Commit graph

179 commits

Author SHA1 Message Date
Dave Marchevsky
5861d1e8db bpf: Allow bpf_spin_{lock,unlock} in sleepable progs
Commit 9e7a4d9831 ("bpf: Allow LSM programs to use bpf spin locks")
disabled bpf_spin_lock usage in sleepable progs, stating:

 Sleepable LSM programs can be preempted which means that allowng spin
 locks will need more work (disabling preemption and the verifier
 ensuring that no sleepable helpers are called when a spin lock is
 held).

This patch disables preemption before grabbing bpf_spin_lock. The second
requirement above "no sleepable helpers are called when a spin lock is
held" is implicitly enforced by current verifier logic due to helper
calls in spin_lock CS being disabled except for a few exceptions, none
of which sleep.

Due to above preemption changes, bpf_spin_lock CS can also be considered
a RCU CS, so verifier's in_rcu_cs check is modified to account for this.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230821193311.3290257-7-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-08-25 09:23:17 -07:00
Dave Marchevsky
7e26cd12ad bpf: Use bpf_mem_free_rcu when bpf_obj_dropping refcounted nodes
This is the final fix for the use-after-free scenario described in
commit 7793fc3bab ("bpf: Make bpf_refcount_acquire fallible for
non-owning refs"). That commit, by virtue of changing
bpf_refcount_acquire's refcount_inc to a refcount_inc_not_zero, fixed
the "refcount incr on 0" splat. The not_zero check in
refcount_inc_not_zero, though, still occurs on memory that could have
been free'd and reused, so the commit didn't properly fix the root
cause.

This patch actually fixes the issue by free'ing using the recently-added
bpf_mem_free_rcu, which ensures that the memory is not reused until
RCU grace period has elapsed. If that has happened then
there are no non-owning references alive that point to the
recently-free'd memory, so it can be safely reused.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230821193311.3290257-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-08-25 09:23:16 -07:00
Kui-Feng Lee
5426700e68 bpf: fix bpf_dynptr_slice() to stop return an ERR_PTR.
Verify if the pointer obtained from bpf_xdp_pointer() is either an error or
NULL before returning it.

The function bpf_dynptr_slice() mistakenly returned an ERR_PTR. Instead of
solely checking for NULL, it should also verify if the pointer returned by
bpf_xdp_pointer() is an error or NULL.

Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/bpf/d1360219-85c3-4a03-9449-253ea905f9d1@moroto.mountain/
Fixes: 66e3a13e7c ("bpf: Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr")
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230803231206.1060485-1-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-08-04 14:53:15 -07:00
Alexei Starovoitov
6f5a630d7c bpf, net: Introduce skb_pointer_if_linear().
Network drivers always call skb_header_pointer() with non-null buffer.
Remove !buffer check to prevent accidental misuse of skb_header_pointer().
Introduce skb_pointer_if_linear() instead.

Reported-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/r/20230718234021.43640-1-alexei.starovoitov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 10:27:33 -07:00
Dave Marchevsky
c3c510ce43 bpf: Add 'owner' field to bpf_{list,rb}_node
As described by Kumar in [0], in shared ownership scenarios it is
necessary to do runtime tracking of {rb,list} node ownership - and
synchronize updates using this ownership information - in order to
prevent races. This patch adds an 'owner' field to struct bpf_list_node
and bpf_rb_node to implement such runtime tracking.

The owner field is a void * that describes the ownership state of a
node. It can have the following values:

  NULL           - the node is not owned by any data structure
  BPF_PTR_POISON - the node is in the process of being added to a data
                   structure
  ptr_to_root    - the pointee is a data structure 'root'
                   (bpf_rb_root / bpf_list_head) which owns this node

The field is initially NULL (set by bpf_obj_init_field default behavior)
and transitions states in the following sequence:

  Insertion: NULL -> BPF_PTR_POISON -> ptr_to_root
  Removal:   ptr_to_root -> NULL

Before a node has been successfully inserted, it is not protected by any
root's lock, and therefore two programs can attempt to add the same node
to different roots simultaneously. For this reason the intermediate
BPF_PTR_POISON state is necessary. For removal, the node is protected
by some root's lock so this intermediate hop isn't necessary.

Note that bpf_list_pop_{front,back} helpers don't need to check owner
before removing as the node-to-be-removed is not passed in as input and
is instead taken directly from the list. Do the check anyways and
WARN_ON_ONCE in this unexpected scenario.

Selftest changes in this patch are entirely mechanical: some BTF
tests have hardcoded struct sizes for structs that contain
bpf_{list,rb}_node fields, those were adjusted to account for the new
sizes. Selftest additions to validate the owner field are added in a
further patch in the series.

  [0]: https://lore.kernel.org/bpf/d7hyspcow5wtjcmw4fugdgyp3fwhljwuscp3xyut5qnwivyeru@ysdq543otzv2

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Suggested-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230718083813.3416104-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-18 17:23:10 -07:00
Dave Marchevsky
0a1f7bfe35 bpf: Introduce internal definitions for UAPI-opaque bpf_{rb,list}_node
Structs bpf_rb_node and bpf_list_node are opaquely defined in
uapi/linux/bpf.h, as BPF program writers are not expected to touch their
fields - nor does the verifier allow them to do so.

Currently these structs are simple wrappers around structs rb_node and
list_head and linked_list / rbtree implementation just casts and passes
to library functions for those data structures. Later patches in this
series, though, will add an "owner" field to bpf_{rb,list}_node, such
that they're not just wrapping an underlying node type. Moreover, the
bpf linked_list and rbtree implementations will deal with these owner
pointers directly in a few different places.

To avoid having to do

  void *owner = (void*)bpf_list_node + sizeof(struct list_head)

with opaque UAPI node types, add bpf_{list,rb}_node_kern struct
definitions to internal headers and modify linked_list and rbtree to use
the internal types where appropriate.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230718083813.3416104-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-18 17:23:10 -07:00
Dave Marchevsky
7793fc3bab bpf: Make bpf_refcount_acquire fallible for non-owning refs
This patch fixes an incorrect assumption made in the original
bpf_refcount series [0], specifically that the BPF program calling
bpf_refcount_acquire on some node can always guarantee that the node is
alive. In that series, the patch adding failure behavior to rbtree_add
and list_push_{front, back} breaks this assumption for non-owning
references.

Consider the following program:

  n = bpf_kptr_xchg(&mapval, NULL);
  /* skip error checking */

  bpf_spin_lock(&l);
  if(bpf_rbtree_add(&t, &n->rb, less)) {
    bpf_refcount_acquire(n);
    /* Failed to add, do something else with the node */
  }
  bpf_spin_unlock(&l);

It's incorrect to assume that bpf_refcount_acquire will always succeed in this
scenario. bpf_refcount_acquire is being called in a critical section
here, but the lock being held is associated with rbtree t, which isn't
necessarily the lock associated with the tree that the node is already
in. So after bpf_rbtree_add fails to add the node and calls bpf_obj_drop
in it, the program has no ownership of the node's lifetime. Therefore
the node's refcount can be decr'd to 0 at any time after the failing
rbtree_add. If this happens before the refcount_acquire above, the node
might be free'd, and regardless refcount_acquire will be incrementing a
0 refcount.

