Commit Graph

69 Commits

Author SHA1 Message Date
Aneesh Kumar K.V 1a8c64e110 mm/memory_hotplug: embed vmem_altmap details in memory block
With memmap on memory, some architecture needs more details w.r.t altmap
such as base_pfn, end_pfn, etc to unmap vmemmap memory.  Instead of
computing them again when we remove a memory block, embed vmem_altmap
details in struct memory_block if we are using memmap on memory block
feature.

[yangyingliang@huawei.com: fix error return code in add_memory_resource()]
  Link: https://lkml.kernel.org/r/20230809081552.1351184-1-yangyingliang@huawei.com
Link: https://lkml.kernel.org/r/20230808091501.287660-7-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:49 -07:00
Naoya Horiguchi 5033091de8 mm/hwpoison: introduce per-memory_block hwpoison counter
Currently PageHWPoison flag does not behave well when experiencing memory
hotremove/hotplug.  Any data field in struct page is unreliable when the
associated memory is offlined, and the current mechanism can't tell
whether a memory block is onlined because a new memory devices is
installed or because previous failed offline operations are undone. 
Especially if there's a hwpoisoned memory, it's unclear what the best
option is.

So introduce a new mechanism to make struct memory_block remember that a
memory block has hwpoisoned memory inside it.  And make any online event
fail if the onlining memory block contains hwpoison.  struct memory_block
is freed and reallocated over ACPI-based hotremove/hotplug, but not over
sysfs-based hotremove/hotplug.  So the new counter can distinguish these
cases.

Link: https://lkml.kernel.org/r/20221024062012.1520887-5-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 17:37:22 -08:00
Liu Shixin 1eeaa4fd39 memory: move hotplug memory notifier priority to same file for easy sorting
The priority of hotplug memory callback is defined in a different file. 
And there are some callers using numbers directly.  Collect them together
into include/linux/memory.h for easy reading.  This allows us to sort
their priorities more intuitively without additional comments.

Link: https://lkml.kernel.org/r/20220923033347.3935160-9-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Waiman Long <longman@redhat.com>
Cc: zefan li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 17:37:17 -08:00
Liu Shixin eafd296e0c memory: remove unused register_hotmemory_notifier()
Remove unused register_hotmemory_notifier().

Link: https://lkml.kernel.org/r/20220923033347.3935160-8-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Waiman Long <longman@redhat.com>
Cc: zefan li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 17:37:16 -08:00
David Hildenbrand 395f6081ba drivers/base/memory: determine and store zone for single-zone memory blocks
test_pages_in_a_zone() is just another nasty PFN walker that can easily
stumble over ZONE_DEVICE memory ranges falling into the same memory block
as ordinary system RAM: the memmap of parts of these ranges might possibly
be uninitialized.  In fact, we observed (on an older kernel) with UBSAN:

  UBSAN: Undefined behaviour in ./include/linux/mm.h:1133:50
  index 7 is out of range for type 'zone [5]'
  CPU: 121 PID: 35603 Comm: read_all Kdump: loaded Tainted: [...]
  Hardware name: Dell Inc. PowerEdge R7425/08V001, BIOS 1.12.2 11/15/2019
  Call Trace:
   dump_stack+0x9a/0xf0
   ubsan_epilogue+0x9/0x7a
   __ubsan_handle_out_of_bounds+0x13a/0x181
   test_pages_in_a_zone+0x3c4/0x500
   show_valid_zones+0x1fa/0x380
   dev_attr_show+0x43/0xb0
   sysfs_kf_seq_show+0x1c5/0x440
   seq_read+0x49d/0x1190
   vfs_read+0xff/0x300
   ksys_read+0xb8/0x170
   do_syscall_64+0xa5/0x4b0
   entry_SYSCALL_64_after_hwframe+0x6a/0xdf
  RIP: 0033:0x7f01f4439b52

We seem to stumble over a memmap that contains a garbage zone id.  While
we could try inserting pfn_to_online_page() calls, it will just make
memory offlining slower, because we use test_pages_in_a_zone() to make
sure we're offlining pages that all belong to the same zone.

Let's just get rid of this PFN walker and determine the single zone of a
memory block -- if any -- for early memory blocks during boot.  For memory
onlining, we know the single zone already.  Let's avoid any additional
memmap scanning and just rely on the zone information available during
boot.

