Commit Graph

69 Commits

Author SHA1 Message Date
Long Li f8f9d952e4 xfs: abort intent items when recovery intents fail
When recovering intents, we capture newly created intent items as part of
committing recovered intent items.  If intent recovery fails at a later
point, we forget to remove those newly created intent items from the AIL
and hang:

    [root@localhost ~]# cat /proc/539/stack
    [<0>] xfs_ail_push_all_sync+0x174/0x230
    [<0>] xfs_unmount_flush_inodes+0x8d/0xd0
    [<0>] xfs_mountfs+0x15f7/0x1e70
    [<0>] xfs_fs_fill_super+0x10ec/0x1b20
    [<0>] get_tree_bdev+0x3c8/0x730
    [<0>] vfs_get_tree+0x89/0x2c0
    [<0>] path_mount+0xecf/0x1800
    [<0>] do_mount+0xf3/0x110
    [<0>] __x64_sys_mount+0x154/0x1f0
    [<0>] do_syscall_64+0x39/0x80
    [<0>] entry_SYSCALL_64_after_hwframe+0x63/0xcd

When newly created intent items fail to commit via transaction, intent
recovery hasn't created done items for these newly created intent items,
so the capture structure is the sole owner of the captured intent items.
We must release them explicitly or else they leak:

unreferenced object 0xffff888016719108 (size 432):
  comm "mount", pid 529, jiffies 4294706839 (age 144.463s)
  hex dump (first 32 bytes):
    08 91 71 16 80 88 ff ff 08 91 71 16 80 88 ff ff  ..q.......q.....
    18 91 71 16 80 88 ff ff 18 91 71 16 80 88 ff ff  ..q.......q.....
  backtrace:
    [<ffffffff8230c68f>] xfs_efi_init+0x18f/0x1d0
    [<ffffffff8230c720>] xfs_extent_free_create_intent+0x50/0x150
    [<ffffffff821b671a>] xfs_defer_create_intents+0x16a/0x340
    [<ffffffff821bac3e>] xfs_defer_ops_capture_and_commit+0x8e/0xad0
    [<ffffffff82322bb9>] xfs_cui_item_recover+0x819/0x980
    [<ffffffff823289b6>] xlog_recover_process_intents+0x246/0xb70
    [<ffffffff8233249a>] xlog_recover_finish+0x8a/0x9a0
    [<ffffffff822eeafb>] xfs_log_mount_finish+0x2bb/0x4a0
    [<ffffffff822c0f4f>] xfs_mountfs+0x14bf/0x1e70
    [<ffffffff822d1f80>] xfs_fs_fill_super+0x10d0/0x1b20
    [<ffffffff81a21fa2>] get_tree_bdev+0x3d2/0x6d0
    [<ffffffff81a1ee09>] vfs_get_tree+0x89/0x2c0
    [<ffffffff81a9f35f>] path_mount+0xecf/0x1800
    [<ffffffff81a9fd83>] do_mount+0xf3/0x110
    [<ffffffff81aa00e4>] __x64_sys_mount+0x154/0x1f0
    [<ffffffff83968739>] do_syscall_64+0x39/0x80

Fix the problem above by abort intent items that don't have a done item
when recovery intents fail.

Fixes: e6fff81e48 ("xfs: proper replay of deferred ops queued during log recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-11-13 09:08:34 +05:30
Long Li 2a5db859c6 xfs: factor out xfs_defer_pending_abort
Factor out xfs_defer_pending_abort() from xfs_defer_trans_abort(), which
not use transaction parameter, so it can be used after the transaction
life cycle.

Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-11-13 09:08:33 +05:30
Darrick J. Wong d5c88131db xfs: allow queued AG intents to drain before scrubbing
When a writer thread executes a chain of log intent items, the AG header
buffer locks will cycle during a transaction roll to get from one intent
item to the next in a chain.  Although scrub takes all AG header buffer
locks, this isn't sufficient to guard against scrub checking an AG while
that writer thread is in the middle of finishing a chain because there's
no higher level locking primitive guarding allocation groups.

When there's a collision, cross-referencing between data structures
(e.g. rmapbt and refcountbt) yields false corruption events; if repair
is running, this results in incorrect repairs, which is catastrophic.

Fix this by adding to the perag structure the count of active intents
and make scrub wait until it has both AG header buffer locks and the
intent counter reaches zero.

One quirk of the drain code is that deferred bmap updates also bump and
drop the intent counter.  A fundamental decision made during the design
phase of the reverse mapping feature is that updates to the rmapbt
records are always made by the same code that updates the primary
metadata.  In other words, callers of bmapi functions expect that the
bmapi functions will queue deferred rmap updates.

Some parts of the reflink code queue deferred refcount (CUI) and bmap
(BUI) updates in the same head transaction, but the deferred work
manager completely finishes the CUI before the BUI work is started.  As
a result, the CUI drops the intent count long before the deferred rmap
(RUI) update even has a chance to bump the intent count.  The only way
to keep the intent count elevated between the CUI and RUI is for the BUI
to bump the counter until the RUI has been created.

A second quirk of the intent drain code is that deferred work items must
increment the intent counter as soon as the work item is added to the
transaction.  When a BUI completes and queues an RUI, the RUI must
increment the counter before the BUI decrements it.  The only way to
accomplish this is to require that the counter be bumped as soon as the
deferred work item is created in memory.