Later patches in the series exercise this scenario, resulting in the
expected complaint from the kernel (without this patch's changes):

  refcount_t: addition on 0; use-after-free.
  WARNING: CPU: 1 PID: 207 at lib/refcount.c:25 refcount_warn_saturate+0xbc/0x110
  Modules linked in: bpf_testmod(O)
  CPU: 1 PID: 207 Comm: test_progs Tainted: G           O       6.3.0-rc7-02231-g723de1a718a2-dirty #371
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
  RIP: 0010:refcount_warn_saturate+0xbc/0x110
  Code: 6f 64 f6 02 01 e8 84 a3 5c ff 0f 0b eb 9d 80 3d 5e 64 f6 02 00 75 94 48 c7 c7 e0 13 d2 82 c6 05 4e 64 f6 02 01 e8 64 a3 5c ff <0f> 0b e9 7a ff ff ff 80 3d 38 64 f6 02 00 0f 85 6d ff ff ff 48 c7
  RSP: 0018:ffff88810b9179b0 EFLAGS: 00010082
  RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
  RDX: 0000000000000202 RSI: 0000000000000008 RDI: ffffffff857c3680
  RBP: ffff88810027d3c0 R08: ffffffff8125f2a4 R09: ffff88810b9176e7
  R10: ffffed1021722edc R11: 746e756f63666572 R12: ffff88810027d388
  R13: ffff88810027d3c0 R14: ffffc900005fe030 R15: ffffc900005fe048
  FS:  00007fee0584a700(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00005634a96f6c58 CR3: 0000000108ce9002 CR4: 0000000000770ee0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  PKRU: 55555554
  Call Trace:
   <TASK>
   bpf_refcount_acquire_impl+0xb5/0xc0

  (rest of output snipped)

The patch addresses this by changing bpf_refcount_acquire_impl to use
refcount_inc_not_zero instead of refcount_inc and marking
bpf_refcount_acquire KF_RET_NULL.

For owning references, though, we know the above scenario is not possible
and thus that bpf_refcount_acquire will always succeed. Some verifier
bookkeeping is added to track "is input owning ref?" for bpf_refcount_acquire
calls and return false from is_kfunc_ret_null for bpf_refcount_acquire on
owning refs despite it being marked KF_RET_NULL.

Existing selftests using bpf_refcount_acquire are modified where
necessary to NULL-check its return value.

  [0]: https://lore.kernel.org/bpf/20230415201811.343116-1-davemarchevsky@fb.com/

Fixes: d2dcc67df9 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-06-05 13:17:20 -07:00
Dave Marchevsky
cc0d76cafe bpf: Fix __bpf_{list,rbtree}_add's beginning-of-node calculation
Given the pointer to struct bpf_{rb,list}_node within a local kptr and
the byte offset of that field within the kptr struct, the calculation changed
by this patch is meant to find the beginning of the kptr so that it can
be passed to bpf_obj_drop.

Unfortunately instead of doing

  ptr_to_kptr = ptr_to_node_field - offset_bytes

the calculation is erroneously doing

  ptr_to_ktpr = ptr_to_node_field - (offset_bytes * sizeof(struct bpf_rb_node))

or the bpf_list_node equivalent.

This patch fixes the calculation.

Fixes: d2dcc67df9 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-06-05 13:17:19 -07:00
Daniel Rosenberg
3bda08b636 bpf: Allow NULL buffers in bpf_dynptr_slice(_rw)
bpf_dynptr_slice(_rw) uses a user provided buffer if it can not provide
a pointer to a block of contiguous memory. This buffer is unused in the
case of local dynptrs, and may be unused in other cases as well. There
is no need to require the buffer, as the kfunc can just return NULL if
it was needed and not provided.

This adds another kfunc annotation, __opt, which combines with __sz and
__szk to allow the buffer associated with the size to be NULL. If the
buffer is NULL, the verifier does not check that the buffer is of
sufficient size.

Signed-off-by: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20230506013134.2492210-2-drosen@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-05-06 16:42:57 -07:00
Feng Zhou
b5ad4cdc46 bpf: Add bpf_task_under_cgroup() kfunc
Add a kfunc that's similar to the bpf_current_task_under_cgroup.
The difference is that it is a designated task.

When hook sched related functions, sometimes it is necessary to
specify a task instead of the current task.

Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230506031545.35991-2-zhoufeng.zf@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-05-06 13:56:38 -07:00
Joanne Koong
361f129f3c bpf: Add bpf_dynptr_clone
The cloned dynptr will point to the same data as its parent dynptr,
with the same type, offset, size and read-only properties.

Any writes to a dynptr will be reflected across all instances
(by 'instance', this means any dynptrs that point to the same
underlying data).

Please note that data slice and dynptr invalidations will affect all
instances as well. For example, if bpf_dynptr_write() is called on an
skb-type dynptr, all data slices of dynptr instances to that skb
will be invalidated as well (eg data slices of any clones, parents,
grandparents, ...). Another example is if a ringbuf dynptr is submitted,
any instance of that dynptr will be invalidated.

Changing the view of the dynptr (eg advancing the offset or
trimming the size) will only affect that dynptr and not affect any
other instances.

One example use case where cloning may be helpful is for hashing or
iterating through dynptr data. Cloning will allow the user to maintain
the original view of the dynptr for future use, while also allowing
views to smaller subsets of the data after the offset is advanced or the
size is trimmed.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230420071414.570108-5-joannelkoong@gmail.com
2023-04-27 10:40:47 +02:00
Joanne Koong
26662d7347 bpf: Add bpf_dynptr_size
bpf_dynptr_size returns the number of usable bytes in a dynptr.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230420071414.570108-4-joannelkoong@gmail.com
2023-04-27 10:40:41 +02:00
Joanne Koong
540ccf96dd bpf: Add bpf_dynptr_is_null and bpf_dynptr_is_rdonly
bpf_dynptr_is_null returns true if the dynptr is null / invalid
(determined by whether ptr->data is NULL), else false if
the dynptr is a valid dynptr.

bpf_dynptr_is_rdonly returns true if the dynptr is read-only,
else false if the dynptr is read-writable. If the dynptr is
null / invalid, false is returned by default.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230420071414.570108-3-joannelkoong@gmail.com
2023-04-27 10:40:36 +02:00
Joanne Koong
987d0242d1 bpf: Add bpf_dynptr_adjust
Add a new kfunc

int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end);

which adjusts the dynptr to reflect the new [start, end) interval.
In particular, it advances the offset of the dynptr by "start" bytes,
and if end is less than the size of the dynptr, then this will trim the
dynptr accordingly.

Adjusting the dynptr interval may be useful in certain situations.
For example, when hashing which takes in generic dynptrs, if the dynptr
points to a struct but only a certain memory region inside the struct
should be hashed, adjust can be used to narrow in on the
specific region to hash.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230420071414.570108-2-joannelkoong@gmail.com
2023-04-27 10:40:31 +02:00
Dave Marchevsky
4ab07209d5 bpf: Fix bpf_refcount_acquire's refcount_t address calculation
When calculating the address of the refcount_t struct within a local
kptr, bpf_refcount_acquire_impl should add refcount_off bytes to the
address of the local kptr. Due to some missing parens, the function is
incorrectly adding sizeof(refcount_t) * refcount_off bytes. This patch
fixes the calculation.

Due to the incorrect calculation, bpf_refcount_acquire_impl was trying
to refcount_inc some memory well past the end of local kptrs, resulting
in kasan and refcount complaints, as reported in [0]. In that thread,
Florian and Eduard discovered that bpf selftests written in the new
style - with __success and an expected __retval, specifically - were
not actually being run. As a result, selftests added in bpf_refcount
series weren't really exercising this behavior, and thus didn't unearth
the bug.

With this fixed behavior it's safe to revert commit 7c4b96c000
("selftests/bpf: disable program test run for progs/refcounted_kptr.c"),
this patch does so.

