Commit graph

32413 commits

Author SHA1 Message Date
Yan Zhai
59426454b8 bpf: report RCU QS in cpumap kthread
[ Upstream commit 00bf631224 ]

When there are heavy load, cpumap kernel threads can be busy polling
packets from redirect queues and block out RCU tasks from reaching
quiescent states. It is insufficient to just call cond_resched() in such
context. Periodically raise a consolidated RCU QS before cond_resched
fixes the problem.

Fixes: 6710e11269 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Reviewed-by: Jesper Dangaard Brouer <hawk@kernel.org>
Signed-off-by: Yan Zhai <yan@cloudflare.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/c17b9f1517e19d813da3ede5ed33ee18496bb5d8.1710877680.git.yan@cloudflare.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:22:25 -04:00
Toke Høiland-Jørgensen
21e5fa4688 bpf: Fix stackmap overflow check on 32-bit arches
[ Upstream commit 7a4b21250b ]

The stackmap code relies on roundup_pow_of_two() to compute the number
of hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code.

The commit in the fixes tag actually attempted to fix this, but the fix
did not account for the UB, so the fix only works on CPUs where an
overflow does result in a neat truncation to zero, which is not
guaranteed. Checking the value before rounding does not have this
problem.

Fixes: 6183f4d3a0 ("bpf: Check for integer overflow when using roundup_pow_of_two()")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Reviewed-by: Bui Quang Minh <minhquangbui99@gmail.com>
Message-ID: <20240307120340.99577-4-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:22:17 -04:00
Toke Høiland-Jørgensen
92c81fbb3e bpf: Fix hashtab overflow check on 32-bit arches
[ Upstream commit 6787d916c2 ]

The hashtab code relies on roundup_pow_of_two() to compute the number of
hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code. So apply the same
fix to hashtab, by moving the overflow check to before the roundup.

Fixes: daaf427c6a ("bpf: fix arraymap NULL deref and missing overflow and zero size checks")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Message-ID: <20240307120340.99577-3-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:22:17 -04:00
Yonghong Song
6bbbd2fd08 bpf: Mark bpf_spin_{lock,unlock}() helpers with notrace correctly
[ Upstream commit 178c54666f ]

Currently tracing is supposed not to allow for bpf_spin_{lock,unlock}()
helper calls. This is to prevent deadlock for the following cases:
  - there is a prog (prog-A) calling bpf_spin_{lock,unlock}().
  - there is a tracing program (prog-B), e.g., fentry, attached
    to bpf_spin_lock() and/or bpf_spin_unlock().
  - prog-B calls bpf_spin_{lock,unlock}().
For such a case, when prog-A calls bpf_spin_{lock,unlock}(),
a deadlock will happen.

The related source codes are below in kernel/bpf/helpers.c:
  notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
  notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
notrace is supposed to prevent fentry prog from attaching to
bpf_spin_{lock,unlock}().

But actually this is not the case and fentry prog can successfully
attached to bpf_spin_lock(). Siddharth Chintamaneni reported
the issue in [1]. The following is the macro definition for
above BPF_CALL_1:
  #define BPF_CALL_x(x, name, ...)                                               \
        static __always_inline                                                 \
        u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
        typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
        u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
        u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
        {                                                                      \
                return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
        }                                                                      \
        static __always_inline                                                 \
        u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))

  #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)

The notrace attribute is actually applied to the static always_inline function
____bpf_spin_{lock,unlock}(). The actual callback function
bpf_spin_{lock,unlock}() is not marked with notrace, hence
allowing fentry prog to attach to two helpers, and this
may cause the above mentioned deadlock. Siddharth Chintamaneni
actually has a reproducer in [2].

To fix the issue, a new macro NOTRACE_BPF_CALL_1 is introduced which
will add notrace attribute to the original function instead of
the hidden always_inline function and this fixed the problem.

  [1] https://lore.kernel.org/bpf/CAE5sdEigPnoGrzN8WU7Tx-h-iFuMZgW06qp0KHWtpvoXxf1OAQ@mail.gmail.com/
  [2] https://lore.kernel.org/bpf/CAE5sdEg6yUc_Jz50AnUXEEUh6O73yQ1Z6NV2srJnef0ZrQkZew@mail.gmail.com/

Fixes: d83525ca62 ("bpf: introduce bpf_spin_lock")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20240207070102.335167-1-yonghong.song@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:22:15 -04:00
Alexei Starovoitov
6f51d61a43 bpf: Factor out bpf_spin_lock into helpers.
[ Upstream commit c1b3fed319 ]

Move ____bpf_spin_lock/unlock into helpers to make it more clear
that quadruple underscore bpf_spin_lock/unlock are irqsave/restore variants.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-3-alexei.starovoitov@gmail.com
Stable-dep-of: 178c54666f ("bpf: Mark bpf_spin_{lock,unlock}() helpers with notrace correctly")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:22:15 -04:00
Peter Hilber
be26970980 timekeeping: Fix cross-timestamp interpolation for non-x86
[ Upstream commit 14274d0bd3 ]

So far, get_device_system_crosststamp() unconditionally passes
system_counterval.cycles to timekeeping_cycles_to_ns(). But when
interpolating system time (do_interp == true), system_counterval.cycles is
before tkr_mono.cycle_last, contrary to the timekeeping_cycles_to_ns()
expectations.

On x86, CONFIG_CLOCKSOURCE_VALIDATE_LAST_CYCLE will mitigate on
interpolating, setting delta to 0. With delta == 0, xtstamp->sys_monoraw
and xtstamp->sys_realtime are then set to the last update time, as
implicitly expected by adjust_historical_crosststamp(). On other
architectures, the resulting nonsense xtstamp->sys_monoraw and
xtstamp->sys_realtime corrupt the xtstamp (ts) adjustment in
adjust_historical_crosststamp().

Fix this by deriving xtstamp->sys_monoraw and xtstamp->sys_realtime from
the last update time when interpolating, by using the local variable
"cycles". The local variable already has the right value when
interpolating, unlike system_counterval.cycles.

Fixes: 2c756feb18 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20231218073849.35294-4-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:22:14 -04:00
Peter Hilber
fee4e84c4e timekeeping: Fix cross-timestamp interpolation corner case decision
[ Upstream commit 87a4113088 ]

The cycle_between() helper checks if parameter test is in the open interval
(before, after). Colloquially speaking, this also applies to the counter
wrap-around special case before > after. get_device_system_crosststamp()
currently uses cycle_between() at the first call site to decide whether to
interpolate for older counter readings.

get_device_system_crosststamp() has the following problem with
cycle_between() testing against an open interval: Assume that, by chance,
cycles == tk->tkr_mono.cycle_last (in the following, "cycle_last" for
brevity). Then, cycle_between() at the first call site, with effective
argument values cycle_between(cycle_last, cycles, now), returns false,
enabling interpolation. During interpolation,
get_device_system_crosststamp() will then call cycle_between() at the
second call site (if a history_begin was supplied). The effective argument
values are cycle_between(history_begin->cycles, cycles, cycles), since
system_counterval.cycles == interval_start == cycles, per the assumption.
Due to the test against the open interval, cycle_between() returns false
again. This causes get_device_system_crosststamp() to return -EINVAL.