In the next patches we'll improve on this facility, but this patch
provides the basic functionality.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:58 -07:00
Darrick J. Wong 4183e4f27f xfs: share xattr name and value buffers when logging xattr updates
While running xfs/297 and generic/642, I noticed a crash in
xfs_attri_item_relog when it tries to copy the attr name to the new
xattri log item.  I think what happened here was that we called
->iop_commit on the old attri item (which nulls out the pointers) as
part of a log force at the same time that a chained attr operation was
ongoing.  The system was busy enough that at some later point, the defer
ops operation decided it was necessary to relog the attri log item, but
as we've detached the name buffer from the old attri log item, we can't
copy it to the new one, and kaboom.

I think there's a broader refcounting problem with LARP mode -- the
setxattr code can return to userspace before the CIL actually formats
and commits the log item, which results in a UAF bug.  Therefore, the
xattr log item needs to be able to retain a reference to the name and
value buffers until the log items have completely cleared the log.
Furthermore, each time we create an intent log item, we allocate new
memory and (re)copy the contents; sharing here would be very useful.

Solve the UAF and the unnecessary memory allocations by having the log
code create a single refcounted buffer to contain the name and value
contents.  This buffer can be passed from old to new during a relog
operation, and the logging code can (optionally) attach it to the
xfs_attr_item for reuse when LARP mode is enabled.

This also fixes a problem where the xfs_attri_log_item objects weren't
being freed back to the same cache where they came from.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-23 08:43:46 +10:00
Darrick J. Wong 4136e38af7 xfs: put attr[id] log item cache init with the others
Initialize and destroy the xattr log item caches in the same places that
we do all the other log item caches.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 15:59:48 +10:00
Darrick J. Wong e2c78949b6 xfs: use a separate slab cache for deferred xattr work state
Create a separate slab cache for struct xfs_attr_item objects, since we
can pack the (104-byte) intent items more tightly than we can with the
general slab cache objects.  On x86, this means 39 intents per memory
page instead of 32.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 15:59:48 +10:00
Dave Chinner e0c41089b9 xfs: separate out initial attr_set states
We current use XFS_DAS_UNINIT for several steps in the attr_set
state machine. We use it for setting shortform xattrs, converting
from shortform to leaf, leaf add, leaf-to-node and leaf add. All of
these things are essentially known before we start the state machine
iterating, so we really should separate them out:

XFS_DAS_SF_ADD:
	- tries to do a shortform add
	- on success -> done
	- on ENOSPC converts to leaf, -> XFS_DAS_LEAF_ADD
	- on error, dies.

XFS_DAS_LEAF_ADD:
	- tries to do leaf add
	- on success:
		- inline attr -> done
		- remote xattr || REPLACE -> XFS_DAS_FOUND_LBLK
	- on ENOSPC converts to node, -> XFS_DAS_NODE_ADD
	- on error, dies

XFS_DAS_NODE_ADD:
	- tries to do node add
	- on success:
		- inline attr -> done
		- remote xattr || REPLACE -> XFS_DAS_FOUND_NBLK
	- on error, dies

This makes it easier to understand how the state machine starts
up and sets us up on the path to further state machine
simplifications.

This also converts the DAS state tracepoints to use strings rather
than numbers, as converting between enums and numbers requires
manual counting rather than just reading the name.

This also introduces a XFS_DAS_DONE state so that we can trace
successful operation completions easily.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:52 +10:00
Allison Henderson 1d08e11d04 xfs: Implement attr logging and replay
This patch adds the needed routines to create, log and recover logged
extended attribute intents.

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-09 19:09:07 +10:00
Allison Henderson fd92000878 xfs: Set up infrastructure for log attribute replay
Currently attributes are modified directly across one or more
transactions. But they are not logged or replayed in the event of an
error. The goal of log attr replay is to enable logging and replaying
of attribute operations using the existing delayed operations
infrastructure.  This will later enable the attributes to become part of
larger multi part operations that also must first be recorded to the
log.  This is mostly of interest in the scheme of parent pointers which
would need to maintain an attribute containing parent inode information
any time an inode is moved, created, or removed.  Parent pointers would
then be of interest to any feature that would need to quickly derive an
inode path from the mount point. Online scrub, nfs lookups and fs grow
or shrink operations are all features that could take advantage of this.

This patch adds two new log item types for setting or removing
attributes as deferred operations.  The xfs_attri_log_item will log an
intent to set or remove an attribute.  The corresponding
xfs_attrd_log_item holds a reference to the xfs_attri_log_item and is
freed once the transaction is done.  Both log items use a generic
xfs_attr_log_format structure that contains the attribute name, value,
flags, inode, and an op_flag that indicates if the operations is a set
or remove.

[dchinner: added extra little bits needed for intent whiteouts]

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:41:02 +10:00
Allison Henderson 7b3ec2b20e xfs: Fix double unlock in defer capture code
The new deferred attr patch set uncovered a double unlock in the
recent port of the defer ops capture and continue code.  During log
recovery, we're allowed to hold buffers to a transaction that's being
used to replay an intent item.  When we capture the resources as part
of scheduling a continuation of an intent chain, we call xfs_buf_hold
to retain our reference to the buffer beyond the transaction commit,
but we do /not/ call xfs_trans_bhold to maintain the buffer lock.
This means that xfs_defer_ops_continue needs to relock the buffers
before xfs_defer_restore_resources joins then tothe new transaction.