  [0] https://lore.kernel.org/bpf/ZEEp+j22imoN6rn9@strlen.de/

Fixes: 7c50b1cb76 ("bpf: Add bpf_refcount_acquire kfunc")
Reported-by: Florian Westphal <fw@strlen.de>
Reported-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20230421074431.3548349-1-davemarchevsky@fb.com
2023-04-21 16:31:37 +02:00
Dave Marchevsky
3e81740a90 bpf: Centralize btf_field-specific initialization logic
All btf_fields in an object are 0-initialized by memset in
bpf_obj_init. This might not be a valid initial state for some field
types, in which case kfuncs that use the type will properly initialize
their input if it's been 0-initialized. Some BPF graph collection types
and kfuncs do this: bpf_list_{head,node} and bpf_rb_node.

An earlier patch in this series added the bpf_refcount field, for which
the 0 state indicates that the refcounted object should be free'd.
bpf_obj_init treats this field specially, setting refcount to 1 instead
of relying on scattered "refcount is 0? Must have just been initialized,
let's set to 1" logic in kfuncs.

This patch extends this treatment to list and rbtree field types,
allowing most scattered initialization logic in kfuncs to be removed.

Note that bpf_{list_head,rb_root} may be inside a BPF map, in which case
they'll be 0-initialized without passing through the newly-added logic,
so scattered initialization logic must remain for these collection root
types.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-9-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:50 -07:00
Dave Marchevsky
404ad75a36 bpf: Migrate bpf_rbtree_remove to possibly fail
This patch modifies bpf_rbtree_remove to account for possible failure
due to the input rb_node already not being in any collection.
The function can now return NULL, and does when the aforementioned
scenario occurs. As before, on successful removal an owning reference to
the removed node is returned.

Adding KF_RET_NULL to bpf_rbtree_remove's kfunc flags - now KF_RET_NULL |
KF_ACQUIRE - provides the desired verifier semantics:

  * retval must be checked for NULL before use
  * if NULL, retval's ref_obj_id is released
  * retval is a "maybe acquired" owning ref, not a non-owning ref,
    so it will live past end of critical section (bpf_spin_unlock), and
    thus can be checked for NULL after the end of the CS

BPF programs must add checks
============================

This does change bpf_rbtree_remove's verifier behavior. BPF program
writers will need to add NULL checks to their programs, but the
resulting UX looks natural:

  bpf_spin_lock(&glock);

  n = bpf_rbtree_first(&ghead);
  if (!n) { /* ... */}
  res = bpf_rbtree_remove(&ghead, &n->node);

  bpf_spin_unlock(&glock);

  if (!res)  /* Newly-added check after this patch */
    return 1;

  n = container_of(res, /* ... */);
  /* Do something else with n */
  bpf_obj_drop(n);
  return 0;

The "if (!res)" check above is the only addition necessary for the above
program to pass verification after this patch.

bpf_rbtree_remove no longer clobbers non-owning refs
====================================================

An issue arises when bpf_rbtree_remove fails, though. Consider this
example:

  struct node_data {
    long key;
    struct bpf_list_node l;
    struct bpf_rb_node r;
    struct bpf_refcount ref;
  };

  long failed_sum;

  void bpf_prog()
  {
    struct node_data *n = bpf_obj_new(/* ... */);
    struct bpf_rb_node *res;
    n->key = 10;

    bpf_spin_lock(&glock);

    bpf_list_push_back(&some_list, &n->l); /* n is now a non-owning ref */
    res = bpf_rbtree_remove(&some_tree, &n->r, /* ... */);
    if (!res)
      failed_sum += n->key;  /* not possible */

    bpf_spin_unlock(&glock);
    /* if (res) { do something useful and drop } ... */
  }

The bpf_rbtree_remove in this example will always fail. Similarly to
bpf_spin_unlock, bpf_rbtree_remove is a non-owning reference
invalidation point. The verifier clobbers all non-owning refs after a
bpf_rbtree_remove call, so the "failed_sum += n->key" line will fail
verification, and in fact there's no good way to get information about
the node which failed to add after the invalidation. This patch removes
non-owning reference invalidation from bpf_rbtree_remove to allow the
above usecase to pass verification. The logic for why this is now
possible is as follows:

Before this series, bpf_rbtree_add couldn't fail and thus assumed that
its input, a non-owning reference, was in the tree. But it's easy to
construct an example where two non-owning references pointing to the same
underlying memory are acquired and passed to rbtree_remove one after
another (see rbtree_api_release_aliasing in
selftests/bpf/progs/rbtree_fail.c).

So it was necessary to clobber non-owning refs to prevent this
case and, more generally, to enforce "non-owning ref is definitely
in some collection" invariant. This series removes that invariant and
the failure / runtime checking added in this patch provide a clean way
to deal with the aliasing issue - just fail to remove.

Because the aliasing issue prevented by clobbering non-owning refs is no
longer an issue, this patch removes the invalidate_non_owning_refs
call from verifier handling of bpf_rbtree_remove. Note that
bpf_spin_unlock - the other caller of invalidate_non_owning_refs -
clobbers non-owning refs for a different reason, so its clobbering
behavior remains unchanged.

No BPF program changes are necessary for programs to remain valid as a
result of this clobbering change. A valid program before this patch
passed verification with its non-owning refs having shorter (or equal)
lifetimes due to more aggressive clobbering.

Also, update existing tests to check bpf_rbtree_remove retval for NULL
where necessary, and move rbtree_api_release_aliasing from
progs/rbtree_fail.c to progs/rbtree.c since it's now expected to pass
verification.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-8-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:50 -07:00
Dave Marchevsky
d2dcc67df9 bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail
Consider this code snippet:

  struct node {
    long key;
    bpf_list_node l;
    bpf_rb_node r;
    bpf_refcount ref;
  }

  int some_bpf_prog(void *ctx)
  {
    struct node *n = bpf_obj_new(/*...*/), *m;

    bpf_spin_lock(&glock);

    bpf_rbtree_add(&some_tree, &n->r, /* ... */);
    m = bpf_refcount_acquire(n);
    bpf_rbtree_add(&other_tree, &m->r, /* ... */);

    bpf_spin_unlock(&glock);

    /* ... */
  }

After bpf_refcount_acquire, n and m point to the same underlying memory,
and that node's bpf_rb_node field is being used by the some_tree insert,
so overwriting it as a result of the second insert is an error. In order
to properly support refcounted nodes, the rbtree and list insert
functions must be allowed to fail. This patch adds such support.

The kfuncs bpf_rbtree_add, bpf_list_push_{front,back} are modified to
return an int indicating success/failure, with 0 -> success, nonzero ->
failure.

bpf_obj_drop on failure
=======================

Currently the only reason an insert can fail is the example above: the
bpf_{list,rb}_node is already in use. When such a failure occurs, the
insert kfuncs will bpf_obj_drop the input node. This allows the insert
operations to logically fail without changing their verifier owning ref
behavior, namely the unconditional release_reference of the input
owning ref.

With insert that always succeeds, ownership of the node is always passed
to the collection, since the node always ends up in the collection.

With a possibly-failed insert w/ bpf_obj_drop, ownership of the node
is always passed either to the collection (success), or to bpf_obj_drop
(failure). Regardless, it's correct to continue unconditionally
releasing the input owning ref, as something is always taking ownership
from the calling program on insert.

