In the future we are going to have multiple copies of these trees. To
facilitate this we need a way to lookup the different roots we are
looking for. Handle this by adding a global root rb tree that is
indexed on the root->root_key. Then instead of loading the roots at
mount time with individually targeted keys, simply search the tree_root
for anything with the specific objectid we want. This will make it
straightforward to support both old style and new style file systems.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're going to have multiple free space roots in the future, so adjust
all the users of the free space root to use a helper to access the root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we start having multiple extent roots we'll need to use a helper to
get to the correct extent_root. Rename fs_info->extent_root to
_extent_root and convert all of the users of the extent root to using
the btrfs_extent_root() helper. This will allow us to easily clean up
the remaining direct accesses in the future.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating a subvolume, at ioctl.c:create_subvol(), if we fail to
insert the new root's root item into the root tree, we are freeing the
metadata extent we reserved for the new root to prevent a metadata
extent leak, as we don't abort the transaction at that point (since
there is nothing at that point that is irreversible).
However we allocated the metadata extent for the new root which we are
creating for the new subvolume, so its delayed reference refers to the
ID of this new root. But when we free the metadata extent we pass the
root of the subvolume where the new subvolume is located to
btrfs_free_tree_block() - this is incorrect because this will generate
a delayed reference that refers to the ID of the parent subvolume's root,
and not to ID of the new root.
This results in a failure when running delayed references that leads to
a transaction abort and a trace like the following:
[3868.738042] RIP: 0010:__btrfs_free_extent+0x709/0x950 [btrfs]
[3868.739857] Code: 68 0f 85 e6 fb ff (...)
[3868.742963] RSP: 0018:ffffb0e9045cf910 EFLAGS: 00010246
[3868.743908] RAX: 00000000fffffffe RBX: 00000000fffffffe RCX: 0000000000000002
[3868.745312] RDX: 00000000fffffffe RSI: 0000000000000002 RDI: ffff90b0cd793b88
[3868.746643] RBP: 000000000e5d8000 R08: 0000000000000000 R09: ffff90b0cd793b88
[3868.747979] R10: 0000000000000002 R11: 00014ded97944d68 R12: 0000000000000000
[3868.749373] R13: ffff90b09afe4a28 R14: 0000000000000000 R15: ffff90b0cd793b88
[3868.750725] FS: 00007f281c4a8b80(0000) GS:ffff90b3ada00000(0000) knlGS:0000000000000000
[3868.752275] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[3868.753515] CR2: 00007f281c6a5000 CR3: 0000000108a42006 CR4: 0000000000370ee0
[3868.754869] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[3868.756228] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[3868.757803] Call Trace:
[3868.758281] <TASK>
[3868.758655] ? btrfs_merge_delayed_refs+0x178/0x1c0 [btrfs]
[3868.759827] __btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs]
[3868.761047] btrfs_run_delayed_refs+0x86/0x210 [btrfs]
[3868.762069] ? lock_acquired+0x19f/0x420
[3868.762829] btrfs_commit_transaction+0x69/0xb20 [btrfs]
[3868.763860] ? _raw_spin_unlock+0x29/0x40
[3868.764614] ? btrfs_block_rsv_release+0x1c2/0x1e0 [btrfs]
[3868.765870] create_subvol+0x1d8/0x9a0 [btrfs]
[3868.766766] btrfs_mksubvol+0x447/0x4c0 [btrfs]
[3868.767669] ? preempt_count_add+0x49/0xa0
[3868.768444] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs]
[3868.769639] ? _copy_from_user+0x66/0xa0
[3868.770391] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs]
[3868.771495] btrfs_ioctl+0xd1e/0x35c0 [btrfs]
[3868.772364] ? __slab_free+0x10a/0x360
[3868.773198] ? rcu_read_lock_sched_held+0x12/0x60
[3868.774121] ? lock_release+0x223/0x4a0
[3868.774863] ? lock_acquired+0x19f/0x420
[3868.775634] ? rcu_read_lock_sched_held+0x12/0x60
[3868.776530] ? trace_hardirqs_on+0x1b/0xe0
[3868.777373] ? _raw_spin_unlock_irqrestore+0x3e/0x60
[3868.778280] ? kmem_cache_free+0x321/0x3c0
[3868.779011] ? __x64_sys_ioctl+0x83/0xb0
[3868.779718] __x64_sys_ioctl+0x83/0xb0
[3868.780387] do_syscall_64+0x3b/0xc0
[3868.781059] entry_SYSCALL_64_after_hwframe+0x44/0xae
[3868.781953] RIP: 0033:0x7f281c59e957
[3868.782585] Code: 3c 1c 48 f7 d8 4c (...)