Additionally, the buffers should not be passed back via the dres
structure since they need to remain locked unlike the inodes.  So
simply set dr_bufs to zero after populating the dres structure.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:39:02 +10:00
Dave Chinner 5ddd658ea8 xfs: don't commit the first deferred transaction without intents
If the first operation in a string of defer ops has no intents,
then there is no reason to commit it before running the first call
to xfs_defer_finish_one(). This allows the defer ops to be used
effectively for non-intent based operations without requiring an
unnecessary extra transaction commit when first called.

This fixes a regression in per-attribute modification transaction
count when delayed attributes are not being used.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 11:46:00 +10:00
Darrick J. Wong c201d9ca53 xfs: rename xfs_bmap_add_free to xfs_free_extent_later
xfs_bmap_add_free isn't a block mapping function; it schedules deferred
freeing operations for a later point in a compound transaction chain.
While it's primarily used by bunmapi, its use has expanded beyond that.
Move it to xfs_alloc.c and rename the function since it's now general
freeing functionality.  Bring the slab cache bits in line with the
way we handle the other intent items.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:36 -07:00
Darrick J. Wong f3c799c22c xfs: create slab caches for frequently-used deferred items
Create slab caches for the high-level structures that coordinate
deferred intent items, since they're used fairly heavily.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:36 -07:00
Darrick J. Wong 512edfac85 xfs: port the defer ops capture and continue to resource capture
When log recovery tries to recover a transaction that had log intent
items attached to it, it has to save certain parts of the transaction
state (reservation, dfops chain, inodes with no automatic unlock) so
that it can finish single-stepping the recovered transactions before
finishing the chains.

This is done with the xfs_defer_ops_capture and xfs_defer_ops_continue
functions.  Right now they open-code this functionality, so let's port
this to the formalized resource capture structure that we introduced in
the previous patch.  This enables us to hold up to two inodes and two
buffers during log recovery, the same way we do for regular runtime.

With this patch applied, we'll be ready to support atomic extent swap
which holds two inodes; and logged xattrs which holds one inode and one
xattr leaf buffer.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-10-14 09:19:31 -07:00
Darrick J. Wong c5db9f937b xfs: formalize the process of holding onto resources across a defer roll
Transaction users are allowed to flag up to two buffers and two inodes
for ownership preservation across a deferred transaction roll.  Hoist
the variables and code responsible for this out of xfs_defer_trans_roll
so that we can use it for the defer capture mechanism.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-10-14 09:19:31 -07:00
Darrick J. Wong 74f4d6a1e0 xfs: only relog deferred intent items if free space in the log gets low
Now that we have the ability to ask the log how far the tail needs to be
pushed to maintain its free space targets, augment the decision to relog
an intent item so that we only do it if the log has hit the 75% full
threshold.  There's no point in relogging an intent into the same
checkpoint, and there's no need to relog if there's plenty of free space
in the log.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07 08:40:29 -07:00
Darrick J. Wong 4e919af782 xfs: periodically relog deferred intent items
There's a subtle design flaw in the deferred log item code that can lead
to pinning the log tail.  Taking up the defer ops chain examples from
the previous commit, we can get trapped in sequences like this:

Caller hands us a transaction t0 with D0-D3 attached.  The defer ops
chain will look like the following if the transaction rolls succeed:

t1: D0(t0), D1(t0), D2(t0), D3(t0)
t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0)
t3: d5(t1), D1(t0), D2(t0), D3(t0)
...
t9: d9(t7), D3(t0)
t10: D3(t0)
t11: d10(t10), d11(t10)
t12: d11(t10)

In transaction 9, we finish d9 and try to roll to t10 while holding onto
an intent item for D3 that we logged in t0.

The previous commit changed the order in which we place new defer ops in
the defer ops processing chain to reduce the maximum chain length.  Now
make xfs_defer_finish_noroll capable of relogging the entire chain
periodically so that we can always move the log tail forward.  Most
chains will never get relogged, except for operations that generate very
long chains (large extents containing many blocks with different sharing
levels) or are on filesystems with small logs and a lot of ongoing
metadata updates.

Callers are now required to ensure that the transaction reservation is
large enough to handle logging done items and new intent items for the
maximum possible chain length.  Most callers are careful to keep the
chain lengths low, so the overhead should be minimal.

The decision to relog an intent item is made based on whether the intent
was logged in a previous checkpoint, since there's no point in relogging
an intent into the same checkpoint.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07 08:40:28 -07:00
Darrick J. Wong 27dada070d xfs: change the order in which child and parent defer ops are finished
The defer ops code has been finishing items in the wrong order -- if a
top level defer op creates items A and B, and finishing item A creates
more defer ops A1 and A2, we'll put the new items on the end of the
chain and process them in the order A B A1 A2.  This is kind of weird,
since it's convenient for programmers to be able to think of A and B as
an ordered sequence where all the sub-tasks for A must finish before we
move on to B, e.g. A A1 A2 D.

Right now, our log intent items are not so complex that this matters,
but this will become important for the atomic extent swapping patchset.
In order to maintain correct reference counting of extents, we have to
unmap and remap extents in that order, and we want to complete that work
before moving on to the next range that the user wants to swap.  This
patch fixes defer ops to satsify that requirement.