Keeping owning ref behavior unchanged results in a nice default UX for
insert functions that can fail. If the program's reaction to a failed
insert is "fine, just get rid of this owning ref for me and let me go
on with my business", then there's no reason to check for failure since
that's default behavior. e.g.:

  long important_failures = 0;

  int some_bpf_prog(void *ctx)
  {
    struct node *n, *m, *o; /* all bpf_obj_new'd */

    bpf_spin_lock(&glock);
    bpf_rbtree_add(&some_tree, &n->node, /* ... */);
    bpf_rbtree_add(&some_tree, &m->node, /* ... */);
    if (bpf_rbtree_add(&some_tree, &o->node, /* ... */)) {
      important_failures++;
    }
    bpf_spin_unlock(&glock);
  }

If we instead chose to pass ownership back to the program on failed
insert - by returning NULL on success or an owning ref on failure -
programs would always have to do something with the returned ref on
failure. The most likely action is probably "I'll just get rid of this
owning ref and go about my business", which ideally would look like:

  if (n = bpf_rbtree_add(&some_tree, &n->node, /* ... */))
    bpf_obj_drop(n);

But bpf_obj_drop isn't allowed in a critical section and inserts must
occur within one, so in reality error handling would become a
hard-to-parse mess.

For refcounted nodes, we can replicate the "pass ownership back to
program on failure" logic with this patch's semantics, albeit in an ugly
way:

  struct node *n = bpf_obj_new(/* ... */), *m;

  bpf_spin_lock(&glock);

  m = bpf_refcount_acquire(n);
  if (bpf_rbtree_add(&some_tree, &n->node, /* ... */)) {
    /* Do something with m */
  }

  bpf_spin_unlock(&glock);
  bpf_obj_drop(m);

bpf_refcount_acquire is used to simulate "return owning ref on failure".
This should be an uncommon occurrence, though.

Addition of two verifier-fixup'd args to collection inserts
===========================================================

The actual bpf_obj_drop kfunc is
bpf_obj_drop_impl(void *, struct btf_struct_meta *), with bpf_obj_drop
macro populating the second arg with 0 and the verifier later filling in
the arg during insn fixup.

Because bpf_rbtree_add and bpf_list_push_{front,back} now might do
bpf_obj_drop, these kfuncs need a btf_struct_meta parameter that can be
passed to bpf_obj_drop_impl.

Similarly, because the 'node' param to those insert functions is the
bpf_{list,rb}_node within the node type, and bpf_obj_drop expects a
pointer to the beginning of the node, the insert functions need to be
able to find the beginning of the node struct. A second
verifier-populated param is necessary: the offset of {list,rb}_node within the
node type.

These two new params allow the insert kfuncs to correctly call
__bpf_obj_drop_impl:

  beginning_of_node = bpf_rb_node_ptr - offset
  if (already_inserted)
    __bpf_obj_drop_impl(beginning_of_node, btf_struct_meta->record);

Similarly to other kfuncs with "hidden" verifier-populated params, the
insert functions are renamed with _impl prefix and a macro is provided
for common usage. For example, bpf_rbtree_add kfunc is now
bpf_rbtree_add_impl and bpf_rbtree_add is now a macro which sets
"hidden" args to 0.

Due to the two new args BPF progs will need to be recompiled to work
with the new _impl kfuncs.

This patch also rewrites the "hidden argument" explanation to more
directly say why the BPF program writer doesn't need to populate the
arguments with anything meaningful.

How does this new logic affect non-owning references?
=====================================================

Currently, non-owning refs are valid until the end of the critical
section in which they're created. We can make this guarantee because, if
a non-owning ref exists, the referent was added to some collection. The
collection will drop() its nodes when it goes away, but it can't go away
while our program is accessing it, so that's not a problem. If the
referent is removed from the collection in the same CS that it was added
in, it can't be bpf_obj_drop'd until after CS end. Those are the only
two ways to free the referent's memory and neither can happen until
after the non-owning ref's lifetime ends.

On first glance, having these collection insert functions potentially
bpf_obj_drop their input seems like it breaks the "can't be
bpf_obj_drop'd until after CS end" line of reasoning. But we care about
the memory not being _freed_ until end of CS end, and a previous patch
in the series modified bpf_obj_drop such that it doesn't free refcounted
nodes until refcount == 0. So the statement can be more accurately
rewritten as "can't be free'd until after CS end".

We can prove that this rewritten statement holds for any non-owning
reference produced by collection insert functions:

* If the input to the insert function is _not_ refcounted
  * We have an owning reference to the input, and can conclude it isn't
    in any collection
    * Inserting a node in a collection turns owning refs into
      non-owning, and since our input type isn't refcounted, there's no
      way to obtain additional owning refs to the same underlying
      memory
  * Because our node isn't in any collection, the insert operation
    cannot fail, so bpf_obj_drop will not execute
  * If bpf_obj_drop is guaranteed not to execute, there's no risk of
    memory being free'd

* Otherwise, the input to the insert function is refcounted
  * If the insert operation fails due to the node's list_head or rb_root
    already being in some collection, there was some previous successful
    insert which passed refcount to the collection
  * We have an owning reference to the input, it must have been
    acquired via bpf_refcount_acquire, which bumped the refcount
  * refcount must be >= 2 since there's a valid owning reference and the
    node is already in a collection
  * Insert triggering bpf_obj_drop will decr refcount to >= 1, never
    resulting in a free

So although we may do bpf_obj_drop during the critical section, this
will never result in memory being free'd, and no changes to non-owning
ref logic are needed in this patch.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:50 -07:00
Dave Marchevsky
7c50b1cb76 bpf: Add bpf_refcount_acquire kfunc
Currently, BPF programs can interact with the lifetime of refcounted
local kptrs in the following ways:

  bpf_obj_new  - Initialize refcount to 1 as part of new object creation
  bpf_obj_drop - Decrement refcount and free object if it's 0
  collection add - Pass ownership to the collection. No change to
                   refcount but collection is responsible for
		   bpf_obj_dropping it

In order to be able to add a refcounted local kptr to multiple
collections we need to be able to increment the refcount and acquire a
new owning reference. This patch adds a kfunc, bpf_refcount_acquire,
implementing such an operation.

bpf_refcount_acquire takes a refcounted local kptr and returns a new
owning reference to the same underlying memory as the input. The input
can be either owning or non-owning. To reinforce why this is safe,
consider the following code snippets:

  struct node *n = bpf_obj_new(typeof(*n)); // A
  struct node *m = bpf_refcount_acquire(n); // B

In the above snippet, n will be alive with refcount=1 after (A), and
since nothing changes that state before (B), it's obviously safe. If
n is instead added to some rbtree, we can still safely refcount_acquire
it:

  struct node *n = bpf_obj_new(typeof(*n));
  struct node *m;

  bpf_spin_lock(&glock);
  bpf_rbtree_add(&groot, &n->node, less);   // A
  m = bpf_refcount_acquire(n);              // B
  bpf_spin_unlock(&glock);

In the above snippet, after (A) n is a non-owning reference, and after
(B) m is an owning reference pointing to the same memory as n. Although
n has no ownership of that memory's lifetime, it's guaranteed to be
alive until the end of the critical section, and n would be clobbered if
we were past the end of the critical section, so it's safe to bump
refcount.

Implementation details:

* From verifier's perspective, bpf_refcount_acquire handling is similar
  to bpf_obj_new and bpf_obj_drop. Like the former, it returns a new
  owning reference matching input type, although like the latter, type
  can be inferred from concrete kptr input. Verifier changes in
  {check,fixup}_kfunc_call and check_kfunc_args are largely copied from
  aforementioned functions' verifier changes.