This failure should be avoided, since get_device_system_crosststamp() works
both when cycles follows cycle_last (no interpolation), and when cycles
precedes cycle_last (interpolation). For the case cycles == cycle_last,
interpolation is actually unneeded.

Fix this by changing cycle_between() into timestamp_in_interval(), which
now checks against the closed interval, rather than the open interval.

This changes the get_device_system_crosststamp() behavior for three corner
cases:

1. Bypass interpolation in the case cycles == tk->tkr_mono.cycle_last,
   fixing the problem described above.

2. At the first timestamp_in_interval() call site, cycles == now no longer
   causes failure.

3. At the second timestamp_in_interval() call site, history_begin->cycles
   == system_counterval.cycles no longer causes failure.
   adjust_historical_crosststamp() also works for this corner case,
   where partial_history_cycles == total_history_cycles.

These behavioral changes should not cause any problems.

Fixes: 2c756feb18 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231218073849.35294-3-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:22:14 -04:00
Peter Hilber
7cec7d8388 timekeeping: Fix cross-timestamp interpolation on counter wrap
[ Upstream commit 84dccadd3e ]

cycle_between() decides whether get_device_system_crosststamp() will
interpolate for older counter readings.

cycle_between() yields wrong results for a counter wrap-around where after
< before < test, and for the case after < test < before.

Fix the comparison logic.

Fixes: 2c756feb18 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20231218073849.35294-2-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:22:14 -04:00
Oleg Nesterov
664a6a904a getrusage: use sig->stats_lock rather than lock_task_sighand()
[ Upstream commit f7ec1cd5cc ]

lock_task_sighand() can trigger a hard lockup. If NR_CPUS threads call
getrusage() at the same time and the process has NR_THREADS, spin_lock_irq
will spin with irqs disabled O(NR_CPUS * NR_THREADS) time.

Change getrusage() to use sig->stats_lock, it was specifically designed
for this type of use. This way it runs lockless in the likely case.

TODO:
	- Change do_task_stat() to use sig->stats_lock too, then we can
	  remove spin_lock_irq(siglock) in wait_task_zombie().

	- Turn sig->stats_lock into seqcount_rwlock_t, this way the
	  readers in the slow mode won't exclude each other. See
	  https://lore.kernel.org/all/20230913154907.GA26210@redhat.com/

	- stats_lock has to disable irqs because ->siglock can be taken
	  in irq context, it would be very nice to change __exit_signal()
	  to avoid the siglock->stats_lock dependency.

Link: https://lkml.kernel.org/r/20240122155053.GA26214@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Dylan Hatch <dylanbhatch@google.com>
Tested-by: Dylan Hatch <dylanbhatch@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-15 10:48:19 -04:00
Oleg Nesterov
2b34f60383 getrusage: use __for_each_thread()
[ Upstream commit 13b7bc60b5 ]

do/while_each_thread should be avoided when possible.

Plus this change allows to avoid lock_task_sighand(), we can use rcu
and/or sig->stats_lock instead.

Link: https://lkml.kernel.org/r/20230909172629.GA20454@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: f7ec1cd5cc ("getrusage: use sig->stats_lock rather than lock_task_sighand()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-15 10:48:19 -04:00
Oleg Nesterov
c50a059431 getrusage: move thread_group_cputime_adjusted() outside of lock_task_sighand()
[ Upstream commit daa694e413 ]

Patch series "getrusage: use sig->stats_lock", v2.

This patch (of 2):

thread_group_cputime() does its own locking, we can safely shift
thread_group_cputime_adjusted() which does another for_each_thread loop
outside of ->siglock protected section.

This is also preparation for the next patch which changes getrusage() to
use stats_lock instead of siglock, thread_group_cputime() takes the same
lock.  With the current implementation recursive read_seqbegin_or_lock()
is fine, thread_group_cputime() can't enter the slow mode if the caller
holds stats_lock, yet this looks more safe and better performance-wise.

Link: https://lkml.kernel.org/r/20240122155023.GA26169@redhat.com
Link: https://lkml.kernel.org/r/20240122155050.GA26205@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Dylan Hatch <dylanbhatch@google.com>
Tested-by: Dylan Hatch <dylanbhatch@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-15 10:48:19 -04:00
Oleg Nesterov
ef8a8b36a1 getrusage: add the "signal_struct *sig" local variable
[ Upstream commit c7ac8231ac ]

No functional changes, cleanup/preparation.

Link: https://lkml.kernel.org/r/20230909172554.GA20441@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: daa694e413 ("getrusage: move thread_group_cputime_adjusted() outside of lock_task_sighand()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-15 10:48:19 -04:00
Arnd Bergmann
f184f21978 y2038: rusage: use __kernel_old_timeval
[ Upstream commit bdd565f817 ]

There are two 'struct timeval' fields in 'struct rusage'.

Unfortunately the definition of timeval is now ambiguous when used in
user space with a libc that has a 64-bit time_t, and this also changes
the 'rusage' definition in user space in a way that is incompatible with
the system call interface.

While there is no good solution to avoid all ambiguity here, change
the definition in the kernel headers to be compatible with the kernel
ABI, using __kernel_old_timeval as an unambiguous base type.

In previous discussions, there was also a plan to add a replacement
for rusage based on 64-bit timestamps and nanosecond resolution,
i.e. 'struct __kernel_timespec'. I have patches for that as well,
if anyone thinks we should do that.

Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Stable-dep-of: daa694e413 ("getrusage: move thread_group_cputime_adjusted() outside of lock_task_sighand()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-15 10:48:18 -04:00
Cyril Hrubis
d2fc4134aa sched/rt: Disallow writing invalid values to sched_rt_period_us
commit 079be8fc63 upstream.

The validation of the value written to sched_rt_period_us was broken
because:

  - the sysclt_sched_rt_period is declared as unsigned int
  - parsed by proc_do_intvec()
  - the range is asserted after the value parsed by proc_do_intvec()

Because of this negative values written to the file were written into a
unsigned integer that were later on interpreted as large positive
integers which did passed the check:

  if (sysclt_sched_rt_period <= 0)
	return EINVAL;

This commit fixes the parsing by setting explicit range for both
perid_us and runtime_us into the sched_rt_sysctls table and processes
the values with proc_dointvec_minmax() instead.

Alternatively if we wanted to use full range of unsigned int for the
period value we would have to split the proc_handler and use
proc_douintvec() for it however even the
Documentation/scheduller/sched-rt-group.rst describes the range as 1 to
INT_MAX.

As far as I can tell the only problem this causes is that the sysctl
file allows writing negative values which when read back may confuse
userspace.

There is also a LTP test being submitted for these sysctl files at:

  http://patchwork.ozlabs.org/project/ltp/patch/20230901144433.2526-1-chrubis@suse.cz/

Signed-off-by: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231002115553.3007-2-chrubis@suse.cz
[ pvorel: rebased for 5.4 ]
Reviewed-by: Petr Vorel <pvorel@suse.cz>
Signed-off-by: Petr Vorel <pvorel@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-03-01 13:13:33 +01:00
Cyril Hrubis
b69677bfd7 sched/rt: Fix sysctl_sched_rr_timeslice intial value
commit c7fcb99877 upstream.

There is a 10% rounding error in the intial value of the
sysctl_sched_rr_timeslice with CONFIG_HZ_300=y.

