it is very hard to reproduce the failure with current bpf/bpf-next
code, I only got the above error once. To increase reproducibility, I added
a delay in bpf_map_free_deferred() to delay map->ops->map_free(), which
significantly increased reproducibility.

#  diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c
#  index 5e43ddd1b83f..aae5b5213e93 100644
#  --- a/kernel/bpf/syscall.c
#  +++ b/kernel/bpf/syscall.c
# @@ -695,6 +695,7 @@ static void bpf_map_free_deferred(struct work_struct *work)
#        struct bpf_map *map = container_of(work, struct bpf_map, work);
#        struct btf_record *rec = map->record;
#
#  +     mdelay(100);
#        security_bpf_map_free(map);
#        bpf_map_release_memcg(map);
#        /* implementation dependent freeing */

Hao also provided test cases ([1]) for easily reproducing the above issue.

There are two ways to fix the issue, the v1 of the patch ([2]) moving
btf_put() after map_free callback, and the v5 of the patch ([3]) using
a kptr style fix which tries to get a btf reference during
map_check_btf(). Each approach has its pro and cons. The first approach
delays freeing btf while the second approach needs to acquire reference
depending on context which makes logic not very elegant and may
complicate things with future new data structures. Alexei
suggested in [4] going back to v1 which is what this patch
tries to do.

Rerun './test_progs -j' with the above mdelay() hack for a couple
of times and didn't observe the error for the above rb_root test cases.
Running Hou's test ([1]) is also successful.

  [1] https://lore.kernel.org/bpf/20231207141500.917136-1-houtao@huaweicloud.com/
  [2] v1: https://lore.kernel.org/bpf/20231204173946.3066377-1-yonghong.song@linux.dev/
  [3] v5: https://lore.kernel.org/bpf/20231208041621.2968241-1-yonghong.song@linux.dev/
  [4] v4: https://lore.kernel.org/bpf/CAADnVQJ3FiXUhZJwX_81sjZvSYYKCFB3BT6P8D59RS2Gu+0Z7g@mail.gmail.com/

Cc: Hou Tao <houtao@huaweicloud.com>
Fixes: 958cf2e273 ("bpf: Introduce bpf_obj_new")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231214203815.1469107-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:26 -08:00
Andrei Matei
0954982db8 bpf: Fix accesses to uninit stack slots
[ Upstream commit 6b4a64bafd ]

Privileged programs are supposed to be able to read uninitialized stack
memory (ever since 6715df8d5) but, before this patch, these accesses
were permitted inconsistently. In particular, accesses were permitted
above state->allocated_stack, but not below it. In other words, if the
stack was already "large enough", the access was permitted, but
otherwise the access was rejected instead of being allowed to "grow the
stack". This undesired rejection was happening in two places:
- in check_stack_slot_within_bounds()
- in check_stack_range_initialized()
This patch arranges for these accesses to be permitted. A bunch of tests
that were relying on the old rejection had to change; all of them were
changed to add also run unprivileged, in which case the old behavior
persists. One tests couldn't be updated - global_func16 - because it
can't run unprivileged for other reasons.

This patch also fixes the tracking of the stack size for variable-offset
reads. This second fix is bundled in the same commit as the first one
because they're inter-related. Before this patch, writes to the stack
using registers containing a variable offset (as opposed to registers
with fixed, known values) were not properly contributing to the
function's needed stack size. As a result, it was possible for a program
to verify, but then to attempt to read out-of-bounds data at runtime
because a too small stack had been allocated for it.

Each function tracks the size of the stack it needs in
bpf_subprog_info.stack_depth, which is maintained by
update_stack_depth(). For regular memory accesses, check_mem_access()
was calling update_state_depth() but it was passing in only the fixed
part of the offset register, ignoring the variable offset. This was
incorrect; the minimum possible value of that register should be used
instead.

This tracking is now fixed by centralizing the tracking of stack size in
grow_stack_state(), and by lifting the calls to grow_stack_state() to
check_stack_access_within_bounds() as suggested by Andrii. The code is
now simpler and more convincingly tracks the correct maximum stack size.
check_stack_range_initialized() can now rely on enough stack having been
allocated for the access; this helps with the fix for the first issue.