* An exception to the above is the new KF_ARG_PTR_TO_REFCOUNTED_KPTR
  arg, indicated by new "__refcounted_kptr" kfunc arg suffix. This is
  necessary in order to handle both owning and non-owning input without
  adding special-casing to "__alloc" arg handling. Also a convenient
  place to confirm that input type has bpf_refcount field.

* The implemented kfunc is actually bpf_refcount_acquire_impl, with
  'hidden' second arg that the verifier sets to the type's struct_meta
  in fixup_kfunc_call.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:50 -07:00
Dave Marchevsky
1512217c47 bpf: Support refcounted local kptrs in existing semantics
A local kptr is considered 'refcounted' when it is of a type that has a
bpf_refcount field. When such a kptr is created, its refcount should be
initialized to 1; when destroyed, the object should be free'd only if a
refcount decr results in 0 refcount.

Existing logic always frees the underlying memory when destroying a
local kptr, and 0-initializes all btf_record fields. This patch adds
checks for "is local kptr refcounted?" and new logic for that case in
the appropriate places.

This patch focuses on changing existing semantics and thus conspicuously
does _not_ provide a way for BPF programs in increment refcount. That
follows later in the series.

__bpf_obj_drop_impl is modified to do the right thing when it sees a
refcounted type. Container types for graph nodes (list, tree, stashed in
map) are migrated to use __bpf_obj_drop_impl as a destructor for their
nodes instead of each having custom destruction code in their _free
paths. Now that "drop" isn't a synonym for "free" when the type is
refcounted it makes sense to centralize this logic.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:49 -07:00
Dave Marchevsky
cd2a807901 bpf: Remove btf_field_offs, use btf_record's fields instead
The btf_field_offs struct contains (offset, size) for btf_record fields,
sorted by offset. btf_field_offs is always used in conjunction with
btf_record, which has btf_field 'fields' array with (offset, type), the
latter of which btf_field_offs' size is derived from via
btf_field_type_size.

This patch adds a size field to struct btf_field and sorts btf_record's
fields by offset, making it possible to get rid of btf_field_offs. Less
data duplication and less code complexity results.

Since btf_field_offs' lifetime closely followed the btf_record used to
populate it, most complexity wins are from removal of initialization
code like:

  if (btf_record_successfully_initialized) {
    foffs = btf_parse_field_offs(rec);
    if (IS_ERR_OR_NULL(foffs))
      // free the btf_record and return err
  }

Other changes in this patch are pretty mechanical:

  * foffs->field_off[i] -> rec->fields[i].offset
  * foffs->field_sz[i] -> rec->fields[i].size
  * Sort rec->fields in btf_parse_fields before returning
    * It's possible that this is necessary independently of other
      changes in this patch. btf_record_find in syscall.c expects
      btf_record's fields to be sorted by offset, yet there's no
      explicit sorting of them before this patch, record's fields are
      populated in the order they're read from BTF struct definition.
      BTF docs don't say anything about the sortedness of struct fields.
  * All functions taking struct btf_field_offs * input now instead take
    struct btf_record *. All callsites of these functions already have
    access to the correct btf_record.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-15 17:36:49 -07:00
David Vernet
6499fe6edc bpf: Remove bpf_cgroup_kptr_get() kfunc
Now that bpf_cgroup_acquire() is KF_RCU | KF_RET_NULL,
bpf_cgroup_kptr_get() is redundant. Let's remove it, and update
selftests to instead use bpf_cgroup_acquire() where appropriate. The
next patch will update the BPF documentation to not mention
bpf_cgroup_kptr_get().

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230411041633.179404-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-12 12:57:54 -07:00
David Vernet
1d71283987 bpf: Make bpf_cgroup_acquire() KF_RCU | KF_RET_NULL
struct cgroup is already an RCU-safe type in the verifier. We can
therefore update bpf_cgroup_acquire() to be KF_RCU | KF_RET_NULL, and
subsequently remove bpf_cgroup_kptr_get(). This patch does the first of
these by updating bpf_cgroup_acquire() to be KF_RCU | KF_RET_NULL, and
also updates selftests accordingly.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230411041633.179404-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-12 12:57:54 -07:00
Barret Rhoden
f3f2134977 bpf: ensure all memory is initialized in bpf_get_current_comm
BPF helpers that take an ARG_PTR_TO_UNINIT_MEM must ensure that all of
the memory is set, including beyond the end of the string.

Signed-off-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/r/20230407001808.1622968-1-brho@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-06 18:48:24 -07:00
David Vernet
f85671c6ef bpf: Remove now-defunct task kfuncs
In commit 22df776a9a ("tasks: Extract rcu_users out of union"), the
'refcount_t rcu_users' field was extracted out of a union with the
'struct rcu_head rcu' field. This allows us to safely perform a
refcount_inc_not_zero() on task->rcu_users when acquiring a reference on
a task struct. A prior patch leveraged this by making struct task_struct
an RCU-protected object in the verifier, and by bpf_task_acquire() to
use the task->rcu_users field for synchronization.

Now that we can use RCU to protect tasks, we no longer need
bpf_task_kptr_get(), or bpf_task_acquire_not_zero(). bpf_task_kptr_get()
is truly completely unnecessary, as we can just use RCU to get the
object. bpf_task_acquire_not_zero() is now equivalent to
bpf_task_acquire().

In addition to these changes, this patch also updates the associated
selftests to no longer use these kfuncs.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230331195733.699708-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-01 09:07:20 -07:00
David Vernet
d02c48fa11 bpf: Make struct task_struct an RCU-safe type
struct task_struct objects are a bit interesting in terms of how their
lifetime is protected by refcounts. task structs have two refcount
fields:

1. refcount_t usage: Protects the memory backing the task struct. When
   this refcount drops to 0, the task is immediately freed, without
   waiting for an RCU grace period to elapse. This is the field that
   most callers in the kernel currently use to ensure that a task
   remains valid while it's being referenced, and is what's currently
   tracked with bpf_task_acquire() and bpf_task_release().

2. refcount_t rcu_users: A refcount field which, when it drops to 0,
   schedules an RCU callback that drops a reference held on the 'usage'
   field above (which is acquired when the task is first created). This
   field therefore provides a form of RCU protection on the task by
   ensuring that at least one 'usage' refcount will be held until an RCU
   grace period has elapsed. The qualifier "a form of" is important
   here, as a task can remain valid after task->rcu_users has dropped to
   0 and the subsequent RCU gp has elapsed.

In terms of BPF, we want to use task->rcu_users to protect tasks that
function as referenced kptrs, and to allow tasks stored as referenced
kptrs in maps to be accessed with RCU protection.

Let's first determine whether we can safely use task->rcu_users to
protect tasks stored in maps. All of the bpf_task* kfuncs can only be
called from tracepoint, struct_ops, or BPF_PROG_TYPE_SCHED_CLS, program
types. For tracepoint and struct_ops programs, the struct task_struct
passed to a program handler will always be trusted, so it will always be
safe to call bpf_task_acquire() with any task passed to a program.
Note, however, that we must update bpf_task_acquire() to be KF_RET_NULL,
as it is possible that the task has exited by the time the program is
invoked, even if the pointer is still currently valid because the main
kernel holds a task->usage refcount. For BPF_PROG_TYPE_SCHED_CLS, tasks
should never be passed as an argument to the any program handlers, so it
should not be relevant.

The second question is whether it's safe to use RCU to access a task
that was acquired with bpf_task_acquire(), and stored in a map. Because
bpf_task_acquire() now uses task->rcu_users, it follows that if the task
is present in the map, that it must have had at least one
task->rcu_users refcount by the time the current RCU cs was started.
Therefore, it's safe to access that task until the end of the current
RCU cs.