This was found with LTP test sched_rr_get_interval01:

sched_rr_get_interval01.c:57: TPASS: sched_rr_get_interval() passed
sched_rr_get_interval01.c:64: TPASS: Time quantum 0s 99999990ns
sched_rr_get_interval01.c:72: TFAIL: /proc/sys/kernel/sched_rr_timeslice_ms != 100 got 90
sched_rr_get_interval01.c:57: TPASS: sched_rr_get_interval() passed
sched_rr_get_interval01.c:64: TPASS: Time quantum 0s 99999990ns
sched_rr_get_interval01.c:72: TFAIL: /proc/sys/kernel/sched_rr_timeslice_ms != 100 got 90

What this test does is to compare the return value from the
sched_rr_get_interval() and the sched_rr_timeslice_ms sysctl file and
fails if they do not match.

The problem it found is the intial sysctl file value which was computed as:

static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;

which works fine as long as MSEC_PER_SEC is multiple of HZ, however it
introduces 10% rounding error for CONFIG_HZ_300:

(MSEC_PER_SEC / HZ) * (100 * HZ / 1000)

(1000 / 300) * (100 * 300 / 1000)

3 * 30 = 90

This can be easily fixed by reversing the order of the multiplication
and division. After this fix we get:

(MSEC_PER_SEC * (100 * HZ / 1000)) / HZ

(1000 * (100 * 300 / 1000)) / 300

(1000 * 30) / 300 = 100

Fixes: 975e155ed8 ("sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds")
Signed-off-by: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Petr Vorel <pvorel@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Petr Vorel <pvorel@suse.cz>
Link: https://lore.kernel.org/r/20230802151906.25258-2-chrubis@suse.cz
[ pvorel: rebased for 5.4 ]
Signed-off-by: Petr Vorel <pvorel@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-03-01 13:13:33 +01:00
Cyril Hrubis
d7b5bdb52d sched/rt: sysctl_sched_rr_timeslice show default timeslice after reset
commit c1fc6484e1 upstream.

The sched_rr_timeslice can be reset to default by writing value that is
<= 0. However after reading from this file we always got the last value
written, which is not useful at all.

$ echo -1 > /proc/sys/kernel/sched_rr_timeslice_ms
$ cat /proc/sys/kernel/sched_rr_timeslice_ms
-1

Fix this by setting the variable that holds the sysctl file value to the
jiffies_to_msecs(RR_TIMESLICE) in case that <= 0 value was written.

Signed-off-by: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Petr Vorel <pvorel@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Petr Vorel <pvorel@suse.cz>
Cc: Mahmoud Adam <mngyadam@amazon.com>
Link: https://lore.kernel.org/r/20230802151906.25258-3-chrubis@suse.cz
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-03-01 13:13:32 +01:00
Linus Torvalds
2441a64070 sched/membarrier: reduce the ability to hammer on sys_membarrier
commit 944d5fe50f upstream.

On some systems, sys_membarrier can be very expensive, causing overall
slowdowns for everything.  So put a lock on the path in order to
serialize the accesses to prevent the ability for this to be called at
too high of a frequency and saturate the machine.

Reviewed-and-tested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Fixes: 22e4ebb975 ("membarrier: Provide expedited private command")
Fixes: c5f58bd58f ("membarrier: Provide GLOBAL_EXPEDITED command")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ converted to explicit mutex_*() calls - cleanup.h is not in this stable
  branch - gregkh ]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 08:25:14 +01:00
Steven Rostedt (Google)
60e092289c tracing: Inform kmemleak of saved_cmdlines allocation
commit 2394ac4145 upstream.

The allocation of the struct saved_cmdlines_buffer structure changed from:

        s = kmalloc(sizeof(*s), GFP_KERNEL);
	s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);

to:

	orig_size = sizeof(*s) + val * TASK_COMM_LEN;
	order = get_order(orig_size);
	size = 1 << (order + PAGE_SHIFT);
	page = alloc_pages(GFP_KERNEL, order);
	if (!page)
		return NULL;

	s = page_address(page);
	memset(s, 0, sizeof(*s));

	s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);

Where that s->saved_cmdlines allocation looks to be a dangling allocation
to kmemleak. That's because kmemleak only keeps track of kmalloc()
allocations. For allocations that use page_alloc() directly, the kmemleak
needs to be explicitly informed about it.

Add kmemleak_alloc() and kmemleak_free() around the page allocation so
that it doesn't give the following false positive:

unreferenced object 0xffff8881010c8000 (size 32760):
  comm "swapper", pid 0, jiffies 4294667296
  hex dump (first 32 bytes):
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
  backtrace (crc ae6ec1b9):
    [<ffffffff86722405>] kmemleak_alloc+0x45/0x80
    [<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190
    [<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0
    [<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230
    [<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460
    [<ffffffff8864a174>] early_trace_init+0x14/0xa0
    [<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0
    [<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30
    [<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80
    [<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b

Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/
Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 44dc5c41b5 ("tracing: Fix wasted memory in saved_cmdlines logic")
Reported-by: Kalle Valo <kvalo@kernel.org>
Tested-by: Kalle Valo <kvalo@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 08:25:13 +01:00
Vincent Donnefort
ef60665ea9 ring-buffer: Clean ring_buffer_poll_wait() error return
commit 66bbea9ed6 upstream.

The return type for ring_buffer_poll_wait() is __poll_t. This is behind
the scenes an unsigned where we can set event bits. In case of a
non-allocated CPU, we do return instead -EINVAL (0xffffffea). Lucky us,
this ends up setting few error bits (EPOLLERR | EPOLLHUP | EPOLLNVAL), so
user-space at least is aware something went wrong.

Nonetheless, this is an incorrect code. Replace that -EINVAL with a
proper EPOLLERR to clean that output. As this doesn't change the
behaviour, there's no need to treat this change as a bug fix.

Link: https://lore.kernel.org/linux-trace-kernel/20240131140955.3322792-1-vdonnefort@google.com

Cc: stable@vger.kernel.org
Fixes: 6721cb6002 ("ring-buffer: Do not poll non allocated cpu buffers")
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 08:25:12 +01:00
Steven Rostedt (Google)
77e7a316cd tracing: Fix wasted memory in saved_cmdlines logic
commit 44dc5c41b5 upstream.

While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.

The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.

The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.

In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.

Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.

This is similar to a recommendation that Linus had made about eventfs_inode names:

  https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/

Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.

Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.

Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 939c7a4f04 ("tracing: Introduce saved_cmdlines_size file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 08:25:11 +01:00
Masami Hiramatsu (Google)
8ffd5590f4 tracing/trigger: Fix to return error if failed to alloc snapshot
commit 0958b33ef5 upstream.

Fix register_snapshot_trigger() to return error code if it failed to
allocate a snapshot instead of 0 (success). Unless that, it will register
snapshot trigger without an error.

Link: https://lore.kernel.org/linux-trace-kernel/170622977792.270660.2789298642759362200.stgit@devnote2

Fixes: 0bbe7f7199 ("tracing: Fix the race between registering 'snapshot' event trigger and triggering 'snapshot' operation")
Cc: stable@vger.kernel.org
Cc: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 08:25:09 +01:00
Frederic Weisbecker
a012efe0df hrtimer: Report offline hrtimer enqueue
commit dad6a09f31 upstream.