The primary symptom of the incorrect order was noticed in an early
performance analysis of the atomic extent swap code.  An astonishingly
large number of deferred work items accumulated when userspace requested
an atomic update of two very fragmented files.  The cause of this was
traced to the same ordering bug in the inner loop of
xfs_defer_finish_noroll.

If the ->finish_item method of a deferred operation queues new deferred
operations, those new deferred ops are appended to the tail of the
pending work list.  To illustrate, say that a caller creates a
transaction t0 with four deferred operations D0-D3.  The first thing
defer ops does is roll the transaction to t1, leaving us with:

t1: D0(t0), D1(t0), D2(t0), D3(t0)

Let's say that finishing each of D0-D3 will create two new deferred ops.
After finish D0 and roll, we'll have the following chain:

t2: D1(t0), D2(t0), D3(t0), d4(t1), d5(t1)

d4 and d5 were logged to t1.  Notice that while we're about to start
work on D1, we haven't actually completed all the work implied by D0
being finished.  So far we've been careful (or lucky) to structure the
dfops callers such that D1 doesn't depend on d4 or d5 being finished,
but this is a potential logic bomb.

There's a second problem lurking.  Let's see what happens as we finish
D1-D3:

t3: D2(t0), D3(t0), d4(t1), d5(t1), d6(t2), d7(t2)
t4: D3(t0), d4(t1), d5(t1), d6(t2), d7(t2), d8(t3), d9(t3)
t5: d4(t1), d5(t1), d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4)

Let's say that d4-d11 are simple work items that don't queue any other
operations, which means that we can complete each d4 and roll to t6:

t6: d5(t1), d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4)
t7: d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4)
...
t11: d10(t4), d11(t4)
t12: d11(t4)
<done>

When we try to roll to transaction #12, we're holding defer op d11,
which we logged way back in t4.  This means that the tail of the log is
pinned at t4.  If the log is very small or there are a lot of other
threads updating metadata, this means that we might have wrapped the log
and cannot get roll to t11 because there isn't enough space left before
we'd run into t4.

Let's shift back to the original failure.  I mentioned before that I
discovered this flaw while developing the atomic file update code.  In
that scenario, we have a defer op (D0) that finds a range of file blocks
to remap, creates a handful of new defer ops to do that, and then asks
to be continued with however much work remains.

So, D0 is the original swapext deferred op.  The first thing defer ops
does is rolls to t1:

t1: D0(t0)

We try to finish D0, logging d1 and d2 in the process, but can't get all
the work done.  We log a done item and a new intent item for the work
that D0 still has to do, and roll to t2:

t2: D0'(t1), d1(t1), d2(t1)

We roll and try to finish D0', but still can't get all the work done, so
we log a done item and a new intent item for it, requeue D0 a second
time, and roll to t3:

t3: D0''(t2), d1(t1), d2(t1), d3(t2), d4(t2)

If it takes 48 more rolls to complete D0, then we'll finally dispense
with D0 in t50:

t50: D<fifty primes>(t49), d1(t1), ..., d102(t50)

We then try to roll again to get a chain like this:

t51: d1(t1), d2(t1), ..., d101(t50), d102(t50)
...
t152: d102(t50)
<done>

Notice that in rolling to transaction #51, we're holding on to a log
intent item for d1 that was logged in transaction #1.  This means that
the tail of the log is pinned at t1.  If the log is very small or there
are a lot of other threads updating metadata, this means that we might
have wrapped the log and cannot roll to t51 because there isn't enough
space left before we'd run into t1.  This is of course problem #2 again.

But notice the third problem with this scenario: we have 102 defer ops
tied to this transaction!  Each of these items are backed by pinned
kernel memory, which means that we risk OOM if the chains get too long.

Yikes.  Problem #1 is a subtle logic bomb that could hit someone in the
future; problem #2 applies (rarely) to the current upstream, and problem
#3 applies to work under development.

This is not how incremental deferred operations were supposed to work.
The dfops design of logging in the same transaction an intent-done item
and a new intent item for the work remaining was to make it so that we
only have to juggle enough deferred work items to finish that one small
piece of work.  Deferred log item recovery will find that first
unfinished work item and restart it, no matter how many other intent
items might follow it in the log.  Therefore, it's ok to put the new
intents at the start of the dfops chain.

For the first example, the chains look like this:

t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0)
t3: d5(t1), D1(t0), D2(t0), D3(t0)
...
t9: d9(t7), D3(t0)
t10: D3(t0)
t11: d10(t10), d11(t10)
t12: d11(t10)

For the second example, the chains look like this:

t1: D0(t0)
t2: d1(t1), d2(t1), D0'(t1)
t3: d2(t1), D0'(t1)
t4: D0'(t1)
t5: d1(t4), d2(t4), D0''(t4)
...
t148: D0<50 primes>(t147)
t149: d101(t148), d102(t148)
t150: d102(t148)
<done>

This actually sucks more for pinning the log tail (we try to roll to t10
while holding an intent item that was logged in t1) but we've solved
problem #1.  We've also reduced the maximum chain length from:

    sum(all the new items) + nr_original_items

to:

    max(new items that each original item creates) + nr_original_items

This solves problem #3 by sharply reducing the number of defer ops that
can be attached to a transaction at any given time.  The change makes
the problem of log tail pinning worse, but is improvement we need to
solve problem #2.  Actually solving #2, however, is left to the next
patch.