For memory hot(un)plug, we only really care about memory blocks that:
* span a single zone (and, thereby, a single node)
* are completely System RAM (IOW, no holes, no ZONE_DEVICE)
If one of these conditions is not met, we reject memory offlining.
Hotplugged memory blocks (starting out offline), always meet both
conditions.

There are three scenarios to handle:

(1) Memory hot(un)plug

A memory block with zone == NULL cannot be offlined, corresponding to
our previous test_pages_in_a_zone() check.

After successful memory onlining/offlining, we simply set the zone
accordingly.
* Memory onlining: set the zone we just used for onlining
* Memory offlining: set zone = NULL

So a hotplugged memory block starts with zone = NULL. Once memory
onlining is done, we set the proper zone.

(2) Boot memory with !CONFIG_NUMA

We know that there is just a single pgdat, so we simply scan all zones
of that pgdat for an intersection with our memory block PFN range when
adding the memory block. If more than one zone intersects (e.g., DMA and
DMA32 on x86 for the first memory block) we set zone = NULL and
consequently mimic what test_pages_in_a_zone() used to do.

(3) Boot memory with CONFIG_NUMA

At the point in time we create the memory block devices during boot, we
don't know yet which nodes *actually* span a memory block. While we could
scan all zones of all nodes for intersections, overlapping nodes complicate
the situation and scanning all nodes is possibly expensive. But that
problem has already been solved by the code that sets the node of a memory
block and creates the link in the sysfs --
do_register_memory_block_under_node().

So, we hook into the code that sets the node id for a memory block. If
we already have a different node id set for the memory block, we know
that multiple nodes *actually* have PFNs falling into our memory block:
we set zone = NULL and consequently mimic what test_pages_in_a_zone() used
to do. If there is no node id set, we do the same as (2) for the given
node.

Note that the call order in driver_init() is:
-> memory_dev_init(): create memory block devices
-> node_dev_init(): link memory block devices to the node and set the
		    node id

So in summary, we detect if there is a single zone responsible for this
memory block and we consequently store the zone in that case in the
memory block, updating it during memory onlining/offlining.

Link: https://lkml.kernel.org/r/20220210184359.235565-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Rafael Parra <rparrazo@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rafael Parra <rparrazo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
David Hildenbrand 6b740c6c3a mm/memory_hotplug: remove HIGHMEM leftovers
We don't support CONFIG_MEMORY_HOTPLUG on 32 bit and consequently not
HIGHMEM.  Let's remove any leftover code -- including the unused
"status_change_nid_high" field part of the memory notifier.

Link: https://lkml.kernel.org/r/20210929143600.49379-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alex Shi <alexs@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
David Hildenbrand 50f9481ed9 mm/memory_hotplug: remove CONFIG_MEMORY_HOTPLUG_SPARSE
CONFIG_MEMORY_HOTPLUG depends on CONFIG_SPARSEMEM, so there is no need for
CONFIG_MEMORY_HOTPLUG_SPARSE anymore; adjust all instances to use
CONFIG_MEMORY_HOTPLUG and remove CONFIG_MEMORY_HOTPLUG_SPARSE.

Link: https://lkml.kernel.org/r/20210929143600.49379-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Shuah Khan <skhan@linuxfoundation.org>	[kselftest]
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: Alex Shi <alexs@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
Lukas Bulwahn e26e0cc30b memory: remove unused CONFIG_MEM_BLOCK_SIZE
Commit 3947be1969 ("[PATCH] memory hotplug: sysfs and add/remove
functions") defines CONFIG_MEM_BLOCK_SIZE, but this has never been
utilized anywhere.

It is a good practice to keep the CONFIG_* defines exclusively for the
Kbuild system.  So, drop this unused definition.

This issue was noticed due to running ./scripts/checkkconfigsymbols.py.

Link: https://lkml.kernel.org/r/20211006120354.7468-1-lukas.bulwahn@gmail.com
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:36 -07:00
Dave Hansen 76af6a054d mm/migrate: add CPU hotplug to demotion #ifdef
Once upon a time, the node demotion updates were driven solely by memory
hotplug events.  But now, there are handlers for both CPU and memory
hotplug.

However, the #ifdef around the code checks only memory hotplug.  A
system that has HOTPLUG_CPU=y but MEMORY_HOTPLUG=n would miss CPU
hotplug events.

Update the #ifdef around the common code.  Add memory and CPU-specific
#ifdefs for their handlers.  These memory/CPU #ifdefs avoid unused
function warnings when their Kconfig option is off.