A few tests were changed to also check the stack depth computation. The
one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.

Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231208032519.260451-3-andreimatei1@gmail.com

Closes: https://lore.kernel.org/bpf/CABWLsev9g8UP_c3a=1qbuZUi20tGoUXoU07FPf-5FLvhOKOY+Q@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:24 -08:00
Andrei Matei
ad140fc856 bpf: Guard stack limits against 32bit overflow
[ Upstream commit 1d38a9ee81 ]

This patch promotes the arithmetic around checking stack bounds to be
done in the 64-bit domain, instead of the current 32bit. The arithmetic
implies adding together a 64-bit register with a int offset. The
register was checked to be below 1<<29 when it was variable, but not
when it was fixed. The offset either comes from an instruction (in which
case it is 16 bit), from another register (in which case the caller
checked it to be below 1<<29 [1]), or from the size of an argument to a
kfunc (in which case it can be a u32 [2]). Between the register being
inconsistently checked to be below 1<<29, and the offset being up to an
u32, it appears that we were open to overflowing the `int`s which were
currently used for arithmetic.

[1] 815fb87b75/kernel/bpf/verifier.c (L7494-L7498)
[2] 815fb87b75/kernel/bpf/verifier.c (L11904)

Reported-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-4-andreimatei1@gmail.com
Stable-dep-of: 6b4a64bafd ("bpf: Fix accesses to uninit stack slots")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:24 -08:00
Andrei Matei
08b91babcc bpf: Fix verification of indirect var-off stack access
[ Upstream commit a833a17aea ]

This patch fixes a bug around the verification of possibly-zero-sized
stack accesses. When the access was done through a var-offset stack
pointer, check_stack_access_within_bounds was incorrectly computing the
maximum-offset of a zero-sized read to be the same as the register's min
offset. Instead, we have to take in account the register's maximum
possible value. The patch also simplifies how the max offset is checked;
the check is now simpler than for min offset.

The bug was allowing accesses to erroneously pass the
check_stack_access_within_bounds() checks, only to later crash in
check_stack_range_initialized() when all the possibly-affected stack
slots are iterated (this time with a correct max offset).
check_stack_range_initialized() is relying on
check_stack_access_within_bounds() for its accesses to the
stack-tracking vector to be within bounds; in the case of zero-sized
accesses, we were essentially only verifying that the lowest possible
slot was within bounds. We would crash when the max-offset of the stack
pointer was >= 0 (which shouldn't pass verification, and hopefully is
not something anyone's code attempts to do in practice).

Thanks Hao for reporting!

Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-2-andreimatei1@gmail.com

Closes: https://lore.kernel.org/bpf/CACkBjsZGEUaRCHsmaX=h-efVogsRfK1FPxmkgb0Os_frnHiNdw@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:24 -08:00
Andrii Nakryiko
8dc15b0670 bpf: fix check for attempt to corrupt spilled pointer
[ Upstream commit ab125ed3ec ]

When register is spilled onto a stack as a 1/2/4-byte register, we set
slot_type[BPF_REG_SIZE - 1] (plus potentially few more below it,
depending on actual spill size). So to check if some stack slot has
spilled register we need to consult slot_type[7], not slot_type[0].

To avoid the need to remember and double-check this in the future, just
use is_spilled_reg() helper.

Fixes: 27113c59b6 ("bpf: Check the other end of slot_type for STACK_SPILL")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:22 -08:00
Hou Tao
f91cd728b1 bpf: Defer the free of inner map when necessary
[ Upstream commit 8766733641 ]

When updating or deleting an inner map in map array or map htab, the map
may still be accessed by non-sleepable program or sleepable program.
However bpf_map_fd_put_ptr() decreases the ref-counter of the inner map
directly through bpf_map_put(), if the ref-counter is the last one
(which is true for most cases), the inner map will be freed by
ops->map_free() in a kworker. But for now, most .map_free() callbacks
don't use synchronize_rcu() or its variants to wait for the elapse of a
RCU grace period, so after the invocation of ops->map_free completes,
the bpf program which is accessing the inner map may incur
use-after-free problem.