With all that said, this patch makes struct task_struct is an
RCU-protected object. In doing so, we also change bpf_task_acquire() to
be KF_ACQUIRE | KF_RCU | KF_RET_NULL, and adjust any selftests as
necessary. A subsequent patch will remove bpf_task_kptr_get(), and
bpf_task_acquire_not_zero() respectively.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230331195733.699708-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-01 09:07:20 -07:00
David Vernet
fb2211a57c bpf: Remove now-unnecessary NULL checks for KF_RELEASE kfuncs
Now that we're not invoking kfunc destructors when the kptr in a map was
NULL, we no longer require NULL checks in many of our KF_RELEASE kfuncs.
This patch removes those NULL checks.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230325213144.486885-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-25 16:56:22 -07:00
Alexei Starovoitov
c9267aa8b7 bpf: Fix bpf_strncmp proto.
bpf_strncmp() doesn't write into its first argument.
Make sure that the verifier knows about it.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230313235845.61029-2-alexei.starovoitov@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-03-13 23:08:21 -07:00
Dave Marchevsky
c8e1875409 bpf: Support __kptr to local kptrs
If a PTR_TO_BTF_ID type comes from program BTF - not vmlinux or module
BTF - it must have been allocated by bpf_obj_new and therefore must be
free'd with bpf_obj_drop. Such a PTR_TO_BTF_ID is considered a "local
kptr" and is tagged with MEM_ALLOC type tag by bpf_obj_new.

This patch adds support for treating __kptr-tagged pointers to "local
kptrs" as having an implicit bpf_obj_drop destructor for referenced kptr
acquire / release semantics. Consider the following example:

  struct node_data {
          long key;
          long data;
          struct bpf_rb_node node;
  };

  struct map_value {
          struct node_data __kptr *node;
  };

  struct {
          __uint(type, BPF_MAP_TYPE_ARRAY);
          __type(key, int);
          __type(value, struct map_value);
          __uint(max_entries, 1);
  } some_nodes SEC(".maps");

If struct node_data had a matching definition in kernel BTF, the verifier would
expect a destructor for the type to be registered. Since struct node_data does
not match any type in kernel BTF, the verifier knows that there is no kfunc
that provides a PTR_TO_BTF_ID to this type, and that such a PTR_TO_BTF_ID can
only come from bpf_obj_new. So instead of searching for a registered dtor,
a bpf_obj_drop dtor can be assumed.

This allows the runtime to properly destruct such kptrs in
bpf_obj_free_fields, which enables maps to clean up map_vals w/ such
kptrs when going away.

Implementation notes:
  * "kernel_btf" variable is renamed to "kptr_btf" in btf_parse_kptr.
    Before this patch, the variable would only ever point to vmlinux or
    module BTFs, but now it can point to some program BTF for local kptr
    type. It's later used to populate the (btf, btf_id) pair in kptr btf
    field.
  * It's necessary to btf_get the program BTF when populating btf_field
    for local kptr. btf_record_free later does a btf_put.
  * Behavior for non-local referenced kptrs is not modified, as
    bpf_find_btf_id helper only searches vmlinux and module BTFs for
    matching BTF type. If such a type is found, btf_field_kptr's btf will
    pass btf_is_kernel check, and the associated release function is
    some one-argument dtor. If btf_is_kernel check fails, associated
    release function is two-arg bpf_obj_drop_impl. Before this patch
    only btf_field_kptr's w/ kernel or module BTFs were created.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230310230743.2320707-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-10 16:38:05 -08:00
Andrii Nakryiko
6018e1f407 bpf: implement numbers iterator
Implement the first open-coded iterator type over a range of integers.

It's public API consists of:
  - bpf_iter_num_new() constructor, which accepts [start, end) range
    (that is, start is inclusive, end is exclusive).
  - bpf_iter_num_next() which will keep returning read-only pointer to int
    until the range is exhausted, at which point NULL will be returned.
    If bpf_iter_num_next() is kept calling after this, NULL will be
    persistently returned.
  - bpf_iter_num_destroy() destructor, which needs to be called at some
    point to clean up iterator state. BPF verifier enforces that iterator
    destructor is called at some point before BPF program exits.

Note that `start = end = X` is a valid combination to setup an empty
iterator. bpf_iter_num_new() will return 0 (success) for any such
combination.

If bpf_iter_num_new() detects invalid combination of input arguments, it
returns error, resets iterator state to, effectively, empty iterator, so
any subsequent call to bpf_iter_num_next() will keep returning NULL.

BPF verifier has no knowledge that returned integers are in the
[start, end) value range, as both `start` and `end` are not statically
known and enforced: they are runtime values.

While the implementation is pretty trivial, some care needs to be taken
to avoid overflows and underflows. Subsequent selftests will validate
correctness of [start, end) semantics, especially around extremes
(INT_MIN and INT_MAX).

Similarly to bpf_loop(), we enforce that no more than BPF_MAX_LOOPS can
be specified.

bpf_iter_num_{new,next,destroy}() is a logical evolution from bounded
BPF loops and bpf_loop() helper and is the basis for implementing
ergonomic BPF loops with no statically known or verified bounds.
Subsequent patches implement bpf_for() macro, demonstrating how this can
be wrapped into something that works and feels like a normal for() loop
in C language.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230308184121.1165081-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-08 16:19:51 -08:00
Alexei Starovoitov
20c09d92fa bpf: Introduce kptr_rcu.
The life time of certain kernel structures like 'struct cgroup' is protected by RCU.
Hence it's safe to dereference them directly from __kptr tagged pointers in bpf maps.
The resulting pointer is MEM_RCU and can be passed to kfuncs that expect KF_RCU.
Derefrence of other kptr-s returns PTR_UNTRUSTED.

For example:
struct map_value {
   struct cgroup __kptr *cgrp;
};

SEC("tp_btf/cgroup_mkdir")
int BPF_PROG(test_cgrp_get_ancestors, struct cgroup *cgrp_arg, const char *path)
{
  struct cgroup *cg, *cg2;

  cg = bpf_cgroup_acquire(cgrp_arg); // cg is PTR_TRUSTED and ref_obj_id > 0
  bpf_kptr_xchg(&v->cgrp, cg);

  cg2 = v->cgrp; // This is new feature introduced by this patch.
  // cg2 is PTR_MAYBE_NULL | MEM_RCU.
  // When cg2 != NULL, it's a valid cgroup, but its percpu_ref could be zero

  if (cg2)
    bpf_cgroup_ancestor(cg2, level); // safe to do.
}

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230303041446.3630-4-alexei.starovoitov@gmail.com
2023-03-03 17:42:20 +01:00
Tero Kristo
f71f853049 bpf: Add support for absolute value BPF timers
Add a new flag BPF_F_TIMER_ABS that can be passed to bpf_timer_start()
to start an absolute value timer instead of the default relative value.
This makes the timer expire at an exact point in time, instead of a time
with latencies induced by both the BPF and timer subsystems.

Suggested-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Tero Kristo <tero.kristo@linux.intel.com>
Link: https://lore.kernel.org/r/20230302114614.2985072-2-tero.kristo@linux.intel.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-02 22:41:32 -08:00
Tejun Heo
c501bf55c8 bpf: Make bpf_get_current_[ancestor_]cgroup_id() available for all program types
These helpers are safe to call from any context and there's no reason to
restrict access to them. Remove them from bpf_trace and filter lists and add
to bpf_base_func_proto() under perfmon_capable().

v2: After consulting with Andrii, relocated in bpf_base_func_proto() so that
    they require bpf_capable() but not perfomon_capable() as it doesn't read
    from or affect others on the system.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/ZAD8QyoszMZiTzBY@slm.duckdns.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-02 22:37:07 -08:00
Joanne Koong
c45eac537b bpf: Fix bpf_dynptr_slice{_rdwr} to return NULL instead of 0
Change bpf_dynptr_slice and bpf_dynptr_slice_rdwr to return NULL instead
of 0, in accordance with the codebase guidelines.