[arnd@arndb.de: rework hotplug_memory_notifier() stub]
  Link: https://lkml.kernel.org/r/20211013144029.2154629-1-arnd@kernel.org

Link: https://lkml.kernel.org/r/20210924161255.E5FE8F7E@davehans-spike.ostc.intel.com
Fixes: 884a6e5d1f ("mm/migrate: update node demotion order on hotplug events")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-18 20:22:02 -10:00
Linus Torvalds 2d338201d5 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "147 patches, based on 7d2a07b769.

  Subsystems affected by this patch series: mm (memory-hotplug, rmap,
  ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
  alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
  checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
  selftests, ipc, and scripts"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
  scripts: check_extable: fix typo in user error message
  mm/workingset: correct kernel-doc notations
  ipc: replace costly bailout check in sysvipc_find_ipc()
  selftests/memfd: remove unused variable
  Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
  configs: remove the obsolete CONFIG_INPUT_POLLDEV
  prctl: allow to setup brk for et_dyn executables
  pid: cleanup the stale comment mentioning pidmap_init().
  kernel/fork.c: unexport get_{mm,task}_exe_file
  coredump: fix memleak in dump_vma_snapshot()
  fs/coredump.c: log if a core dump is aborted due to changed file permissions
  nilfs2: use refcount_dec_and_lock() to fix potential UAF
  nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
  nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
  nilfs2: fix NULL pointer in nilfs_##name##_attr_release
  nilfs2: fix memory leak in nilfs_sysfs_create_device_group
  trap: cleanup trap_init()
  init: move usermodehelper_enable() to populate_rootfs()
  ...
2021-09-08 12:55:35 -07:00
David Hildenbrand 3fcebf9020 mm/memory_hotplug: improved dynamic memory group aware "auto-movable" online policy
Currently, the "auto-movable" online policy does not allow for hotplugged
KERNEL (ZONE_NORMAL) memory to increase the amount of MOVABLE memory we
can have, primarily, because there is no coordiantion across memory
devices and we don't want to create zone-imbalances accidentially when
unplugging memory.

However, within a single memory device it's different.  Let's allow for
KERNEL memory within a dynamic memory group to allow for more MOVABLE
within the same memory group.  The only thing we have to take care of is
that the managing driver avoids zone imbalances by unplugging MOVABLE
memory first, otherwise there can be corner cases where unplug of memory
could result in (accidential) zone imbalances.

virtio-mem is the only user of dynamic memory groups and recently added
support for prioritizing unplug of ZONE_MOVABLE over ZONE_NORMAL, so we
don't need a new toggle to enable it for dynamic memory groups.

We limit this handling to dynamic memory groups, because:

* We want to keep the runtime overhead for collecting stats when
  onlining a single memory block small.  We tend to have only a handful of
  dynamic memory groups, but we can have quite some static memory groups
  (e.g., 256 DIMMs).

* It doesn't make too much sense for static memory groups, as we try
  onlining all applicable memory blocks either completely to ZONE_MOVABLE
  or not.  In ordinary operation, we won't have a mixture of zones within
  a static memory group.

When adding memory to a dynamic memory group, we'll first online memory to
ZONE_MOVABLE as long as early KERNEL memory allows for it.  Then, we'll
online the next unit(s) to ZONE_NORMAL, until we can online the next
unit(s) to ZONE_MOVABLE.

For a simple virtio-mem device with a MOVABLE:KERNEL ratio of 3:1, it will
result in a layout like:

  [M][M][M][M][M][M][M][M][N][M][M][M][N][M][M][M]...
  ^ movable memory due to early kernel memory
			   ^ allows for more movable memory ...
			      ^-----^ ... here
				       ^ allows for more movable memory ...
				          ^-----^ ... here

While the created layout is sub-optimal when it comes to contiguous zones,
it gives us the maximum flexibility when dynamically growing/shrinking a
device; we can grow small VMs really big in small steps, and still shrink
reliably to e.g., 1/4 of the maximum VM size in this example, removing
full memory blocks along with meta data more reliably.

Mark dynamic memory groups in the xarray such that we can efficiently
iterate over them when collecting stats.  In usual setups, we have one
virtio-mem device per NUMA node, and usually only a small number of NUMA
nodes.

Note: for now, there seems to be no compelling reason to make this
behavior configurable.