The hrtimers migration on CPU-down hotplug process has been moved
earlier, before the CPU actually goes to die. This leaves a small window
of opportunity to queue an hrtimer in a blind spot, leaving it ignored.

For example a practical case has been reported with RCU waking up a
SCHED_FIFO task right before the CPUHP_AP_IDLE_DEAD stage, queuing that
way a sched/rt timer to the local offline CPU.

Make sure such situations never go unnoticed and warn when that happens.

Fixes: 5c0930ccaa ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240129235646.3171983-4-boqun.feng@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 08:25:08 +01:00
Peter Zijlstra
ad2bd6cd17 perf: Fix the nr_addr_filters fix
[ Upstream commit 388a1fb7da ]

Thomas reported that commit 652ffc2104 ("perf/core: Fix narrow
startup race when creating the perf nr_addr_filters sysfs file") made
the entire attribute group vanish, instead of only the nr_addr_filters
attribute.

Additionally a stray return.

Insufficient coffee was involved with both writing and merging the
patch.

Fixes: 652ffc2104 ("perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file")
Reported-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Thomas Richter <tmricht@linux.ibm.com>
Link: https://lkml.kernel.org/r/20231122100756.GP8262@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-23 08:25:03 +01:00
Hou Tao
eb6f68ec92 bpf: Add map and need_defer parameters to .map_fd_put_ptr()
[ Upstream commit 20c20bd11a ]

map is the pointer of outer map, and need_defer needs some explanation.
need_defer tells the implementation to defer the reference release of
the passed element and ensure that the element is still alive before
the bpf program, which may manipulate it, exits.

The following three cases will invoke map_fd_put_ptr() and different
need_defer values will be passed to these callers:

1) release the reference of the old element in the map during map update
   or map deletion. The release must be deferred, otherwise the bpf
   program may incur use-after-free problem, so need_defer needs to be
   true.
2) release the reference of the to-be-added element in the error path of
   map update. The to-be-added element is not visible to any bpf
   program, so it is OK to pass false for need_defer parameter.
3) release the references of all elements in the map during map release.
   Any bpf program which has access to the map must have been exited and
   released, so need_defer=false will be OK.

These two parameters will be used by the following patches to fix the
potential use-after-free problem for map-in-map.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-23 08:24:57 +01:00
Chris Riches
20277842d9 audit: Send netlink ACK before setting connection in auditd_set
[ Upstream commit 022732e3d8 ]

When auditd_set sets the auditd_conn pointer, audit messages can
immediately be put on the socket by other kernel threads. If the backlog
is large or the rate is high, this can immediately fill the socket
buffer. If the audit daemon requested an ACK for this operation, a full
socket buffer causes the ACK to get dropped, also setting ENOBUFS on the
socket.

To avoid this race and ensure ACKs get through, fast-track the ACK in
this specific case to ensure it is sent before auditd_conn is set.

Signed-off-by: Chris Riches <chris.riches@nutanix.com>
[PM: fix some tab vs space damage]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-23 08:24:54 +01:00
Greg KH
aed181fbc2 perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file
[ Upstream commit 652ffc2104 ]

Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/2023061204-decal-flyable-6090@gregkh
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-23 08:24:54 +01:00
Tim Chen
aa8bd0d9b2 tick/sched: Preserve number of idle sleeps across CPU hotplug events
commit 9a574ea906 upstream.

Commit 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs
CPU hotplug") preserved total idle sleep time and iowait sleeptime across
CPU hotplug events.

Similar reasoning applies to the number of idle calls and idle sleeps to
get the proper average of sleep time per idle invocation.

Preserve those fields too.

Fixes: 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs CPU hotplug")
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122233534.3094238-1-tim.c.chen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 08:24:53 +01:00
Petr Pavlu
dad9b28f67 tracing: Ensure visibility when inserting an element into tracing_map
[ Upstream commit 2b44760609 ]

Running the following two commands in parallel on a multi-processor
AArch64 machine can sporadically produce an unexpected warning about
duplicate histogram entries:

 $ while true; do
     echo hist:key=id.syscall:val=hitcount > \
       /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger
     cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
     sleep 0.001
   done
 $ stress-ng --sysbadaddr $(nproc)

The warning looks as follows:

[ 2911.172474] ------------[ cut here ]------------
[ 2911.173111] Duplicates detected: 1
[ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408
[ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E)
[ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1
[ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G            E      6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01
[ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018
[ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408
[ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408
[ 2911.185310] sp : ffff8000a1513900
[ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001
[ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008
[ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180
[ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff
[ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8
[ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731
[ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c
[ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8
[ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000
[ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480
[ 2911.194259] Call trace:
[ 2911.194626]  tracing_map_sort_entries+0x3e0/0x408
[ 2911.195220]  hist_show+0x124/0x800
[ 2911.195692]  seq_read_iter+0x1d4/0x4e8
[ 2911.196193]  seq_read+0xe8/0x138
[ 2911.196638]  vfs_read+0xc8/0x300
[ 2911.197078]  ksys_read+0x70/0x108
[ 2911.197534]  __arm64_sys_read+0x24/0x38
[ 2911.198046]  invoke_syscall+0x78/0x108
[ 2911.198553]  el0_svc_common.constprop.0+0xd0/0xf8
[ 2911.199157]  do_el0_svc+0x28/0x40
[ 2911.199613]  el0_svc+0x40/0x178
[ 2911.200048]  el0t_64_sync_handler+0x13c/0x158
[ 2911.200621]  el0t_64_sync+0x1a8/0x1b0
[ 2911.201115] ---[ end trace 0000000000000000 ]---

The problem appears to be caused by CPU reordering of writes issued from
__tracing_map_insert().

The check for the presence of an element with a given key in this
function is:

 val = READ_ONCE(entry->val);
 if (val && keys_match(key, val->key, map->key_size)) ...

The write of a new entry is:

 elt = get_free_elt(map);
 memcpy(elt->key, key, map->key_size);
 entry->val = elt;

The "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;"
stores may become visible in the reversed order on another CPU. This
second CPU might then incorrectly determine that a new key doesn't match
an already present val->key and subsequently insert a new element,
resulting in a duplicate.

Fix the problem by adding a write barrier between
"memcpy(elt->key, key, map->key_size);" and "entry->val = elt;", and for
good measure, also use WRITE_ONCE(entry->val, elt) for publishing the
element. The sequence pairs with the mentioned "READ_ONCE(entry->val);"
and the "val->key" check which has an address dependency.

The barrier is placed on a path executed when adding an element for
a new key. Subsequent updates targeting the same key remain unaffected.

From the user's perspective, the issue was introduced by commit
c193707dde ("tracing: Remove code which merges duplicates"), which
followed commit cbf4100efb ("tracing: Add support to detect and avoid
duplicates"). The previous code operated differently; it inherently
expected potential races which result in duplicates but merged them
later when they occurred.

Link: https://lore.kernel.org/linux-trace-kernel/20240122150928.27725-1-petr.pavlu@suse.com

Fixes: c193707dde ("tracing: Remove code which merges duplicates")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-23 08:24:50 +01:00
Hongchen Zhang
5bc17b4fc2 PM: hibernate: Enforce ordering during image compression/decompression
commit 71cd7e80cf upstream.