Fix the free of inner map by invoking bpf_map_free_deferred() after both
one RCU grace period and one tasks trace RCU grace period if the inner
map has been removed from the outer map before. The deferment is
accomplished by using call_rcu() or call_rcu_tasks_trace() when
releasing the last ref-counter of bpf map. The newly-added rcu_head
field in bpf_map shares the same storage space with work field to
reduce the size of bpf_map.

Fixes: bba1dc0b55 ("bpf: Remove redundant synchronize_rcu.")
Fixes: 638e4b825d ("bpf: Allows per-cpu maps and map-in-map in sleepable programs")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:22 -08:00
Hou Tao
1c40ec6b8e bpf: Add map and need_defer parameters to .map_fd_put_ptr()
[ Upstream commit 20c20bd11a ]

map is the pointer of outer map, and need_defer needs some explanation.
need_defer tells the implementation to defer the reference release of
the passed element and ensure that the element is still alive before
the bpf program, which may manipulate it, exits.

The following three cases will invoke map_fd_put_ptr() and different
need_defer values will be passed to these callers:

1) release the reference of the old element in the map during map update
   or map deletion. The release must be deferred, otherwise the bpf
   program may incur use-after-free problem, so need_defer needs to be
   true.
2) release the reference of the to-be-added element in the error path of
   map update. The to-be-added element is not visible to any bpf
   program, so it is OK to pass false for need_defer parameter.
3) release the references of all elements in the map during map release.
   Any bpf program which has access to the map must have been exited and
   released, so need_defer=false will be OK.

These two parameters will be used by the following patches to fix the
potential use-after-free problem for map-in-map.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 8766733641 ("bpf: Defer the free of inner map when necessary")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:22 -08:00
Andrii Nakryiko
0866f6427b bpf: enforce precision of R0 on callback return
[ Upstream commit 0acd03a5bd ]

Given verifier checks actual value, r0 has to be precise, so we need to
propagate precision properly. r0 also has to be marked as read,
otherwise subsequent state comparisons will ignore such register as
unimportant and precision won't really help here.

Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:20 -08:00
Jordan Rome
a341738951 bpf: Add crosstask check to __bpf_get_stack
[ Upstream commit b8e3a87a62 ]

Currently get_perf_callchain only supports user stack walking for
the current task. Passing the correct *crosstask* param will return
0 frames if the task passed to __bpf_get_stack isn't the current
one instead of a single incorrect frame/address. This change
passes the correct *crosstask* param but also does a preemptive
check in __bpf_get_stack if the task is current and returns
-EOPNOTSUPP if it is not.

This issue was found using bpf_get_task_stack inside a BPF
iterator ("iter/task"), which iterates over all tasks.
bpf_get_task_stack works fine for fetching kernel stacks
but because get_perf_callchain relies on the caller to know
if the requested *task* is the current one (via *crosstask*)
it was failing in a confusing way.

It might be possible to get user stacks for all tasks utilizing
something like access_process_vm but that requires the bpf
program calling bpf_get_task_stack to be sleepable and would
therefore be a breaking change.

Fixes: fa28dcb82a ("bpf: Introduce helper bpf_get_task_stack()")
Signed-off-by: Jordan Rome <jordalgo@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231108112334.3433136-1-jordalgo@meta.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:19 -08:00
Florian Lehner
de0b27e632 bpf, lpm: Fix check prefixlen before walking trie
[ Upstream commit 9b75dbeb36 ]

When looking up an element in LPM trie, the condition 'matchlen ==
trie->max_prefixlen' will never return true, if key->prefixlen is larger
than trie->max_prefixlen. Consequently all elements in the LPM trie will
be visited and no element is returned in the end.

To resolve this, check key->prefixlen first before walking the LPM trie.