Fixes: 66e3a13e7c ("bpf: Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230302053014.1726219-1-joannelkoong@gmail.com
2023-03-01 21:36:29 -08:00
David Vernet
7ce60b110e bpf: Fix doxygen comments for dynptr slice kfuncs
In commit 66e3a13e7c ("bpf: Add bpf_dynptr_slice and
bpf_dynptr_slice_rdwr"), the bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() kfuncs were added to BPF. These kfuncs included
doxygen headers, but unfortunately those headers are not properly
formatted according to [0], and causes the following warnings during the
docs build:

./kernel/bpf/helpers.c:2225: warning: \
    Excess function parameter 'returns' description in 'bpf_dynptr_slice'
./kernel/bpf/helpers.c:2303: warning: \
    Excess function parameter 'returns' description in 'bpf_dynptr_slice_rdwr'
...

This patch fixes those doxygen comments.

[0]: https://docs.kernel.org/doc-guide/kernel-doc.html#function-documentation

Fixes: 66e3a13e7c ("bpf: Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr")
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230301194910.602738-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-01 16:00:10 -08:00
Joanne Koong
66e3a13e7c bpf: Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr
Two new kfuncs are added, bpf_dynptr_slice and bpf_dynptr_slice_rdwr.
The user must pass in a buffer to store the contents of the data slice
if a direct pointer to the data cannot be obtained.

For skb and xdp type dynptrs, these two APIs are the only way to obtain
a data slice. However, for other types of dynptrs, there is no
difference between bpf_dynptr_slice(_rdwr) and bpf_dynptr_data.

For skb type dynptrs, the data is copied into the user provided buffer
if any of the data is not in the linear portion of the skb. For xdp type
dynptrs, the data is copied into the user provided buffer if the data is
between xdp frags.

If the skb is cloned and a call to bpf_dynptr_data_rdwr is made, then
the skb will be uncloned (see bpf_unclone_prologue()).

Please note that any bpf_dynptr_write() automatically invalidates any prior
data slices of the skb dynptr. This is because the skb may be cloned or
may need to pull its paged buffer into the head. As such, any
bpf_dynptr_write() will automatically have its prior data slices
invalidated, even if the write is to data in the skb head of an uncloned
skb. Please note as well that any other helper calls that change the
underlying packet buffer (eg bpf_skb_pull_data()) invalidates any data
slices of the skb dynptr as well, for the same reasons.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-10-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-01 09:55:24 -08:00
Joanne Koong
05421aecd4 bpf: Add xdp dynptrs
Add xdp dynptrs, which are dynptrs whose underlying pointer points
to a xdp_buff. The dynptr acts on xdp data. xdp dynptrs have two main
benefits. One is that they allow operations on sizes that are not
statically known at compile-time (eg variable-sized accesses).
Another is that parsing the packet data through dynptrs (instead of
through direct access of xdp->data and xdp->data_end) can be more
ergonomic and less brittle (eg does not need manual if checking for
being within bounds of data_end).

For reads and writes on the dynptr, this includes reading/writing
from/to and across fragments. Data slices through the bpf_dynptr_data
API are not supported; instead bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() should be used.

For examples of how xdp dynptrs can be used, please see the attached
selftests.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-9-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-01 09:55:24 -08:00
Joanne Koong
b5964b968a bpf: Add skb dynptrs
Add skb dynptrs, which are dynptrs whose underlying pointer points
to a skb. The dynptr acts on skb data. skb dynptrs have two main
benefits. One is that they allow operations on sizes that are not
statically known at compile-time (eg variable-sized accesses).
Another is that parsing the packet data through dynptrs (instead of
through direct access of skb->data and skb->data_end) can be more
ergonomic and less brittle (eg does not need manual if checking for
being within bounds of data_end).

For bpf prog types that don't support writes on skb data, the dynptr is
read-only (bpf_dynptr_write() will return an error)

For reads and writes through the bpf_dynptr_read() and bpf_dynptr_write()
interfaces, reading and writing from/to data in the head as well as from/to
non-linear paged buffers is supported. Data slices through the
bpf_dynptr_data API are not supported; instead bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() (added in subsequent commit) should be used.

For examples of how skb dynptrs can be used, please see the attached
selftests.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-8-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-01 09:55:24 -08:00
David Vernet
30a2d8328d bpf: Fix bpf_cgroup_from_id() doxygen header
In commit 332ea1f697 ("bpf: Add bpf_cgroup_from_id() kfunc"), a new
bpf_cgroup_from_id() kfunc was added which allows a BPF program to
lookup and acquire a reference to a cgroup from a cgroup id. The
commit's doxygen comment seems to have copy-pasted fields, which causes
BPF kfunc helper documentation to fail to render:

<snip>/helpers.c:2114: warning: Excess function parameter 'cgrp'...
<snip>/helpers.c:2114: warning: Excess function parameter 'level'...

<snip>

<snip>/helpers.c:2114: warning: Excess function parameter 'level'...

This patch fixes the doxygen header.

Fixes: 332ea1f697 ("bpf: Add bpf_cgroup_from_id() kfunc")
Signed-off-by: David Vernet <void@manifault.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230228152845.294695-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-28 08:42:11 -08:00
Tejun Heo
332ea1f697 bpf: Add bpf_cgroup_from_id() kfunc
cgroup ID is an userspace-visible 64bit value uniquely identifying a given
cgroup. As the IDs are used widely, it's useful to be able to look up the
matching cgroups. Add bpf_cgroup_from_id().

v2: Separate out selftest into its own patch as suggested by Alexei.

Signed-off-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/Y/bBaG96t0/gQl9/@slm.duckdns.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-23 08:33:05 -08:00
Dave Marchevsky
bd1279ae8a bpf: Add bpf_rbtree_{add,remove,first} kfuncs
This patch adds implementations of bpf_rbtree_{add,remove,first}
and teaches verifier about their BTF_IDs as well as those of
bpf_rb_{root,node}.

All three kfuncs have some nonstandard component to their verification
that needs to be addressed in future patches before programs can
properly use them:

  * bpf_rbtree_add:     Takes 'less' callback, need to verify it

  * bpf_rbtree_first:   Returns ptr_to_node_type(off=rb_node_off) instead
                        of ptr_to_rb_node(off=0). Return value ref is
			non-owning.

  * bpf_rbtree_remove:  Returns ptr_to_node_type(off=rb_node_off) instead
                        of ptr_to_rb_node(off=0). 2nd arg (node) is a
			non-owning reference.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 19:40:48 -08:00
Dave Marchevsky
9c395c1b99 bpf: Add basic bpf_rb_{root,node} support
This patch adds special BPF_RB_{ROOT,NODE} btf_field_types similar to
BPF_LIST_{HEAD,NODE}, adds the necessary plumbing to detect the new
types, and adds bpf_rb_root_free function for freeing bpf_rb_root in
map_values.

structs bpf_rb_root and bpf_rb_node are opaque types meant to
obscure structs rb_root_cached rb_node, respectively.

btf_struct_access will prevent BPF programs from touching these special
fields automatically now that they're recognized.

btf_check_and_fixup_fields now groups list_head and rb_root together as
"graph root" fields and {list,rb}_node as "graph node", and does same
ownership cycle checking as before. Note that this function does _not_
prevent ownership type mixups (e.g. rb_root owning list_node) - that's
handled by btf_parse_graph_root.