An S4 (suspend to disk) test on the LoongArch 3A6000 platform sometimes
fails with the following error messaged in the dmesg log:

	Invalid LZO compressed length

That happens because when compressing/decompressing the image, the
synchronization between the control thread and the compress/decompress/crc
thread is based on a relaxed ordering interface, which is unreliable, and the
following situation may occur:

CPU 0					CPU 1
save_image_lzo				lzo_compress_threadfn
					  atomic_set(&d->stop, 1);
  atomic_read(&data[thr].stop)
  data[thr].cmp = data[thr].cmp_len;
	  				  WRITE data[thr].cmp_len

Then CPU0 gets a stale cmp_len and writes it to disk. During resume from S4,
wrong cmp_len is loaded.

To maintain data consistency between the two threads, use the acquire/release
variants of atomic set and read operations.

Fixes: 081a9d043c ("PM / Hibernate: Improve performance of LZO/plain hibernation, checksum image")
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Hongchen Zhang <zhanghongchen@loongson.cn>
Co-developed-by: Weihao Li <liweihao@loongson.cn>
Signed-off-by: Weihao Li <liweihao@loongson.cn>
[ rjw: Subject rewrite and changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 08:24:48 +01:00
Christophe JAILLET
d5661f46c1 kdb: Fix a potential buffer overflow in kdb_local()
[ Upstream commit 4f41d30cd6 ]

When appending "[defcmd]" to 'kdb_prompt_str', the size of the string
already in the buffer should be taken into account.

An option could be to switch from strncat() to strlcat() which does the
correct test to avoid such an overflow.

However, this actually looks as dead code, because 'defcmd_in_progress'
can't be true here.
See a more detailed explanation at [1].

[1]: https://lore.kernel.org/all/CAD=FV=WSh7wKN7Yp-3wWiDgX4E3isQ8uh0LCzTmd1v9Cg9j+nQ@mail.gmail.com/

Fixes: 5d5314d679 ("kdb: core for kgdb back end (1 of 2)")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 14:34:32 -08:00
Daniel Thompson
cf6260a34d kdb: Censor attempts to set PROMPT without ENABLE_MEM_READ
[ Upstream commit ad99b5105c ]

Currently the PROMPT variable could be abused to provoke the printf()
machinery to read outside the current stack frame. Normally this
doesn't matter becaues md is already a much better tool for reading
from memory.

However the md command can be disabled by not setting KDB_ENABLE_MEM_READ.
Let's also prevent PROMPT from being modified in these circumstances.

Whilst adding a comment to help future code reviewers we also remove
the #ifdef where PROMPT in consumed. There is no problem passing an
unused (0) to snprintf when !CONFIG_SMP.
argument

Reported-by: Wang Xiayang <xywang.sjtu@sjtu.edu.cn>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Stable-dep-of: 4f41d30cd6 ("kdb: Fix a potential buffer overflow in kdb_local()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 14:34:32 -08:00
Heiko Carstens
29032c8e3e tick-sched: Fix idle and iowait sleeptime accounting vs CPU hotplug
commit 71fee48fb7 upstream.

When offlining and onlining CPUs the overall reported idle and iowait
times as reported by /proc/stat jump backward and forward:

cpu  132 0 176 225249 47 6 6 21 0 0
cpu0 80 0 115 112575 33 3 4 18 0 0
cpu1 52 0 60 112673 13 3 1 2 0 0

cpu  133 0 177 226681 47 6 6 21 0 0
cpu0 80 0 116 113387 33 3 4 18 0 0

cpu  133 0 178 114431 33 6 6 21 0 0 <---- jump backward
cpu0 80 0 116 114247 33 3 4 18 0 0
cpu1 52 0 61 183 0 3 1 2 0 0        <---- idle + iowait start with 0

cpu  133 0 178 228956 47 6 6 21 0 0 <---- jump forward
cpu0 81 0 117 114929 33 3 4 18 0 0

Reason for this is that get_idle_time() in fs/proc/stat.c has different
sources for both values depending on if a CPU is online or offline:

- if a CPU is online the values may be taken from its per cpu
  tick_cpu_sched structure

- if a CPU is offline the values are taken from its per cpu cpustat
  structure

The problem is that the per cpu tick_cpu_sched structure is set to zero on
CPU offline. See tick_cancel_sched_timer() in kernel/time/tick-sched.c.

Therefore when a CPU is brought offline and online afterwards both its idle
and iowait sleeptime will be zero, causing a jump backward in total system
idle and iowait sleeptime. In a similar way if a CPU is then brought
offline again the total idle and iowait sleeptimes will jump forward.

It looks like this behavior was introduced with commit 4b0c0f294f
("tick: Cleanup NOHZ per cpu data on cpu down").

This was only noticed now on s390, since we switched to generic idle time
reporting with commit be76ea6144 ("s390/idle: remove arch_cpu_idle_time()
and corresponding code").

Fix this by preserving the values of idle_sleeptime and iowait_sleeptime
members of the per-cpu tick_sched structure on CPU hotplug.

Fixes: 4b0c0f294f ("tick: Cleanup NOHZ per cpu data on cpu down")
Reported-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240115163555.1004144-1-hca@linux.ibm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-25 14:34:29 -08:00
Joakim Zhang
4985e507e0 dma-mapping: clear dev->dma_mem to NULL after freeing it
[ Upstream commit b07bc23476 ]

Reproduced with below sequence:
dma_declare_coherent_memory()->dma_release_coherent_memory()
->dma_declare_coherent_memory()->"return -EBUSY" error

It will return -EBUSY from the dma_assign_coherent_memory()
in dma_declare_coherent_memory(), the reason is that dev->dma_mem
pointer has not been set to NULL after it's freed.

Fixes: cf65a0f6f6 ("dma-mapping: move all DMA mapping code to kernel/dma")
Signed-off-by: Joakim Zhang <joakim.zhang@cixtech.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 14:34:25 -08:00
Florian Lehner
dc843ed97d bpf, lpm: Fix check prefixlen before walking trie
[ Upstream commit 9b75dbeb36 ]

When looking up an element in LPM trie, the condition 'matchlen ==
trie->max_prefixlen' will never return true, if key->prefixlen is larger
than trie->max_prefixlen. Consequently all elements in the LPM trie will
be visited and no element is returned in the end.

To resolve this, check key->prefixlen first before walking the LPM trie.

Fixes: b95a5c4db0 ("bpf: add a longest prefix match trie map implementation")
Signed-off-by: Florian Lehner <dev@der-flo.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231105085801.3742-1-dev@der-flo.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 14:34:24 -08:00
Steven Rostedt (Google)
4f7512e779 ring-buffer: Do not record in NMI if the arch does not support cmpxchg in NMI
[ Upstream commit 712292308a ]

As the ring buffer recording requires cmpxchg() to work, if the
architecture does not support cmpxchg in NMI, then do not do any recording
within an NMI.