[3868.785867] RSP: 002b:00007ffe1f83e2b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[3868.787198] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f281c59e957
[3868.788450] RDX: 00007ffe1f83e2c0 RSI: 0000000050009418 RDI: 0000000000000003
[3868.789748] RBP: 00007ffe1f83f300 R08: 0000000000000000 R09: 00007ffe1f83fe36
[3868.791214] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000003
[3868.792468] R13: 0000000000000003 R14: 00007ffe1f83e2c0 R15: 00000000000003cc
[3868.793765] </TASK>
[3868.794037] irq event stamp: 0
[3868.794548] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[3868.795670] hardirqs last disabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.797086] softirqs last enabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.798309] softirqs last disabled at (0): [<0000000000000000>] 0x0
[3868.799284] ---[ end trace be24c7002fe27747 ]---
[3868.799928] BTRFS info (device dm-0): leaf 241188864 gen 1268 total ptrs 214 free space 469 owner 2
[3868.801133] BTRFS info (device dm-0): refs 2 lock_owner 225627 current 225627
[3868.802056] item 0 key (237436928 169 0) itemoff 16250 itemsize 33
[3868.802863] extent refs 1 gen 1265 flags 2
[3868.803447] ref#0: tree block backref root 1610
(...)
[3869.064354] item 114 key (241008640 169 0) itemoff 12488 itemsize 33
[3869.065421] extent refs 1 gen 1268 flags 2
[3869.066115] ref#0: tree block backref root 1689
(...)
[3869.403834] BTRFS error (device dm-0): unable to find ref byte nr 241008640 parent 0 root 1622 owner 0 offset 0
[3869.405641] BTRFS: error (device dm-0) in __btrfs_free_extent:3076: errno=-2 No such entry
[3869.407138] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2159: errno=-2 No such entry
Fix this by passing the new subvolume's root ID to btrfs_free_tree_block().
This requires changing the root argument of btrfs_free_tree_block() from
struct btrfs_root * to a u64, since at this point during the subvolume
creation we have not yet created the struct btrfs_root for the new
subvolume, and btrfs_free_tree_block() only needs a root ID and nothing
else from a struct btrfs_root.
This was triggered by test case generic/475 from fstests.
Fixes: 67addf2900 ("btrfs: fix metadata extent leak after failure to create subvolume")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While running btrfs/011 in a loop I would often ASSERT() while trying to
add a new free space entry that already existed, or get an EEXIST while
adding a new block to the extent tree, which is another indication of
double allocation.
This occurs because when we do the free space tree population, we create
the new root and then populate the tree and commit the transaction.
The problem is when you create a new root, the root node and commit root
node are the same. During this initial transaction commit we will run
all of the delayed refs that were paused during the free space tree
generation, and thus begin to cache block groups. While caching block
groups the caching thread will be reading from the main root for the
free space tree, so as we make allocations we'll be changing the free
space tree, which can cause us to add the same range twice which results
in either the ASSERT(ret != -EEXIST); in __btrfs_add_free_space, or in a
variety of different errors when running delayed refs because of a
double allocation.
Fix this by marking the fs_info as unsafe to load the free space tree,
and fall back on the old slow method. We could be smarter than this,
for example caching the block group while we're populating the free
space tree, but since this is a serious problem I've opted for the
simplest solution.
CC: stable@vger.kernel.org # 4.9+
Fixes: a5ed918285 ("Btrfs: implement the free space B-tree")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We no longer distinguish between blocking and spinning, so rip out all
this code.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Change free_space_bitmap_size to take btrfs_fs_info so we can get the
sectorsize_bits to do calculations.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We do a lot of calculations where we divide or multiply by sectorsize.
We also know and make sure that sectorsize is a power of two, so this
means all divisions can be turned to shifts and avoid eg. expensive
u64/u32 divisions.