After this patch, a bpf program can have a struct bpf_rb_root in a
map_value, but not add anything to nor do anything useful with it.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 19:31:13 -08:00
David Vernet
400031e05a bpf: Add __bpf_kfunc tag to all kfuncs
Now that we have the __bpf_kfunc tag, we should use add it to all
existing kfuncs to ensure that they'll never be elided in LTO builds.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230201173016.342758-4-void@manifault.com
2023-02-02 00:25:14 +01:00
Dave Marchevsky
30465003ad bpf: rename list_head -> graph_root in field info types
Many of the structs recently added to track field info for linked-list
head are useful as-is for rbtree root. So let's do a mechanical renaming
of list_head-related types and fields:

include/linux/bpf.h:
  struct btf_field_list_head -> struct btf_field_graph_root
  list_head -> graph_root in struct btf_field union
kernel/bpf/btf.c:
  list_head -> graph_root in struct btf_field_info

This is a nonfunctional change, functionality to actually use these
fields for rbtree will be added in further patches.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20221217082506.1570898-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-28 20:14:22 -08:00
Jiri Olsa
e2bb9e01d5 bpf: Remove trace_printk_lock
Both bpf_trace_printk and bpf_trace_vprintk helpers use static buffer guarded
with trace_printk_lock spin lock.

The spin lock contention causes issues with bpf programs attached to
contention_begin tracepoint [1][2].

Andrii suggested we could get rid of the contention by using trylock, but we
could actually get rid of the spinlock completely by using percpu buffers the
same way as for bin_args in bpf_bprintf_prepare function.

Adding new return 'buf' argument to struct bpf_bprintf_data and making
bpf_bprintf_prepare to return also the buffer for printk helpers.

  [1] https://lore.kernel.org/bpf/CACkBjsakT_yWxnSWr4r-0TpPvbKm9-OBmVUhJb7hV3hY8fdCkw@mail.gmail.com/
  [2] https://lore.kernel.org/bpf/CACkBjsaCsTovQHFfkqJKto6S4Z8d02ud1D7MPESrHa1cVNNTrw@mail.gmail.com/

Reported-by: Hao Sun <sunhao.th@gmail.com>
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-4-jolsa@kernel.org
2022-12-19 22:08:37 +01:00
Jiri Olsa
f19a405045 bpf: Do cleanup in bpf_bprintf_cleanup only when needed
Currently we always cleanup/decrement bpf_bprintf_nest_level variable
in bpf_bprintf_cleanup if it's > 0.

There's possible scenario where this could cause a problem, when
bpf_bprintf_prepare does not get bin_args buffer (because num_args is 0)
and following bpf_bprintf_cleanup call decrements bpf_bprintf_nest_level
variable, like:

  in task context:
    bpf_bprintf_prepare(num_args != 0) increments 'bpf_bprintf_nest_level = 1'
    -> first irq :
       bpf_bprintf_prepare(num_args == 0)
       bpf_bprintf_cleanup decrements 'bpf_bprintf_nest_level = 0'
    -> second irq:
       bpf_bprintf_prepare(num_args != 0) bpf_bprintf_nest_level = 1
       gets same buffer as task context above

Adding check to bpf_bprintf_cleanup and doing the real cleanup only if we
got bin_args data in the first place.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-3-jolsa@kernel.org
2022-12-19 22:08:06 +01:00
Jiri Olsa
78aa1cc940 bpf: Add struct for bin_args arg in bpf_bprintf_prepare
Adding struct bpf_bprintf_data to hold bin_args argument for
bpf_bprintf_prepare function.

We will add another return argument to bpf_bprintf_prepare and
pass the struct to bpf_bprintf_cleanup for proper cleanup in
following changes.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-2-jolsa@kernel.org
2022-12-19 22:07:52 +01:00
Kumar Kartikeya Dwivedi
76d16077be bpf: Use memmove for bpf_dynptr_{read,write}
It may happen that destination buffer memory overlaps with memory dynptr
points to. Hence, we must use memmove to correctly copy from dynptr to
destination buffer, or source buffer to dynptr.

This actually isn't a problem right now, as memcpy implementation falls
back to memmove on detecting overlap and warns about it, but we
shouldn't be relying on that.

Acked-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-08 18:39:28 -08:00
Kumar Kartikeya Dwivedi
2706053173 bpf: Rework process_dynptr_func
Recently, user ringbuf support introduced a PTR_TO_DYNPTR register type
for use in callback state, because in case of user ringbuf helpers,
there is no dynptr on the stack that is passed into the callback. To
reflect such a state, a special register type was created.

However, some checks have been bypassed incorrectly during the addition
of this feature. First, for arg_type with MEM_UNINIT flag which
initialize a dynptr, they must be rejected for such register type.
Secondly, in the future, there are plans to add dynptr helpers that
operate on the dynptr itself and may change its offset and other
properties.

In all of these cases, PTR_TO_DYNPTR shouldn't be allowed to be passed
to such helpers, however the current code simply returns 0.

The rejection for helpers that release the dynptr is already handled.

For fixing this, we take a step back and rework existing code in a way
that will allow fitting in all classes of helpers and have a coherent
model for dealing with the variety of use cases in which dynptr is used.

First, for ARG_PTR_TO_DYNPTR, it can either be set alone or together
with a DYNPTR_TYPE_* constant that denotes the only type it accepts.

Next, helpers which initialize a dynptr use MEM_UNINIT to indicate this
fact. To make the distinction clear, use MEM_RDONLY flag to indicate
that the helper only operates on the memory pointed to by the dynptr,
not the dynptr itself. In C parlance, it would be equivalent to taking
the dynptr as a point to const argument.

When either of these flags are not present, the helper is allowed to
mutate both the dynptr itself and also the memory it points to.
Currently, the read only status of the memory is not tracked in the
dynptr, but it would be trivial to add this support inside dynptr state
of the register.

With these changes and renaming PTR_TO_DYNPTR to CONST_PTR_TO_DYNPTR to
better reflect its usage, it can no longer be passed to helpers that
initialize a dynptr, i.e. bpf_dynptr_from_mem, bpf_ringbuf_reserve_dynptr.

A note to reviewers is that in code that does mark_stack_slots_dynptr,
and unmark_stack_slots_dynptr, we implicitly rely on the fact that
PTR_TO_STACK reg is the only case that can reach that code path, as one
cannot pass CONST_PTR_TO_DYNPTR to helpers that don't set MEM_RDONLY. In
both cases such helpers won't be setting that flag.

The next patch will add a couple of selftest cases to make sure this
doesn't break.

Fixes: 2057156738 ("bpf: Add bpf_user_ringbuf_drain() helper")
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-08 18:25:31 -08:00
David Vernet
36aa10ffd6 bpf/docs: Document struct cgroup * kfuncs
bpf_cgroup_acquire(), bpf_cgroup_release(), bpf_cgroup_kptr_get(), and
bpf_cgroup_ancestor(), are kfuncs that were recently added to
kernel/bpf/helpers.c. These are "core" kfuncs in that they're available
for use in any tracepoint or struct_ops BPF program. Though they have no
ABI stability guarantees, we should still document them. This patch adds
a struct cgroup * subsection to the Core kfuncs section which describes
each of these kfuncs.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221207204911.873646-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-07 17:11:24 -08:00