Link: https://lore.kernel.org/linux-trace-kernel/20231213175403.6fc18540@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 14:34:20 -08:00
Steven Rostedt (Google)
e405c22ee5 tracing: Add size check when printing trace_marker output
[ Upstream commit 60be76eeab ]

If for some reason the trace_marker write does not have a nul byte for the
string, it will overflow the print:

  trace_seq_printf(s, ": %s", field->buf);

The field->buf could be missing the nul byte. To prevent overflow, add the
max size that the buf can be by using the event size and the field
location.

  int max = iter->ent_size - offsetof(struct print_entry, buf);

  trace_seq_printf(s, ": %*.s", max, field->buf);

Link: https://lore.kernel.org/linux-trace-kernel/20231212084444.4619b8ce@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 14:34:20 -08:00
Steven Rostedt (Google)
f787481af4 tracing: Have large events show up as '[LINE TOO BIG]' instead of nothing
[ Upstream commit b55b0a0d7c ]

If a large event was added to the ring buffer that is larger than what the
trace_seq can handle, it just drops the output:

 ~# cat /sys/kernel/tracing/trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-859     [001] .....   141.118951: tracing_mark_write           <...>-859     [001] .....   141.148201: tracing_mark_write: 78901234

Instead, catch this case and add some context:

 ~# cat /sys/kernel/tracing/trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-852     [001] .....   121.550551: tracing_mark_write[LINE TOO BIG]
            <...>-852     [001] .....   121.550581: tracing_mark_write: 78901234

This now emulates the same output as trace_pipe.

Link: https://lore.kernel.org/linux-trace-kernel/20231209171058.78c1a026@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 14:34:20 -08:00
Steven Rostedt (Google)
a0678f5047 ring-buffer: Fix wake ups when buffer_percent is set to 100
commit 623b1f896f upstream.

The tracefs file "buffer_percent" is to allow user space to set a
water-mark on how much of the tracing ring buffer needs to be filled in
order to wake up a blocked reader.

 0 - is to wait until any data is in the buffer
 1 - is to wait for 1% of the sub buffers to be filled
 50 - would be half of the sub buffers are filled with data
 100 - is not to wake the waiter until the ring buffer is completely full

Unfortunately the test for being full was:

	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
	return (dirty * 100) > (full * nr_pages);

Where "full" is the value for "buffer_percent".

There is two issues with the above when full == 100.

1. dirty * 100 > 100 * nr_pages will never be true
   That is, the above is basically saying that if the user sets
   buffer_percent to 100, more pages need to be dirty than exist in the
   ring buffer!

2. The page that the writer is on is never considered dirty, as dirty
   pages are only those that are full. When the writer goes to a new
   sub-buffer, it clears the contents of that sub-buffer.

That is, even if the check was ">=" it would still not be equal as the
most pages that can be considered "dirty" is nr_pages - 1.

To fix this, add one to dirty and use ">=" in the compare.

Link: https://lore.kernel.org/linux-trace-kernel/20231226125902.4a057f1d@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: 03329f9939 ("tracing: Add tracefs file buffer_percentage")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-08 11:29:48 +01:00
Steven Rostedt (Google)
3b8b2c5d76 ring-buffer: Fix memory leak of free page
commit 17d8017581 upstream.

Reading the ring buffer does a swap of a sub-buffer within the ring buffer
with a empty sub-buffer. This allows the reader to have full access to the
content of the sub-buffer that was swapped out without having to worry
about contention with the writer.

The readers call ring_buffer_alloc_read_page() to allocate a page that
will be used to swap with the ring buffer. When the code is finished with
the reader page, it calls ring_buffer_free_read_page(). Instead of freeing
the page, it stores it as a spare. Then next call to
ring_buffer_alloc_read_page() will return this spare instead of calling
into the memory management system to allocate a new page.

Unfortunately, on freeing of the ring buffer, this spare page is not
freed, and causes a memory leak.

Link: https://lore.kernel.org/linux-trace-kernel/20231210221250.7b9cc83c@rorschach.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 73a757e631 ("ring-buffer: Return reader page back into existing ring buffer")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-20 15:41:25 +01:00
Mark Rutland
404902216b perf: Fix perf_event_validate_size() lockdep splat
commit 7e2c1e4b34 upstream.

When lockdep is enabled, the for_each_sibling_event(sibling, event)
macro checks that event->ctx->mutex is held. When creating a new group
leader event, we call perf_event_validate_size() on a partially
initialized event where event->ctx is NULL, and so when
for_each_sibling_event() attempts to check event->ctx->mutex, we get a
splat, as reported by Lucas De Marchi:

  WARNING: CPU: 8 PID: 1471 at kernel/events/core.c:1950 __do_sys_perf_event_open+0xf37/0x1080

This only happens for a new event which is its own group_leader, and in
this case there cannot be any sibling events. Thus it's safe to skip the
check for siblings, which avoids having to make invasive and ugly
changes to for_each_sibling_event().

Avoid the splat by bailing out early when the new event is its own
group_leader.

Fixes: 382c27f4ed ("perf: Fix perf_event_validate_size()")
Closes: https://lore.kernel.org/lkml/20231214000620.3081018-1-lucas.demarchi@intel.com/
Closes: https://lore.kernel.org/lkml/ZXpm6gQ%2Fd59jGsuW@xpf.sh.intel.com/
Reported-by: Lucas De Marchi <lucas.demarchi@intel.com>
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231215112450.3972309-1-mark.rutland@arm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-20 15:41:23 +01:00
Jens Axboe
be7676b03a cred: switch to using atomic_long_t
commit f8fa5d7692 upstream.

There are multiple ways to grab references to credentials, and the only
protection we have against overflowing it is the memory required to do
so.

With memory sizes only moving in one direction, let's bump the reference
count to 64-bit and move it outside the realm of feasibly overflowing.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-20 15:41:18 +01:00
Peter Zijlstra
152f51d159 perf: Fix perf_event_validate_size()
[ Upstream commit 382c27f4ed ]

Budimir noted that perf_event_validate_size() only checks the size of
the newly added event, even though the sizes of all existing events
can also change due to not all events having the same read_format.

When we attach the new event, perf_group_attach(), we do re-compute
the size for all events.

Fixes: a723968c0e ("perf: Fix u16 overflows")
Reported-by: Budimir Markovic <markovicbudimir@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-12-13 18:18:15 +01:00
Namhyung Kim
84ca356ec8 perf/core: Add a new read format to get a number of lost samples
[ Upstream commit 119a784c81 ]

Sometimes we want to know an accurate number of samples even if it's
lost.  Currenlty PERF_RECORD_LOST is generated for a ring-buffer which
might be shared with other events.  So it's hard to know per-event
lost count.

Add event->lost_samples field and PERF_FORMAT_LOST to retrieve it from
userspace.

Original-patch-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220616180623.1358843-1-namhyung@kernel.org
Stable-dep-of: 382c27f4ed ("perf: Fix perf_event_validate_size()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-12-13 18:18:15 +01:00
Petr Pavlu
965cbc6b62 tracing: Fix a possible race when disabling buffered events
commit c0591b1ccc upstream.

Function trace_buffered_event_disable() is responsible for freeing pages
backing buffered events and this process can run concurrently with
trace_event_buffer_lock_reserve().

The following race is currently possible:

* Function trace_buffered_event_disable() is called on CPU 0. It
  increments trace_buffered_event_cnt on each CPU and waits via
  synchronize_rcu() for each user of trace_buffered_event to complete.