The type is u32 as it's more register friendly on x86_64 compared to u8
and the resulting assembly is smaller (movzbl vs movl).
There's also superblock s_blocksize_bits but it's usually one more
pointer dereference farther than fs_info.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
After commit 9afc66498a ("btrfs: block-group: refactor how we read one
block group item"), cache->length is being assigned after calling
btrfs_create_block_group_cache. This causes a problem since
set_free_space_tree_thresholds calculates the free-space threshold to
decide if the free-space tree should convert from extents to bitmaps.
The current code calls set_free_space_tree_thresholds with cache->length
being 0, which then makes cache->bitmap_high_thresh zero. This implies
the system will always use bitmap instead of extents, which is not
desired if the block group is not fragmented.
This behavior can be seen by a test that expects to repair systems
with FREE_SPACE_EXTENT and FREE_SPACE_BITMAP, but the current code only
created FREE_SPACE_BITMAP.
[FIX]
Call set_free_space_tree_thresholds after setting cache->length. There
is now a WARN_ON in set_free_space_tree_thresholds to help preventing
the same mistake to happen again in the future.
Link: https://github.com/kdave/btrfs-progs/issues/251
Fixes: 9afc66498a ("btrfs: block-group: refactor how we read one block group item")
CC: stable@vger.kernel.org # 5.8+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few different ways to free roots, either you allocated them
yourself and you just do
free_extent_buffer(root->node);
free_extent_buffer(root->commit_node);
btrfs_put_root(root);
Which is the pattern for log roots. Or for snapshots/subvolumes that
are being dropped you simply call btrfs_free_fs_root() which does all
the cleanup for you.
Unify this all into btrfs_put_root(), so that we don't free up things
associated with the root until the last reference is dropped. This
makes the root freeing code much more significant.
The only caveat is at close_ctree() time we have to free the extent
buffers for all of our main roots (extent_root, chunk_root, etc) because
we have to drop the btree_inode and we'll run into issues if we hold
onto those nodes until ->kill_sb() time. This will be addressed in the
future when we kill the btree_inode.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are now using these for all roots, rename them to btrfs_put_root()
and btrfs_grab_root();
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we are going to track leaked roots we need to free them all the same
way, so don't kfree() roots directly, use btrfs_put_fs_root.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The type name is misleading, a single entry is named 'cache' while this
normally means a collection of objects. Rename that everywhere. Also the
identifier was quite long, making function prototypes harder to format.
Suggested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The on-disk format of block group item makes use of the key that stores
the offset and length. This is further used in the code, although this
makes thing harder to understand. The key is also packed so the
offset/length is not properly aligned as u64.
Add start (key.objectid) and length (key.offset) members to block group
and remove the embedded key. When the item is searched or written, a
local variable for key is used.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is prep work for moving all of the block group cache code into its
own file.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
We can read fs_info from the block group cache structure and can drop it
from the parameters. Though the transaction is also availabe, it's not
guaranteed to be non-NULL.
Signed-off-by: David Sterba <dsterba@suse.com>
Several functions in BTRFS are only used inside the source file they are
declared if CONFIG_BTRFS_FS_RUN_SANITY_TESTS is not defined. However if
CONFIG_BTRFS_FS_RUN_SANITY_TESTS is defined these functions are shared
with the unit tests code.
Before the introduction of the EXPORT_FOR_TESTS macro, these functions
could not be declared as static and the compiler had a harder task when
optimizing and inlining them.
As we have EXPORT_FOR_TESTS now, use it where appropriate to support the
compiler.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed transaction handle.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function always takes a transaction handle which contains a
reference to the fs_info. Use that and remove the extra argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function takes a transaction handle which already contains a
reference to the fs_info. So use it and remove the extra function
argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function alreay takes a transaction handle which holds a reference
to the fs_info. Use that and remove the extra argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function takes a transaction handle which holds a reference to
fs_info. So use that and remove the extra argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function takes a transaction handle which already has a reference
to the fs_info. Use it and remove the extra argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function always takes a transaction handle which references the
fs_info structure. So use that and remove the extra argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function already takes a transaction which has a reference to the
fs_info. So use that and remove the extra argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function already takes a transaction handle which has a reference
to the fs_info. So use that and remove the extra argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function always takes a transaction handle which contains a
reference to fs_info. So use that and kill the extra argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function already takes a transaction handle which contains a
reference to fs_info. So use that and remove the extra argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function always takes a trans handle which contains a reference to
the fs_info. Use that and remove the extra argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function also takes a btrfs_block_group_cache which contains a
referene to the fs_info. So use that and remove the extra argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function already takes trans handle from where fs_info can be
referenced. Remove the redundant parameter.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function already takes a transaction handle which contains a
reference to fs_info.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function already takes a transaction handle which has a reference
to the fs_info.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We also pass in a transaction handle which has a reference to the
fs_info. Just remove the extraneous argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Presently, convert_free_space_to_extents() does a linear scan of the
bitmap. We can speed this up with find_next_{bit,zero_bit}_le().