Link: https://lkml.kernel.org/r/20210806124715.17090-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:23 -07:00
David Hildenbrand 836809ec75 mm/memory_hotplug: track present pages in memory groups
Let's track all present pages in each memory group.  Especially, track
memory present in ZONE_MOVABLE and memory present in one of the kernel
zones (which really only is ZONE_NORMAL right now as memory groups only
apply to hotplugged memory) separately within a memory group, to prepare
for making smart auto-online decision for individual memory blocks within
a memory group based on group statistics.

Link: https://lkml.kernel.org/r/20210806124715.17090-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:23 -07:00
David Hildenbrand 028fc57a1c drivers/base/memory: introduce "memory groups" to logically group memory blocks
In our "auto-movable" memory onlining policy, we want to make decisions
across memory blocks of a single memory device.  Examples of memory
devices include ACPI memory devices (in the simplest case a single DIMM)
and virtio-mem.  For now, we don't have a connection between a single
memory block device and the real memory device.  Each memory device
consists of 1..X memory block devices.

Let's logically group memory blocks belonging to the same memory device in
"memory groups".  Memory groups can span multiple physical ranges and a
memory group itself does not contain any information regarding physical
ranges, only properties (e.g., "max_pages") necessary for improved memory
onlining.

Introduce two memory group types:

1) Static memory group: E.g., a single ACPI memory device, consisting
   of 1..X memory resources.  A memory group consists of 1..Y memory
   blocks.  The whole group is added/removed in one go.  If any part
   cannot get offlined, the whole group cannot be removed.

2) Dynamic memory group: E.g., a single virtio-mem device.  Memory is
   dynamically added/removed in a fixed granularity, called a "unit",
   consisting of 1..X memory blocks.  A unit is added/removed in one go.
   If any part of a unit cannot get offlined, the whole unit cannot be
   removed.

In case of 1) we usually want either all memory managed by ZONE_MOVABLE or
none.  In case of 2) we usually want to have as many units as possible
managed by ZONE_MOVABLE.  We want a single unit to be of the same type.

For now, memory groups are an internal concept that is not exposed to user
space; we might want to change that in the future, though.

add_memory() users can specify a mgid instead of a nid when passing the
MHP_NID_IS_MGID flag.

Link: https://lkml.kernel.org/r/20210806124715.17090-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:23 -07:00
Ohhoon Kwon fc1f5e980a mm: sparse: pass section_nr to find_memory_block
With CONFIG_SPARSEMEM_EXTREME enabled, __section_nr() which converts
mem_section to section_nr could be costly since it iterates all section
roots to check if the given mem_section is in its range.

On the other hand, __nr_to_section() which converts section_nr to
mem_section can be done in O(1).

Let's pass section_nr instead of mem_section ptr to find_memory_block() in
order to reduce needless iterations.

Link: https://lkml.kernel.org/r/20210707150212.855-3-ohoono.kwon@samsung.com
Signed-off-by: Ohhoon Kwon <ohoono.kwon@samsung.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:14 -07:00
Oscar Salvador a08a2ae346 mm,memory_hotplug: allocate memmap from the added memory range
Physical memory hotadd has to allocate a memmap (struct page array) for
the newly added memory section.  Currently, alloc_pages_node() is used
for those allocations.

This has some disadvantages:
 a) an existing memory is consumed for that purpose
    (eg: ~2MB per 128MB memory section on x86_64)
    This can even lead to extreme cases where system goes OOM because
    the physically hotplugged memory depletes the available memory before
    it is onlined.
 b) if the whole node is movable then we have off-node struct pages
    which has performance drawbacks.
 c) It might be there are no PMD_ALIGNED chunks so memmap array gets
    populated with base pages.

This can be improved when CONFIG_SPARSEMEM_VMEMMAP is enabled.

Vmemap page tables can map arbitrary memory.  That means that we can
reserve a part of the physically hotadded memory to back vmemmap page
tables.  This implementation uses the beginning of the hotplugged memory
for that purpose.

There are some non-obviously things to consider though.

Vmemmap pages are allocated/freed during the memory hotplug events
(add_memory_resource(), try_remove_memory()) when the memory is
added/removed.  This means that the reserved physical range is not
online although it is used.  The most obvious side effect is that
pfn_to_online_page() returns NULL for those pfns.  The current design
expects that this should be OK as the hotplugged memory is considered a
garbage until it is onlined.  For example hibernation wouldn't save the
content of those vmmemmaps into the image so it wouldn't be restored on
resume but this should be OK as there no real content to recover anyway
while metadata is reachable from other data structures (e.g.  vmemmap
page tables).