* After synchronize_rcu() is finished, function
  trace_buffered_event_disable() has the exclusive access to
  trace_buffered_event. All counters trace_buffered_event_cnt are at 1
  and all pointers trace_buffered_event are still valid.

* At this point, on a different CPU 1, the execution reaches
  trace_event_buffer_lock_reserve(). The function calls
  preempt_disable_notrace() and only now enters an RCU read-side
  critical section. The function proceeds and reads a still valid
  pointer from trace_buffered_event[CPU1] into the local variable
  "entry". However, it doesn't yet read trace_buffered_event_cnt[CPU1]
  which happens later.

* Function trace_buffered_event_disable() continues. It frees
  trace_buffered_event[CPU1] and decrements
  trace_buffered_event_cnt[CPU1] back to 0.

* Function trace_event_buffer_lock_reserve() continues. It reads and
  increments trace_buffered_event_cnt[CPU1] from 0 to 1. This makes it
  believe that it can use the "entry" that it already obtained but the
  pointer is now invalid and any access results in a use-after-free.

Fix the problem by making a second synchronize_rcu() call after all
trace_buffered_event values are set to NULL. This waits on all potential
users in trace_event_buffer_lock_reserve() that still read a previous
pointer from trace_buffered_event.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-4-petr.pavlu@suse.com

Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13 18:18:14 +01:00
Petr Pavlu
6f2e50961f tracing: Fix incomplete locking when disabling buffered events
commit 7fed14f7ac upstream.

The following warning appears when using buffered events:

[  203.556451] WARNING: CPU: 53 PID: 10220 at kernel/trace/ring_buffer.c:3912 ring_buffer_discard_commit+0x2eb/0x420
[...]
[  203.670690] CPU: 53 PID: 10220 Comm: stress-ng-sysin Tainted: G            E      6.7.0-rc2-default #4 56e6d0fcf5581e6e51eaaecbdaec2a2338c80f3a
[  203.670704] Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017
[  203.670709] RIP: 0010:ring_buffer_discard_commit+0x2eb/0x420
[  203.735721] Code: 4c 8b 4a 50 48 8b 42 48 49 39 c1 0f 84 b3 00 00 00 49 83 e8 01 75 b1 48 8b 42 10 f0 ff 40 08 0f 0b e9 fc fe ff ff f0 ff 47 08 <0f> 0b e9 77 fd ff ff 48 8b 42 10 f0 ff 40 08 0f 0b e9 f5 fe ff ff
[  203.735734] RSP: 0018:ffffb4ae4f7b7d80 EFLAGS: 00010202
[  203.735745] RAX: 0000000000000000 RBX: ffffb4ae4f7b7de0 RCX: ffff8ac10662c000
[  203.735754] RDX: ffff8ac0c750be00 RSI: ffff8ac10662c000 RDI: ffff8ac0c004d400
[  203.781832] RBP: ffff8ac0c039cea0 R08: 0000000000000000 R09: 0000000000000000
[  203.781839] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
[  203.781842] R13: ffff8ac10662c000 R14: ffff8ac0c004d400 R15: ffff8ac10662c008
[  203.781846] FS:  00007f4cd8a67740(0000) GS:ffff8ad798880000(0000) knlGS:0000000000000000
[  203.781851] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  203.781855] CR2: 0000559766a74028 CR3: 00000001804c4000 CR4: 00000000001506f0
[  203.781862] Call Trace:
[  203.781870]  <TASK>
[  203.851949]  trace_event_buffer_commit+0x1ea/0x250
[  203.851967]  trace_event_raw_event_sys_enter+0x83/0xe0
[  203.851983]  syscall_trace_enter.isra.0+0x182/0x1a0
[  203.851990]  do_syscall_64+0x3a/0xe0
[  203.852075]  entry_SYSCALL_64_after_hwframe+0x6e/0x76
[  203.852090] RIP: 0033:0x7f4cd870fa77
[  203.982920] Code: 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 b8 89 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 43 0e 00 f7 d8 64 89 01 48
[  203.982932] RSP: 002b:00007fff99717dd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000089
[  203.982942] RAX: ffffffffffffffda RBX: 0000558ea1d7b6f0 RCX: 00007f4cd870fa77
[  203.982948] RDX: 0000000000000000 RSI: 00007fff99717de0 RDI: 0000558ea1d7b6f0
[  203.982957] RBP: 00007fff99717de0 R08: 00007fff997180e0 R09: 00007fff997180e0
[  203.982962] R10: 00007fff997180e0 R11: 0000000000000246 R12: 00007fff99717f40
[  204.049239] R13: 00007fff99718590 R14: 0000558e9f2127a8 R15: 00007fff997180b0
[  204.049256]  </TASK>

For instance, it can be triggered by running these two commands in
parallel:

 $ while true; do
    echo hist:key=id.syscall:val=hitcount > \
      /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger;
  done
 $ stress-ng --sysinfo $(nproc)

The warning indicates that the current ring_buffer_per_cpu is not in the
committing state. It happens because the active ring_buffer_event
doesn't actually come from the ring_buffer_per_cpu but is allocated from
trace_buffered_event.

The bug is in function trace_buffered_event_disable() where the
following normally happens:

* The code invokes disable_trace_buffered_event() via
  smp_call_function_many() and follows it by synchronize_rcu(). This
  increments the per-CPU variable trace_buffered_event_cnt on each
  target CPU and grants trace_buffered_event_disable() the exclusive
  access to the per-CPU variable trace_buffered_event.

* Maintenance is performed on trace_buffered_event, all per-CPU event
  buffers get freed.

* The code invokes enable_trace_buffered_event() via
  smp_call_function_many(). This decrements trace_buffered_event_cnt and
  releases the access to trace_buffered_event.

A problem is that smp_call_function_many() runs a given function on all
target CPUs except on the current one. The following can then occur:

* Task X executing trace_buffered_event_disable() runs on CPU 0.

* The control reaches synchronize_rcu() and the task gets rescheduled on
  another CPU 1.

* The RCU synchronization finishes. At this point,
  trace_buffered_event_disable() has the exclusive access to all
  trace_buffered_event variables except trace_buffered_event[CPU0]
  because trace_buffered_event_cnt[CPU0] is never incremented and if the
  buffer is currently unused, remains set to 0.

* A different task Y is scheduled on CPU 0 and hits a trace event. The
  code in trace_event_buffer_lock_reserve() sees that
  trace_buffered_event_cnt[CPU0] is set to 0 and decides the use the
  buffer provided by trace_buffered_event[CPU0].

* Task X continues its execution in trace_buffered_event_disable(). The
  code incorrectly frees the event buffer pointed by
  trace_buffered_event[CPU0] and resets the variable to NULL.

* Task Y writes event data to the now freed buffer and later detects the
  created inconsistency.

The issue is observable since commit dea499781a ("tracing: Fix warning
in trace_buffered_event_disable()") which moved the call of
trace_buffered_event_disable() in __ftrace_event_enable_disable()
earlier, prior to invoking call->class->reg(.. TRACE_REG_UNREGISTER ..).
The underlying problem in trace_buffered_event_disable() is however
present since the original implementation in commit 0fc1b09ff1
("tracing: Use temp buffer when filtering events").