Note that a subsequent analysis of some hard-to-trigger reflink and COW
livelocks on extremely fragmented filesystems (or systems running a lot
of IO threads) showed the same symptoms -- uncomfortably large numbers
of incore deferred work items and occasional stalls in the transaction
grant code while waiting for log reservations.  I think this patch and
the next one will also solve these problems.

As originally written, the code used list_splice_tail_init instead of
list_splice_init, so change that, and leave a short comment explaining
our actions.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07 08:40:28 -07:00
Darrick J. Wong ff4ab5e02a xfs: fix an incore inode UAF in xfs_bui_recover
In xfs_bui_item_recover, there exists a use-after-free bug with regards
to the inode that is involved in the bmap replay operation.  If the
mapping operation does not complete, we call xfs_bmap_unmap_extent to
create a deferred op to finish the unmapping work, and we retain a
pointer to the incore inode.

Unfortunately, the very next thing we do is commit the transaction and
drop the inode.  If reclaim tears down the inode before we try to finish
the defer ops, we dereference garbage and blow up.  Therefore, create a
way to join inodes to the defer ops freezer so that we can maintain the
xfs_inode reference until we're done with the inode.

Note: This imposes the requirement that there be enough memory to keep
every incore inode in memory throughout recovery.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07 08:40:28 -07:00
Darrick J. Wong 929b92f640 xfs: xfs_defer_capture should absorb remaining transaction reservation
When xfs_defer_capture extracts the deferred ops and transaction state
from a transaction, it should record the transaction reservation type
from the old transaction so that when we continue the dfops chain, we
still use the same reservation parameters.

Doing this means that the log item recovery functions get to determine
the transaction reservation instead of abusing tr_itruncate in yet
another part of xfs.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07 08:40:28 -07:00
Darrick J. Wong 4f9a60c480 xfs: xfs_defer_capture should absorb remaining block reservations
When xfs_defer_capture extracts the deferred ops and transaction state
from a transaction, it should record the remaining block reservations so
that when we continue the dfops chain, we can reserve the same number of
blocks to use.  We capture the reservations for both data and realtime
volumes.

This adds the requirement that every log intent item recovery function
must be careful to reserve enough blocks to handle both itself and all
defer ops that it can queue.  On the other hand, this enables us to do
away with the handwaving block estimation nonsense that was going on in
xlog_finish_defer_ops.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07 08:40:28 -07:00
Darrick J. Wong e6fff81e48 xfs: proper replay of deferred ops queued during log recovery
When we replay unfinished intent items that have been recovered from the
log, it's possible that the replay will cause the creation of more
deferred work items.  As outlined in commit 509955823c ("xfs: log
recovery should replay deferred ops in order"), later work items have an
implicit ordering dependency on earlier work items.  Therefore, recovery
must replay the items (both recovered and created) in the same order
that they would have been during normal operation.

For log recovery, we enforce this ordering by using an empty transaction
to collect deferred ops that get created in the process of recovering a
log intent item to prevent them from being committed before the rest of
the recovered intent items.  After we finish committing all the
recovered log items, we allocate a transaction with an enormous block
reservation, splice our huge list of created deferred ops into that
transaction, and commit it, thereby finishing all those ops.

This is /really/ hokey -- it's the one place in XFS where we allow
nested transactions; the splicing of the defer ops list is is inelegant
and has to be done twice per recovery function; and the broken way we
handle inode pointers and block reservations cause subtle use-after-free
and allocator problems that will be fixed by this patch and the two
patches after it.

Therefore, replace the hokey empty transaction with a structure designed
to capture each chain of deferred ops that are created as part of
recovering a single unfinished log intent.  Finally, refactor the loop
that replays those chains to do so using one transaction per chain.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07 08:40:28 -07:00
Darrick J. Wong b80b29d602 xfs: remove xfs_defer_reset
Remove this one-line helper since the assert is trivially true in one
call site and the rest obscures a bitmask operation.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07 08:40:27 -07:00
Darrick J. Wong 93293bcbde xfs: log new intent items created as part of finishing recovered intent items
During a code inspection, I found a serious bug in the log intent item
recovery code when an intent item cannot complete all the work and
decides to requeue itself to get that done.  When this happens, the
item recovery creates a new incore deferred op representing the
remaining work and attaches it to the transaction that it allocated.  At
the end of _item_recover, it moves the entire chain of deferred ops to
the dummy parent_tp that xlog_recover_process_intents passed to it, but
fail to log a new intent item for the remaining work before committing
the transaction for the single unit of work.

xlog_finish_defer_ops logs those new intent items once recovery has
finished dealing with the intent items that it recovered, but this isn't
sufficient.  If the log is forced to disk after a recovered log item
decides to requeue itself and the system goes down before we call
xlog_finish_defer_ops, the second log recovery will never see the new
intent item and therefore has no idea that there was more work to do.
It will finish recovery leaving the filesystem in a corrupted state.