This patch replaces the linear scan with find_next_{bit,zero_bit}_le().
Testing shows a 20-33% decrease in execution time for
convert_free_space_to_extents().
Since we change bitmap to be unsigned long, we have to do some casting
for the bitmap cursor. In le_bitmap_set() it makes sense to use u8, as
we are doing bit operations. Everywhere else, we're just using it for
pointer arithmetic and not directly accessing it, so char seems more
appropriate.
Suggested-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Howard McLauchlan <hmclauchlan@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
le_bitmap_set() is only used by free-space-tree, so move it there and
make it static. le_bitmap_clear() is not used, so remove it.
Signed-off-by: Howard McLauchlan <hmclauchlan@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove GPL boilerplate text (long, short, one-line) and keep the rest,
ie. personal, company or original source copyright statements. Add the
SPDX header.
Signed-off-by: David Sterba <dsterba@suse.com>
load_free_space_tree calls either function load_free_space_bitmaps or
load_free_space_extents. And either of those two will lead to call
btrfs_next_item. So in function load_free_space_tree, use READA_FORWARD
to read forward ahead.
This also changes the value from READA_BACK to READA_FORWARD, since
according to the logic, it should reada_for_search forward, not
backward.
Signed-off-by: Gu JinXiang <gujx@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
populate_free_space_tree calls function btrfs_search_slot_for_read with
parameter int find_higher = 1, it means that, if no exact match is
found, then use the next higher item. So in function
populate_free_space_tree, use READA_FORWARD to read forward ahead.
This also changes the value from READA_BACK to READA_FORWARD, since
according to the logic, it should reada_for_search forward, not
backward.
Signed-off-by: Gu JinXiang <gujx@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Remove variables 'start' and 'end', which are set but never used.
Signed-off-by: Christos Gkekas <chris.gekas@gmail.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
First, instead of open-coding the vmalloc() fallback, use the new
kvzalloc() helper. Second, use memalloc_nofs_{save,restore}() instead of
GFP_NOFS, as vmalloc() uses some GFP_KERNEL allocations internally which
could lead to deadlocks.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both btrfs_create_free_space_tree and btrfs_clear_free_space_tree
contain:
if (ret)
return ret;
return 0;
The if statement is only false when ret equals zero, and since we return
zero in such cases, we can safely remove the branching.
Signed-off-by: Sahil Kang <sahil.kang@asilaycomputing.com>
Signed-off-by: David Sterba <dsterba@suse.com>
__vmalloc* allows users to provide gfp flags for the underlying
allocation. This API is quite popular
$ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l
77
The only problem is that many people are not aware that they really want
to give __GFP_HIGHMEM along with other flags because there is really no
reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages
which are mapped to the kernel vmalloc space. About half of users don't
use this flag, though. This signals that we make the API unnecessarily
too complex.
This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to
be mapped to the vmalloc space. Current users which add __GFP_HIGHMEM
are simplified and drop the flag.
Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Cristopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now we only use the root parameter to print the root objectid in
a tracepoint. We can use the root parameter from the transaction
handle for that. It's also used to join the transaction with
async commits, so we remove the comment that it's just for checking.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In routines where someptr->fs_info is referenced multiple times, we
introduce a convenience variable. This makes the code considerably
more readable.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We track the node sizes per-root, but they never vary from the values
in the superblock. This patch messes with the 80-column style a bit,
but subsequent patches to factor out root->fs_info into a convenience
variable fix it up again.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>