Fix the problem by replacing the two smp_call_function_many() calls with
on_each_cpu_mask() which invokes a given callback on all CPUs.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-2-petr.pavlu@suse.com

Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Fixes: dea499781a ("tracing: Fix warning in trace_buffered_event_disable()")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13 18:18:14 +01:00
Steven Rostedt (Google)
84302391d1 tracing: Always update snapshot buffer size
commit 7be76461f3 upstream.

It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). The update of the ring buffer
size would check if the instance was the top level and if so, it would
also update the snapshot buffer as it needs to be the same as the main
buffer.

Now that lower level instances also has a snapshot buffer, they too need
to update their snapshot buffer sizes when the main buffer is changed,
otherwise the following can be triggered:

 # cd /sys/kernel/tracing
 # echo 1500 > buffer_size_kb
 # mkdir instances/foo
 # echo irqsoff > instances/foo/current_tracer
 # echo 1000 > instances/foo/buffer_size_kb

Produces:

 WARNING: CPU: 2 PID: 856 at kernel/trace/trace.c:1938 update_max_tr_single.part.0+0x27d/0x320

Which is:

	ret = ring_buffer_swap_cpu(tr->max_buffer.buffer, tr->array_buffer.buffer, cpu);

	if (ret == -EBUSY) {
		[..]
	}

	WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY);  <== here

That's because ring_buffer_swap_cpu() has:

	int ret = -EINVAL;

	[..]

	/* At least make sure the two buffers are somewhat the same */
	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
		goto out;

	[..]
 out:
	return ret;
 }

Instead, update all instances' snapshot buffer sizes when their main
buffer size is updated.

Link: https://lkml.kernel.org/r/20231205220010.454662151@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13 18:18:14 +01:00
Petr Pavlu
8244ea916b tracing: Fix a warning when allocating buffered events fails
[ Upstream commit 34209fe83e ]

Function trace_buffered_event_disable() produces an unexpected warning
when the previous call to trace_buffered_event_enable() fails to
allocate pages for buffered events.

The situation can occur as follows:

* The counter trace_buffered_event_ref is at 0.

* The soft mode gets enabled for some event and
  trace_buffered_event_enable() is called. The function increments
  trace_buffered_event_ref to 1 and starts allocating event pages.

* The allocation fails for some page and trace_buffered_event_disable()
  is called for cleanup.

* Function trace_buffered_event_disable() decrements
  trace_buffered_event_ref back to 0, recognizes that it was the last
  use of buffered events and frees all allocated pages.

* The control goes back to trace_buffered_event_enable() which returns.
  The caller of trace_buffered_event_enable() has no information that
  the function actually failed.

* Some time later, the soft mode is disabled for the same event.
  Function trace_buffered_event_disable() is called. It warns on
  "WARN_ON_ONCE(!trace_buffered_event_ref)" and returns.

Buffered events are just an optimization and can handle failures. Make
trace_buffered_event_enable() exit on the first failure and left any
cleanup later to when trace_buffered_event_disable() is called.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-3-petr.pavlu@suse.com

Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-12-13 18:18:13 +01:00
Thomas Gleixner
54d0d83a53 hrtimers: Push pending hrtimers away from outgoing CPU earlier
[ Upstream commit 5c0930ccaa ]

2b8272ff4a ("cpu/hotplug: Prevent self deadlock on CPU hot-unplug")
solved the straight forward CPU hotplug deadlock vs. the scheduler
bandwidth timer. Yu discovered a more involved variant where a task which
has a bandwidth timer started on the outgoing CPU holds a lock and then
gets throttled. If the lock required by one of the CPU hotplug callbacks
the hotplug operation deadlocks because the unthrottling timer event is not
handled on the dying CPU and can only be recovered once the control CPU
reaches the hotplug state which pulls the pending hrtimers from the dead
CPU.

Solve this by pushing the hrtimers away from the dying CPU in the dying
callbacks. Nothing can queue a hrtimer on the dying CPU at that point because
all other CPUs spin in stop_machine() with interrupts disabled and once the
operation is finished the CPU is marked offline.

Reported-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Liu Tie <liutie4@huawei.com>
Link: https://lore.kernel.org/r/87a5rphara.ffs@tglx
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-12-13 18:18:09 +01:00
Steven Rostedt (Google)
961c4511c7 tracing: Have trace_event_file have ref counters
commit bb32500fb9 upstream.

The following can crash the kernel:

 # cd /sys/kernel/tracing
 # echo 'p:sched schedule' > kprobe_events
 # exec 5>>events/kprobes/sched/enable
 # > kprobe_events
 # exec 5>&-

The above commands:

 1. Change directory to the tracefs directory
 2. Create a kprobe event (doesn't matter what one)
 3. Open bash file descriptor 5 on the enable file of the kprobe event
 4. Delete the kprobe event (removes the files too)
 5. Close the bash file descriptor 5

The above causes a crash!

 BUG: kernel NULL pointer dereference, address: 0000000000000028
 #PF: supervisor read access in kernel mode
 #PF: error_code(0x0000) - not-present page
 PGD 0 P4D 0
 Oops: 0000 [#1] PREEMPT SMP PTI
 CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
 RIP: 0010:tracing_release_file_tr+0xc/0x50

What happens here is that the kprobe event creates a trace_event_file
"file" descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the "enable" file gets a reference to the event "file" descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event "file"
descriptor.

But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event "file" descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event "file" descriptor that was just freed, causing a use-after-free bug.

To solve this, add a ref count to the event "file" descriptor as well as a
new flag called "FREED". The "file" will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there's still a reference to the event "file" descriptor.

Link: https://lore.kernel.org/linux-trace-kernel/20231031000031.1e705592@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231031122453.7a48b923@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes: f5ca233e2e ("tracing: Increase trace array ref count on enable and filter files")
Reported-by: Beau Belgrave <beaub@linux.microsoft.com>
Tested-by: Beau Belgrave <beaub@linux.microsoft.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-28 16:50:22 +00:00
Benjamin Bara
975b5ff33f kernel/reboot: emergency_restart: Set correct system_state
commit 60466c0679 upstream.

As the emergency restart does not call kernel_restart_prepare(), the
system_state stays in SYSTEM_RUNNING.

Since bae1d3a05a, this hinders i2c_in_atomic_xfer_mode() from becoming
active, and therefore might lead to avoidable warnings in the restart
handlers, e.g.:

[   12.667612] WARNING: CPU: 1 PID: 1 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x33c/0x6b0
[   12.676926] Voluntary context switch within RCU read-side critical section!
...
[   12.742376]  schedule_timeout from wait_for_completion_timeout+0x90/0x114
[   12.749179]  wait_for_completion_timeout from tegra_i2c_wait_completion+0x40/0x70
...
[   12.994527]  atomic_notifier_call_chain from machine_restart+0x34/0x58
[   13.001050]  machine_restart from panic+0x2a8/0x32c

Avoid these by setting the correct system_state.

Fixes: bae1d3a05a ("i2c: core: remove use of in_atomic()")
Cc: stable@vger.kernel.org # v5.2+
Reviewed-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Tested-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Benjamin Bara <benjamin.bara@skidata.com>
Link: https://lore.kernel.org/r/20230327-tegra-pmic-reboot-v7-1-18699d5dcd76@skidata.com
Signed-off-by: Lee Jones <lee@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-28 16:50:19 +00:00