The same logic applies to /any/ deferred ops added during intent item
recovery, not just the one handling the remaining work.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2020-09-23 08:58:51 -07:00
Darrick J. Wong 78bba5c812 xfs: use ordered buffers to initialize dquot buffers during quotacheck
While QAing the new xfs_repair quotacheck code, I uncovered a quota
corruption bug resulting from a bad interaction between dquot buffer
initialization and quotacheck.  The bug can be reproduced with the
following sequence:

# mkfs.xfs -f /dev/sdf
# mount /dev/sdf /opt -o usrquota
# su nobody -s /bin/bash -c 'touch /opt/barf'
# sync
# xfs_quota -x -c 'report -ahi' /opt
User quota on /opt (/dev/sdf)
                        Inodes
User ID      Used   Soft   Hard Warn/Grace
---------- ---------------------------------
root            3      0      0  00 [------]
nobody          1      0      0  00 [------]

# xfs_io -x -c 'shutdown' /opt
# umount /opt
# mount /dev/sdf /opt -o usrquota
# touch /opt/man2
# xfs_quota -x -c 'report -ahi' /opt
User quota on /opt (/dev/sdf)
                        Inodes
User ID      Used   Soft   Hard Warn/Grace
---------- ---------------------------------
root            1      0      0  00 [------]
nobody          1      0      0  00 [------]

# umount /opt

Notice how the initial quotacheck set the root dquot icount to 3
(rootino, rbmino, rsumino), but after shutdown -> remount -> recovery,
xfs_quota reports that the root dquot has only 1 icount.  We haven't
deleted anything from the filesystem, which means that quota is now
under-counting.  This behavior is not limited to icount or the root
dquot, but this is the shortest reproducer.

I traced the cause of this discrepancy to the way that we handle ondisk
dquot updates during quotacheck vs. regular fs activity.  Normally, when
we allocate a disk block for a dquot, we log the buffer as a regular
(dquot) buffer.  Subsequent updates to the dquots backed by that block
are done via separate dquot log item updates, which means that they
depend on the logged buffer update being written to disk before the
dquot items.  Because individual dquots have their own LSN fields, that
initial dquot buffer must always be recovered.

However, the story changes for quotacheck, which can cause dquot block
allocations but persists the final dquot counter values via a delwri
list.  Because recovery doesn't gate dquot buffer replay on an LSN, this
means that the initial dquot buffer can be replayed over the (newer)
contents that were delwritten at the end of quotacheck.  In effect, this
re-initializes the dquot counters after they've been updated.  If the
log does not contain any other dquot items to recover, the obsolete
dquot contents will not be corrected by log recovery.

Because quotacheck uses a transaction to log the setting of the CHKD
flags in the superblock, we skip quotacheck during the second mount
call, which allows the incorrect icount to remain.

Fix this by changing the ondisk dquot initialization function to use
ordered buffers to write out fresh dquot blocks if it detects that we're
running quotacheck.  If the system goes down before quotacheck can
complete, the CHKD flags will not be set in the superblock and the next
mount will run quotacheck again, which can fix uninitialized dquot
buffers.  This requires amending the defer code to maintaine ordered
buffer state across defer rolls for the sake of the dquot allocation
code.

For regular operations we preserve the current behavior since the dquot
items require properly initialized ondisk dquot records.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-05-19 09:40:56 -07:00
Christoph Hellwig 3ec1b26c04 xfs: use a xfs_btree_cur for the ->finish_cleanup state
Given how XFS is all based around btrees it doesn't make much sense
to offer a totally generic state when we can just use the btree cursor.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-04 09:03:17 -07:00
Christoph Hellwig f09d167c20 xfs: turn dfp_done into a xfs_log_item
All defer op instance place their own extension of the log item into
the dfp_done field.  Replace that with a xfs_log_item to improve type
safety and make the code easier to follow.

Also use the opportunity to improve the ->finish_item calling conventions
to place the done log item as the higher level structure before the
list_entry used for the individual items.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-04 09:03:17 -07:00
Christoph Hellwig bb47d79750 xfs: refactor xfs_defer_finish_noroll
Split out a helper that operates on a single xfs_defer_pending structure
to untangle the code.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-04 09:03:17 -07:00
Christoph Hellwig d367a868e4 xfs: merge the ->diff_items defer op into ->create_intent
This avoids a per-item indirect call, and also simplifies the interface
a bit.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-04 09:03:16 -07:00
Christoph Hellwig c1f09188e8 xfs: merge the ->log_item defer op into ->create_intent
These are aways called together, and my merging them we reduce the amount
of indirect calls, improve type safety and in general clean up the code
a bit.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-04 09:03:16 -07:00
Christoph Hellwig e046e94948 xfs: factor out a xfs_defer_create_intent helper
Create a helper that encapsulates the whole logic to create a defer
intent.  This reorders some of the work that was done, but none of
that has an affect on the operation as only fields that don't directly
interact are affected.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-04 09:03:16 -07:00
Tetsuo Handa 707e0ddaf6 fs: xfs: Remove KM_NOSLEEP and KM_SLEEP.
Since no caller is using KM_NOSLEEP and no callee branches on KM_SLEEP,
we can remove KM_NOSLEEP and replace KM_SLEEP with 0.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-08-26 12:06:22 -07:00
Eric Sandeen 250d4b4c40 xfs: remove unused header files
There are many, many xfs header files which are included but
unneeded (or included twice) in the xfs code, so remove them.

nb: xfs_linux.h includes about 9 headers for everyone, so those
explicit includes get removed by this.  I'm not sure what the
preference is, but if we wanted explicit includes everywhere,
a followup patch could remove those xfs_*.h includes from
xfs_linux.h and move them into the files that need them.
Or it could be left as-is.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-06-28 19:30:43 -07:00
Darrick J. Wong 710d707d2f xfs: always rejoin held resources during defer roll
During testing of xfs/141 on a V4 filesystem, I observed some
inconsistent behavior with regards to resources that are held (i.e.
remain locked) across a defer roll.  The transaction roll always gives
the defer roll function a new transaction, even if committing the old
transaction fails.  However, the defer roll function only rejoins the
held resources if the transaction commit succeedied.  This means that
callers of defer roll have to figure out whether the held resources are
attached to the transaction being passed back.