Fixes: b95a5c4db0 ("bpf: add a longest prefix match trie map implementation")
Signed-off-by: Florian Lehner <dev@der-flo.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231105085801.3742-1-dev@der-flo.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:19 -08:00
Yiwei Lin
20c0981478 sched/fair: Update min_vruntime for reweight_entity() correctly
[ Upstream commit 5068d84054 ]

Since reweight_entity() may have chance to change the weight of
cfs_rq->curr entity, we should also update_min_vruntime() if
this is the case

Fixes: eab03c23c2 ("sched/eevdf: Fix vruntime adjustment on reweight")
Signed-off-by: Yiwei Lin <s921975628@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Abel Wu <wuyun.abel@bytedance.com>
Link: https://lore.kernel.org/r/20231117080106.12890-1-s921975628@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:35:14 -08:00
Linus Torvalds
766c6c1dd1 posix-timers: Get rid of [COMPAT_]SYS_NI() uses
[ Upstream commit a4aebe9365 ]

Only the posix timer system calls use this (when the posix timer support
is disabled, which does not actually happen in any normal case), because
they had debug code to print out a warning about missing system calls.

Get rid of that special case, and just use the standard COND_SYSCALL
interface that creates weak system call stubs that return -ENOSYS for
when the system call does not exist.

This fixes a kCFI issue with the SYS_NI() hackery:

  CFI failure at int80_emulation+0x67/0xb0 (target: sys_ni_posix_timers+0x0/0x70; expected type: 0xb02b34d9)
  WARNING: CPU: 0 PID: 48 at int80_emulation+0x67/0xb0

Reported-by: kernel test robot <oliver.sang@intel.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-20 11:51:46 +01:00
Steven Rostedt (Google)
33e42861eb ring-buffer: Do not record in NMI if the arch does not support cmpxchg in NMI
[ Upstream commit 712292308a ]

As the ring buffer recording requires cmpxchg() to work, if the
architecture does not support cmpxchg in NMI, then do not do any recording
within an NMI.

Link: https://lore.kernel.org/linux-trace-kernel/20231213175403.6fc18540@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-20 11:51:43 +01:00
Zheng Yejian
d9a6029dde tracing: Fix uaf issue when open the hist or hist_debug file
[ Upstream commit 1cc111b9cd ]

KASAN report following issue. The root cause is when opening 'hist'
file of an instance and accessing 'trace_event_file' in hist_show(),
but 'trace_event_file' has been freed due to the instance being removed.
'hist_debug' file has the same problem. To fix it, call
tracing_{open,release}_file_tr() in file_operations callback to have
the ref count and avoid 'trace_event_file' being freed.

  BUG: KASAN: slab-use-after-free in hist_show+0x11e0/0x1278
  Read of size 8 at addr ffff242541e336b8 by task head/190

  CPU: 4 PID: 190 Comm: head Not tainted 6.7.0-rc5-g26aff849438c #133
  Hardware name: linux,dummy-virt (DT)
  Call trace:
   dump_backtrace+0x98/0xf8
   show_stack+0x1c/0x30
   dump_stack_lvl+0x44/0x58
   print_report+0xf0/0x5a0
   kasan_report+0x80/0xc0
   __asan_report_load8_noabort+0x1c/0x28
   hist_show+0x11e0/0x1278
   seq_read_iter+0x344/0xd78
   seq_read+0x128/0x1c0
   vfs_read+0x198/0x6c8
   ksys_read+0xf4/0x1e0
   __arm64_sys_read+0x70/0xa8
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

  Allocated by task 188:
   kasan_save_stack+0x28/0x50
   kasan_set_track+0x28/0x38
   kasan_save_alloc_info+0x20/0x30
   __kasan_slab_alloc+0x6c/0x80
   kmem_cache_alloc+0x15c/0x4a8
   trace_create_new_event+0x84/0x348
   __trace_add_new_event+0x18/0x88
   event_trace_add_tracer+0xc4/0x1a0
   trace_array_create_dir+0x6c/0x100
   trace_array_create+0x2e8/0x568
   instance_mkdir+0x48/0x80
   tracefs_syscall_mkdir+0x90/0xe8
   vfs_mkdir+0x3c4/0x610
   do_mkdirat+0x144/0x200
   __arm64_sys_mkdirat+0x8c/0xc0
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