The reserved space is therefore (de)initialized during the {on,off}line
events (mhp_{de}init_memmap_on_memory).  That is done by extracting page
allocator independent initialization from the regular onlining path.
The primary reason to handle the reserved space outside of
{on,off}line_pages is to make each initialization specific to the
purpose rather than special case them in a single function.

As per above, the functions that are introduced are:

 - mhp_init_memmap_on_memory:
   Initializes vmemmap pages by calling move_pfn_range_to_zone(), calls
   kasan_add_zero_shadow(), and onlines as many sections as vmemmap pages
   fully span.

 - mhp_deinit_memmap_on_memory:
   Offlines as many sections as vmemmap pages fully span, removes the
   range from zhe zone by remove_pfn_range_from_zone(), and calls
   kasan_remove_zero_shadow() for the range.

The new function memory_block_online() calls mhp_init_memmap_on_memory()
before doing the actual online_pages().  Should online_pages() fail, we
clean up by calling mhp_deinit_memmap_on_memory().  Adjusting of
present_pages is done at the end once we know that online_pages()
succedeed.

On offline, memory_block_offline() needs to unaccount vmemmap pages from
present_pages() before calling offline_pages().  This is necessary because
offline_pages() tears down some structures based on the fact whether the
node or the zone become empty.  If offline_pages() fails, we account back
vmemmap pages.  If it succeeds, we call mhp_deinit_memmap_on_memory().

Hot-remove:

 We need to be careful when removing memory, as adding and
 removing memory needs to be done with the same granularity.
 To check that this assumption is not violated, we check the
 memory range we want to remove and if a) any memory block has
 vmemmap pages and b) the range spans more than a single memory
 block, we scream out loud and refuse to proceed.

 If all is good and the range was using memmap on memory (aka vmemmap pages),
 we construct an altmap structure so free_hugepage_table does the right
 thing and calls vmem_altmap_free instead of free_pagetable.

Link: https://lkml.kernel.org/r/20210421102701.25051-5-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:26 -07:00
David Hildenbrand e9a2e48e87 drivers/base/memory: don't store phys_device in memory blocks
No need to store the value for each and every memory block, as we can
easily query the value at runtime.  Reshuffle the members to optimize the
memory layout.  Also, let's clarify what the interface once was used for
and why it's legacy nowadays.

"phys_device" was used on s390x in older versions of lsmem[2]/chmem[3],
back when they were still part of s390x-tools.  They were later replaced
by the variants in linux-utils.  For example, RHEL6 and RHEL7 contain
lsmem/chmem from s390-utils.  RHEL8 switched to versions from util-linux
on s390x [4].

"phys_device" was added with sysfs support for memory hotplug in commit
3947be1969 ("[PATCH] memory hotplug: sysfs and add/remove functions") in
2005.  It always returned 0.

s390x started returning something != 0 on some setups (if sclp.rzm is set
by HW) in 2010 via commit 57b552ba0b ("memory hotplug/s390: set
phys_device").

For s390x, it allowed for identifying which memory block devices belong to
the same storage increment (RZM).  Only if all memory block devices
comprising a single storage increment were offline, the memory could
actually be removed in the hypervisor.

Since commit e5d709bb5f ("s390/memory hotplug: provide
memory_block_size_bytes() function") in 2013 a memory block device spans
at least one storage increment - which is why the interface isn't really
helpful/used anymore (except by old lsmem/chmem tools).

There were once RFC patches to make use of "phys_device" in ACPI context;
however, the underlying problem could be solved using different interfaces
[1].

[1] https://patchwork.kernel.org/patch/2163871/
[2] https://github.com/ibm-s390-tools/s390-tools/blob/v2.1.0/zconf/lsmem
[3] https://github.com/ibm-s390-tools/s390-tools/blob/v2.1.0/zconf/chmem
[4] https://bugzilla.redhat.com/show_bug.cgi?id=1504134

Link: https://lkml.kernel.org/r/20210201181347.13262-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Tom Rix <trix@redhat.com>
Cc: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:00 -08:00
David Hildenbrand 68c3a6ac65 drivers/base/memory.c: drop section_count
Patch series "mm: drop superfluous section checks when onlining/offlining".

Let's drop some superfluous section checks on the onlining/offlining path.

This patch (of 3):

Since commit c5e79ef561 ("mm/memory_hotplug.c: don't allow to
online/offline memory blocks with holes") we have a generic check in
offline_pages() that disallows offlining memory blocks with holes.