Worse yet, if the defer roll was part of a defer finish call, we have a
third possibility: the defer finish could pass back a dirty transaction
with dirty held resources and an error code.

The only sane way to handle all of these scenarios is to require that
the code that held the resource either cancel the transaction before
unlocking and releasing the resources, or use functions that detach
resources from a transaction properly (e.g.  xfs_trans_brelse) if they
need to drop the reference before committing or cancelling the
transaction.

In order to make this so, change the defer roll code to join held
resources to the new transaction unconditionally and fix all the bhold
callers to release the held buffers correctly.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2019-04-30 08:19:13 -07:00
Darrick J. Wong 02b100fb83 xfs: streamline defer op type handling
There's no need to bundle a pointer to the defer op type into the defer
op control structure.  Instead, store the defer op type enum, which
enables us to shorten some of the lines.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2018-12-12 08:47:16 -08:00
Darrick J. Wong bc9f2b7c8a xfs: idiotproof defer op type configuration
Recently, we forgot to port a new defer op type to xfsprogs, which
caused us some userspace pain.  Reorganize the way we make libxfs
clients supply defer op type information so that all type information
has to be provided at build time instead of risky runtime dynamic
configuration.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2018-12-12 08:47:16 -08:00
Brian Foster 9d9e623385 xfs: fold dfops into the transaction
struct xfs_defer_ops has now been reduced to a single list_head. The
external dfops mechanism is unused and thus everywhere a (permanent)
transaction is accessible the associated dfops structure is as well.

Remove the xfs_defer_ops structure and fold the list_head into the
transaction. Also remove the last remnant of external dfops in
xfs_trans_dup().

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-08-02 23:05:14 -07:00
Brian Foster 0f37d1780c xfs: pass transaction to xfs_defer_add()
The majority of remaining references to struct xfs_defer_ops in XFS
are associated with xfs_defer_add(). At this point, there are no
more external xfs_defer_ops users left. All instances of
xfs_defer_ops are embedded in the transaction, which means we can
safely pass the transaction down to the dfops add interface.

Update xfs_defer_add() to receive the transaction as a parameter.
Various subsystems implement wrappers to allocate and construct the
context specific data structures for the associated deferred
operation type. Update these to also carry the transaction down as
needed and clean up unused dfops parameters along the way.

This removes most of the remaining references to struct
xfs_defer_ops throughout the code and facilitates removal of the
structure.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[darrick: fix unused variable warnings with ftrace disabled]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-08-02 23:05:14 -07:00
Brian Foster 1ae093cbea xfs: replace xfs_defer_ops ->dop_pending with on-stack list
The xfs_defer_ops ->dop_pending list is used to track active
deferred operations once intents are logged. These items must be
aborted in the event of an error. The list is populated as intents
are logged and items are removed as they complete (or are aborted).

Now that xfs_defer_finish() cancels on error, there is no need to
ever access ->dop_pending outside of xfs_defer_finish(). The list is
only ever populated after xfs_defer_finish() begins and is either
completed or cancelled before it returns.

Remove ->dop_pending from xfs_defer_ops and replace it with a local
list in the xfs_defer_finish() path. Pass the local list to the
various helpers now that it is not accessible via dfops. Note that
we have to check for NULL in the abort case as the final tx roll
occurs outside of the scope of the new local list (once the dfops
has completed and thus drained the list).

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-08-02 23:05:14 -07:00
Brian Foster 9b1f4e9831 xfs: cancel dfops on xfs_defer_finish() error
The current semantics of xfs_defer_finish() require the caller to
call xfs_defer_cancel() on error. This is slightly inconsistent with
transaction commit error handling where a failed commit cleans up
the transaction before returning.

More significantly, the only requirement for exposure of
->dop_pending outside of xfs_defer_finish() is so that
xfs_defer_cancel() can drain it on error. Since the only recourse of
xfs_defer_finish() errors is cancellation, mirror the transaction
logic and cancel remaining dfops before returning from
xfs_defer_finish() with an error.

Beside simplifying xfs_defer_finish() semantics, this ensures that
xfs_defer_finish() always returns with an empty ->dop_pending and
thus facilitates removal of the list from xfs_defer_ops.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-08-02 23:05:14 -07:00
Brian Foster 60f31a609e xfs: clean out superfluous dfops dop params/vars
The dfops code still passes around the xfs_defer_ops pointer
superfluously in a few places. Clean this up wherever the
transaction will suffice.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-08-02 23:05:14 -07:00
Brian Foster 7dbddbaccd xfs: drop dop param from xfs_defer_op_type ->finish_item() callback
The dfops infrastructure ->finish_item() callback passes the
transaction and dfops as separate parameters. Since dfops is always
part of a transaction, the latter parameter is no longer necessary.
Remove it from the various callbacks.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-08-02 23:05:14 -07:00
Brian Foster a8198666fb xfs: automatic dfops inode relogging
Inodes that are held across deferred operations are explicitly
joined to the dfops structure to ensure appropriate relogging.
While inodes are currently joined explicitly, we can detect the
conditions that require relogging at dfops finish time by inspecting
the transaction item list for inodes with ili_lock_flags == 0.