  Freed by task 191:
   kasan_save_stack+0x28/0x50
   kasan_set_track+0x28/0x38
   kasan_save_free_info+0x34/0x58
   __kasan_slab_free+0xe4/0x158
   kmem_cache_free+0x19c/0x508
   event_file_put+0xa0/0x120
   remove_event_file_dir+0x180/0x320
   event_trace_del_tracer+0xb0/0x180
   __remove_instance+0x224/0x508
   instance_rmdir+0x44/0x78
   tracefs_syscall_rmdir+0xbc/0x140
   vfs_rmdir+0x1cc/0x4c8
   do_rmdir+0x220/0x2b8
   __arm64_sys_unlinkat+0xc0/0x100
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

Link: https://lore.kernel.org/linux-trace-kernel/20231214012153.676155-1-zhengyejian1@huawei.com

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-20 11:51:43 +01:00
Steven Rostedt (Google)
0df76142ca tracing: Add size check when printing trace_marker output
[ Upstream commit 60be76eeab ]

If for some reason the trace_marker write does not have a nul byte for the
string, it will overflow the print:

  trace_seq_printf(s, ": %s", field->buf);

The field->buf could be missing the nul byte. To prevent overflow, add the
max size that the buf can be by using the event size and the field
location.

  int max = iter->ent_size - offsetof(struct print_entry, buf);

  trace_seq_printf(s, ": %*.s", max, field->buf);

Link: https://lore.kernel.org/linux-trace-kernel/20231212084444.4619b8ce@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-20 11:51:43 +01:00
Steven Rostedt (Google)
f3dc260cd5 tracing: Have large events show up as '[LINE TOO BIG]' instead of nothing
[ Upstream commit b55b0a0d7c ]

If a large event was added to the ring buffer that is larger than what the
trace_seq can handle, it just drops the output:

 ~# cat /sys/kernel/tracing/trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-859     [001] .....   141.118951: tracing_mark_write           <...>-859     [001] .....   141.148201: tracing_mark_write: 78901234

Instead, catch this case and add some context:

 ~# cat /sys/kernel/tracing/trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-852     [001] .....   121.550551: tracing_mark_write[LINE TOO BIG]
            <...>-852     [001] .....   121.550581: tracing_mark_write: 78901234

This now emulates the same output as trace_pipe.

Link: https://lore.kernel.org/linux-trace-kernel/20231209171058.78c1a026@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-20 11:51:43 +01:00
Alison Schofield
e4a5b2f60e kernel/resource: Increment by align value in get_free_mem_region()
[ Upstream commit 659aa050a5 ]

Currently get_free_mem_region() searches for available capacity
in increments equal to the region size being requested. This can
cause the search to take giant steps through the resource leaving
needless gaps and missing available space.

Specifically 'cxl create-region' fails with ERANGE even though capacity
of the given size and CXL's expected 256M x InterleaveWays alignment can
be satisfied.

Replace the total-request-size increment with a next alignment increment
so that the next possible address is always examined for availability.

Fixes: 14b80582c4 ("resource: Introduce alloc_free_mem_region()")
Reported-by: Dmytro Adamenko <dmytro.adamenko@intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20231113221324.1118092-1-alison.schofield@intel.com
Cc: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-10 17:16:58 +01:00
Frederic Weisbecker
5d1e4e5fd1 rcu/tasks-trace: Handle new PF_IDLE semantics
[ Upstream commit a80712b9cc ]

The commit:

	cff9b2332a ("kernel/sched: Modify initial boot task idle setup")

has changed the semantics of what is to be considered an idle task in
such a way that the idle task of an offline CPU may not carry the
PF_IDLE flag anymore.

However RCU-tasks-trace tests the opposite assertion, still assuming
that idle tasks carry the PF_IDLE flag during their whole lifecycle.

Remove this assumption to avoid spurious warnings but keep the initial
test verifying that the idle task is the current task on any offline
CPU.

Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Fixes: cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
Suggested-by: Joel Fernandes <joel@joelfernandes.org>
Suggested-by: "Paul E. McKenney" <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-10 17:16:56 +01:00
Frederic Weisbecker
b3ffc11675 rcu/tasks: Handle new PF_IDLE semantics
[ Upstream commit 9715ed501b ]

The commit:

	cff9b2332a ("kernel/sched: Modify initial boot task idle setup")

has changed the semantics of what is to be considered an idle task in
such a way that CPU boot code preceding the actual idle loop is excluded
from it.