Memory blocks with missing sections are just another variant of these type
of blocks.  We can stop checking (and especially storing) present
sections.  A proper error message is now printed why offlining failed.

section_count was initially introduced in commit 0768121597 ("Driver
core: Add section count to memory_block struct") in order to detect when
it is okay to remove a memory block.  It was used in commit 26bbe7ef6d
("drivers/base/memory.c: prohibit offlining of memory blocks with missing
sections") to disallow offlining memory blocks with missing sections.  As
we refactored creation/removal of memory devices and have a proper check
for holes in place, we can drop the section_count.

This also removes a leftover comment regarding the mem_sysfs_mutex, which
was removed in commit 848e19ad3c ("drivers/base/memory.c: drop the
mem_sysfs_mutex").

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Link: http://lkml.kernel.org/r/20200127110424.5757-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:40 -07:00
Anshuman Khandual 068964541d include/linux/memory.h: drop fields 'hw' and 'phys_callback' from struct memory_block
memory_block structure elements 'hw' and 'phys_callback' are not getting
used.  This was originally added with commit 3947be1969 ("[PATCH]
memory hotplug: sysfs and add/remove functions") but never seem to have
been used.  Just drop them now.

Link: http://lkml.kernel.org/r/1576728650-13867-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 10:30:39 -08:00
David Hildenbrand 3f9903b9ca mm: remove the memory isolate notifier
Luckily, we have no users left, so we can get rid of it.  Cleanup
set_migratetype_isolate() a little bit.

Link: http://lkml.kernel.org/r/20191114131911.11783-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Qian Cai <cai@lca.pw>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 10:30:38 -08:00
David Hildenbrand 2c91f8fc6c mm/memory_hotplug: fix try_offline_node()
try_offline_node() is pretty much broken right now:

 - The node span is updated when onlining memory, not when adding it. We
   ignore memory that was mever onlined. Bad.

 - We touch possible garbage memmaps. The pfn_to_nid(pfn) can easily
   trigger a kernel panic. Bad for memory that is offline but also bad
   for subsection hotadd with ZONE_DEVICE, whereby the memmap of the
   first PFN of a section might contain garbage.

 - Sections belonging to mixed nodes are not properly considered.

As memory blocks might belong to multiple nodes, we would have to walk
all pageblocks (or at least subsections) within present sections.
However, we don't have a way to identify whether a memmap that is not
online was initialized (relevant for ZONE_DEVICE).  This makes things
more complicated.

Luckily, we can piggy pack on the node span and the nid stored in memory
blocks.  Currently, the node span is grown when calling
move_pfn_range_to_zone() - e.g., when onlining memory, and shrunk when
removing memory, before calling try_offline_node().  Sysfs links are
created via link_mem_sections(), e.g., during boot or when adding
memory.

If the node still spans memory or if any memory block belongs to the
nid, we don't set the node offline.  As memory blocks that span multiple
nodes cannot get offlined, the nid stored in memory blocks is reliable
enough (for such online memory blocks, the node still spans the memory).

Introduce for_each_memory_block() to efficiently walk all memory blocks.

Note: We will soon stop shrinking the ZONE_DEVICE zone and the node span
when removing ZONE_DEVICE memory to fix similar issues (access of
garbage memmaps) - until we have a reliable way to identify whether
these memmaps were properly initialized.  This implies later, that once
a node had ZONE_DEVICE memory, we won't be able to set a node offline -
which should be acceptable.

Since commit f1dd2cd13c ("mm, memory_hotplug: do not associate
hotadded memory to zones until online") memory that is added is not
assoziated with a zone/node (memmap not initialized).  The introducing
commit 60a5a19e74 ("memory-hotplug: remove sysfs file of node")
already missed that we could have multiple nodes for a section and that
the zone/node span is updated when onlining pages, not when adding them.

I tested this by hotplugging two DIMMs to a memory-less and cpu-less
NUMA node.  The node is properly onlined when adding the DIMMs.  When
removing the DIMMs, the node is properly offlined.