Replace the xfs_defer_ijoin() infrastructure with such detection and
automatic relogging of held inodes. This eliminates the need for the
per-dfops inode list, replaced by an on-stack variant in
xfs_defer_trans_roll().

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-08-02 23:05:14 -07:00
Brian Foster 82ff27bc52 xfs: automatic dfops buffer relogging
Buffers that are held across deferred operations are explicitly
joined to the dfops structure to ensure appropriate relogging.
While buffers are currently joined explicitly, we can detect the
conditions that require relogging at dfops finish time by inspecting
the transaction item list for held buffers.

Replace the xfs_defer_bjoin() infrastructure with such detection and
automatic relogging of held buffers. This eliminates the need for
the per-dfops buffer list, replaced by an on-stack variant in
xfs_defer_trans_roll().

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-08-02 23:05:13 -07:00
Brian Foster 1214f1cf66 xfs: replace dop_low with transaction flag
The dop_low field enables the low free space allocation mode when a
previous allocation has detected difficulty allocating blocks. It
has historically been part of the xfs_defer_ops structure, which
means if enabled, it remains enabled across a set of transactions
until the deferred operations have completed and the dfops is reset.

Now that the dfops is embedded in the transaction, we can save a bit
more space by using a transaction flag rather than a standalone
boolean. Drop the ->dop_low field and replace it with a transaction
flag that is set at the same points, carried across rolling
transactions and cleared on completion of deferred operations. This
essentially emulates the behavior of ->dop_low and so should not
change behavior.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-08-02 23:05:13 -07:00
Brian Foster ce356d6477 xfs: pass transaction to dfops reset/move helpers
All callers pass ->t_dfops of the associated transactions. Refactor
the helpers to receive the transactions and facilitate further
cleanups between xfs_defer_ops and xfs_trans.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-08-02 23:05:13 -07:00
Brian Foster 7279aa13b8 xfs: remove unused __xfs_defer_cancel() internal helper
With no more external dfops users, there is no need for an
xfs_defer_ops cancel wrapper.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-08-02 23:05:13 -07:00
Brian Foster b277c37f43 xfs: bypass final dfops roll in trans commit path
Once xfs_defer_finish() has completed all deferred operations, it
checks the dirty state of the transaction and rolls it once more to
return a clean transaction for the caller. This primarily to cover
the case where repeated xfs_defer_finish() calls are made in a loop
and we need to make sure that the caller starts the next iteration
with a clean transaction. Otherwise we risk transaction reservation
overrun.

This final transaction roll is not required in the transaction
commit path, however, because the transaction is immediately
committed and freed after dfops completion. Refactor the final roll
into a separate helper such that we can avoid it in the transaction
commit path.  Lift the dfops reset as well so dfops remains valid
until after the last call to xfs_defer_trans_roll(). The reset is
also unnecessary in the transaction commit path because the
transaction is about to complete.

This eliminates unnecessary regrants of transactions where the
associated transaction roll can be replaced by a transaction commit.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-07-26 10:15:16 -07:00
Brian Foster 9e28a242be xfs: drop unnecessary xfs_defer_finish() dfops parameter
Every caller of xfs_defer_finish() now passes the transaction and
its associated ->t_dfops. The xfs_defer_ops parameter is therefore
no longer necessary and can be removed.

Since most xfs_defer_finish() callers also have to consider
xfs_defer_cancel() on error, update the latter to also receive the
transaction for consistency. The log recovery code contains an
outlier case that cancels a dfops directly without an available
transaction. Retain an internal wrapper to support this outlier case
for the time being.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-07-26 10:15:16 -07:00
Brian Foster e021a2e5fc xfs: support embedded dfops in transaction
The dfops structure used by multi-transaction operations is
typically stored on the stack and carried around by the associated
transaction. The lifecycle of dfops does not quite match that of the
transaction, but they are tightly related in that the former depends
on the latter.

The relationship of these objects is tight enough that we can avoid
the cumbersome boilerplate code required in most cases to manage
them separately by just embedding an xfs_defer_ops in the
transaction itself. This means that a transaction allocation returns
with an initialized dfops, a transaction commit finishes pending
deferred items before the tx commit, a transaction cancel cancels
the dfops before the transaction and a transaction dup operation
transfers the current dfops state to the new transaction.

The dup operation is slightly complicated by the fact that we can no
longer just copy a dfops pointer from the old transaction to the new
transaction. This is solved through a dfops move helper that
transfers the pending items and other dfops state across the
transactions. This also requires that transaction rolling code
always refer to the transaction for the current dfops reference.

Finally, to facilitate incremental conversion to the internal dfops
and continue to support the current external dfops mode of
operation, create the new ->t_dfops_internal field with a layer of
indirection. On allocation, ->t_dfops points to the internal dfops.
This state is overridden by callers who re-init a local dfops on the
transaction. Once ->t_dfops is overridden, the external dfops
reference is maintained as the transaction rolls.

This patch adds the fundamental ability to support an internal
dfops. All codepaths that perform deferred processing continue to
override the internal dfops until they are converted over in
subsequent patches.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-07-26 10:15:14 -07:00