This has however introduced new potential RCU-tasks stalls when either:

1) Grace period is started before init/0 had a chance to set PF_IDLE,
   keeping it stuck in the holdout list until idle ever schedules.

2) Grace period is started when some possible CPUs have never been
   online, keeping their idle tasks stuck in the holdout list until the
   CPU ever boots up.

3) Similar to 1) but with secondary CPUs: Grace period is started
   concurrently with secondary CPU booting, putting its idle task in
   the holdout list because PF_IDLE isn't yet observed on it. It stays
   then stuck in the holdout list until that CPU ever schedules. The
   effect is mitigated here by the hotplug AP thread that must run to
   bring the CPU up.

Fix this with handling the new semantics of PF_IDLE, keeping in mind
that it may or may not be set on an idle task. Take advantage of that to
strengthen the coverage of an RCU-tasks quiescent state within an idle
task, excluding the CPU boot code from it. Only the code running within
the idle loop is now a quiescent state, along with offline CPUs.

Fixes: cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
Suggested-by: Joel Fernandes <joel@joelfernandes.org>
Suggested-by: "Paul E. McKenney" <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-10 17:16:56 +01:00
Frederic Weisbecker
547c59c83a rcu: Introduce rcu_cpu_online()
[ Upstream commit 2be4686d86 ]

Export the RCU point of view as to when a CPU is considered offline
(ie: when does RCU consider that a CPU is sufficiently down in the
hotplug process to not feature any possible read side).

This will be used by RCU-tasks whose vision of an offline CPU should
reasonably match the one of RCU core.

Fixes: cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-10 17:16:56 +01:00
Peter Zijlstra
39d04e5588 rcu: Break rcu_node_0 --> &rq->__lock order
[ Upstream commit 85d68222dd ]

Commit 851a723e45 ("sched: Always clear user_cpus_ptr in
do_set_cpus_allowed()") added a kfree() call to free any user
provided affinity mask, if present. It was changed later to use
kfree_rcu() in commit 9a5418bc48 ("sched/core: Use kfree_rcu()
in do_set_cpus_allowed()") to avoid a circular locking dependency
problem.

It turns out that even kfree_rcu() isn't safe for avoiding
circular locking problem. As reported by kernel test robot,
the following circular locking dependency now exists:

  &rdp->nocb_lock --> rcu_node_0 --> &rq->__lock

Solve this by breaking the rcu_node_0 --> &rq->__lock chain by moving
the resched_cpu() out from under rcu_node lock.

[peterz: heavily borrowed from Waiman's Changelog]
[paulmck: applied Z qiang feedback]

Fixes: 851a723e45 ("sched: Always clear user_cpus_ptr in do_set_cpus_allowed()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Acked-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/oe-lkp/202310302207.a25f1a30-oliver.sang@intel.com
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-10 17:16:56 +01:00
Steven Rostedt (Google)
ccd48707d5 tracing: Fix blocked reader of snapshot buffer
commit 39a7dc23a1 upstream.

If an application blocks on the snapshot or snapshot_raw files, expecting
to be woken up when a snapshot occurs, it will not happen. Or it may
happen with an unexpected result.

That result is that the application will be reading the main buffer
instead of the snapshot buffer. That is because when the snapshot occurs,
the main and snapshot buffers are swapped. But the reader has a descriptor
still pointing to the buffer that it originally connected to.

This is fine for the main buffer readers, as they may be blocked waiting
for a watermark to be hit, and when a snapshot occurs, the data that the
main readers want is now on the snapshot buffer.

But for waiters of the snapshot buffer, they are waiting for an event to
occur that will trigger the snapshot and they can then consume it quickly
to save the snapshot before the next snapshot occurs. But to do this, they
need to read the new snapshot buffer, not the old one that is now
receiving new data.

Also, it does not make sense to have a watermark "buffer_percent" on the
snapshot buffer, as the snapshot buffer is static and does not receive new
data except all at once.

Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: debdd57f51 ("tracing: Make a snapshot feature available from userspace")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-05 15:19:44 +01:00