Masayoshi Mizuma reported:

: Without this patch, memory hotplug fails as panic:
:
:  BUG: kernel NULL pointer dereference, address: 0000000000000000
:  ...
:  Call Trace:
:   remove_memory_block_devices+0x81/0xc0
:   try_remove_memory+0xb4/0x130
:   __remove_memory+0xa/0x20
:   acpi_memory_device_remove+0x84/0x100
:   acpi_bus_trim+0x57/0x90
:   acpi_bus_trim+0x2e/0x90
:   acpi_device_hotplug+0x2b2/0x4d0
:   acpi_hotplug_work_fn+0x1a/0x30
:   process_one_work+0x171/0x380
:   worker_thread+0x49/0x3f0
:   kthread+0xf8/0x130
:   ret_from_fork+0x35/0x40

[david@redhat.com: v3]
  Link: http://lkml.kernel.org/r/20191102120221.7553-1-david@redhat.com
Link: http://lkml.kernel.org/r/20191028105458.28320-1-david@redhat.com
Fixes: 60a5a19e74 ("memory-hotplug: remove sysfs file of node")
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online") # visiable after d0dc12e86b
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Nayna Jain <nayna@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-15 18:34:00 -08:00
David Hildenbrand b6c88d3b9d drivers/base/memory.c: don't store end_section_nr in memory blocks
Each memory block spans the same amount of sections/pages/bytes.  The size
is determined before the first memory block is created.  No need to store
what we can easily calculate - and the calculations even look simpler now.

Michal brought up the idea of variable-sized memory blocks.  However, if
we ever implement something like this, we will need an API compatibility
switch and reworks at various places (most code assumes a fixed memory
block size).  So let's cleanup what we have right now.

While at it, fix the variable naming in register_mem_sect_under_node() -
we no longer talk about a single section.

Link: http://lkml.kernel.org/r/20190809110200.2746-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:09 -07:00
David Hildenbrand 902ce63b33 driver/base/memory.c: validate memory block size early
Let's validate the memory block size early, when initializing the memory
device infrastructure.  Fail hard in case the value is not suitable.

As nobody checks the return value of memory_dev_init(), turn it into a
void function and fail with a panic in all scenarios instead.  Otherwise,
we'll crash later during boot when core/drivers expect that the memory
device infrastructure (including memory_block_size_bytes()) works as
expected.

I think long term, we should move the whole memory block size
configuration (set_memory_block_size_order() and
memory_block_size_bytes()) into drivers/base/memory.c.

Link: http://lkml.kernel.org/r/20190806090142.22709-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:09 -07:00
David Hildenbrand dd62528591 drivers/base/memory.c: get rid of find_memory_block_hinted()
No longer needed, let's remove it.  Also, drop the "hint" parameter
completely from "find_memory_block_by_id", as nobody needs it anymore.

[david@redhat.com: v3]
  Link: http://lkml.kernel.org/r/20190620183139.4352-7-david@redhat.com
[david@redhat.com: handle zero-length walks]
  Link: http://lkml.kernel.org/r/1c2edc22-afd7-2211-c4c7-40e54e5007e8@redhat.com
Link: http://lkml.kernel.org/r/20190614100114.311-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:07 -07:00
David Hildenbrand ea8846411a mm/memory_hotplug: move and simplify walk_memory_blocks()
Let's move walk_memory_blocks() to the place where memory block logic
resides and simplify it.  While at it, add a type for the callback
function.

Link: http://lkml.kernel.org/r/20190614100114.311-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand 4c4b7f9ba9 mm/memory_hotplug: remove memory block devices before arch_remove_memory()
Let's factor out removing of memory block devices, which is only
necessary for memory added via add_memory() and friends that created
memory block devices.  Remove the devices before calling
arch_remove_memory().

This finishes factoring out memory block device handling from
arch_add_memory() and arch_remove_memory().

Link: http://lkml.kernel.org/r/20190527111152.16324-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Mark Brown <broonie@kernel.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand db051a0dac mm/memory_hotplug: create memory block devices after arch_add_memory()
Only memory to be added to the buddy and to be onlined/offlined by user
space using /sys/devices/system/memory/...  needs (and should have!)
memory block devices.

Factor out creation of memory block devices.  Create all devices after
arch_add_memory() succeeded.  We can later drop the want_memblock
parameter, because it is now effectively stale.

Only after memory block devices have been added, memory can be onlined
by user space.  This implies, that memory is not visible to user space
at all before arch_add_memory() succeeded.

While at it
 - use WARN_ON_ONCE instead of BUG_ON in moved unregister_memory()
 - introduce find_memory_block_by_id() to search via block id
 - Use find_memory_block_by_id() in init_memory_block() to catch
   duplicates

Link: http://lkml.kernel.org/r/20190527111152.16324-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Qian Cai <cai@lca.pw>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand 80ec922dbd mm/memory_hotplug: allow arch_remove_memory() without CONFIG_MEMORY_HOTREMOVE
We want to improve error handling while adding memory by allowing to use
arch_remove_memory() and __remove_pages() even if
CONFIG_MEMORY_HOTREMOVE is not set to e.g., implement something like:

	arch_add_memory()
	rc = do_something();
	if (rc) {
		arch_remove_memory();
	}

We won't get rid of CONFIG_MEMORY_HOTREMOVE for now, as it will require
quite some dependencies for memory offlining.

Link: http://lkml.kernel.org/r/20190527111152.16324-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Mark Brown <broonie@kernel.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand cb7b3a3685 mm/memory_hotplug: make unregister_memory_section() never fail
Failing while removing memory is mostly ignored and cannot really be
handled.  Let's treat errors in unregister_memory_section() in a nice way,
warning, but continuing.

Link: http://lkml.kernel.org/r/20190409100148.24703-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
mike.travis@hpe.com f642fb5864 x86/platform/UV: Add adjustable set memory block size function
Add a new function to "adjust" the current fixed UV memory block size
of 2GB so it can be changed to a different physical boundary.  This is
out of necessity so arch dependent code can accommodate specific BIOS
requirements which can align these new PMEM modules at less than the
default boundaries.

A "set order" type of function was used to insure that the memory block
size will be a power of two value without requiring a validity check.
64GB was chosen as the upper limit for memory block size values to
accommodate upcoming 4PB systems which have 6 more bits of physical
address space (46 becoming 52).

Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Andrew Banman <andrew.banman@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Cc: jgross@suse.com
Cc: kirill.shutemov@linux.intel.com
Cc: mhocko@suse.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/lkml/20180524201711.609546602@stormcage.americas.sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-21 16:14:45 +02:00
Pavel Tatashin d0dc12e86b mm/memory_hotplug: optimize memory hotplug
During memory hotplugging we traverse struct pages three times:

1. memset(0) in sparse_add_one_section()
2. loop in __add_section() to set do: set_page_node(page, nid); and
   SetPageReserved(page);
3. loop in memmap_init_zone() to call __init_single_pfn()

This patch removes the first two loops, and leaves only loop 3.  All
struct pages are initialized in one place, the same as it is done during
boot.

The benefits:

 - We improve memory hotplug performance because we are not evicting the
   cache several times and also reduce loop branching overhead.

 - Remove condition from hotpath in __init_single_pfn(), that was added
   in order to fix the problem that was reported by Bharata in the above
   email thread, thus also improve performance during normal boot.

 - Make memory hotplug more similar to the boot memory initialization
   path because we zero and initialize struct pages only in one
   function.

 - Simplifies memory hotplug struct page initialization code, and thus
   enables future improvements, such as multi-threading the
   initialization of struct pages in order to improve hotplug
   performance even further on larger machines.

[pasha.tatashin@oracle.com: v5]
  Link: http://lkml.kernel.org/r/20180228030308.1116-7-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180215165920.8570-7-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Pavel Tatashin fc44f7f923 mm/memory_hotplug: don't read nid from struct page during hotplug
During memory hotplugging the probe routine will leave struct pages
uninitialized, the same as it is currently done during boot.  Therefore,
we do not want to access the inside of struct pages before
__init_single_page() is called during onlining.

Because during hotplug we know that pages in one memory block belong to
the same numa node, we can skip the checking.  We should keep checking
for the boot case.

[pasha.tatashin@oracle.com: s/register_new_memory()/hotplug_memory_register()]
  Link: http://lkml.kernel.org/r/20180228030308.1116-6-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180215165920.8570-6-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Nathan Fontenot dc18d706a4 memory-hotplug: use dev_online for memhp_auto_online
Commit 31bc3858ea ("add automatic onlining policy for the newly added
memory") provides the capability to have added memory automatically
onlined during add, but this appears to be slightly broken.

The current implementation uses walk_memory_range() to call
online_memory_block, which uses memory_block_change_state() to online
the memory.  Instead, we should be calling device_online() for the
memory block in online_memory_block().  This would online the memory
(the memory bus online routine memory_subsys_online() called from
device_online calls memory_block_change_state()) and properly update the
device struct offline flag.

As a result of the current implementation, attempting to remove a memory
block after adding it using auto online fails.  This is because doing a
remove, for instance

  echo offline > /sys/devices/system/memory/memoryXXX/state

uses device_offline() which checks the dev->offline flag.

Link: http://lkml.kernel.org/r/20170222220744.8119.19687.stgit@ltcalpine2-lp14.aus.stglabs.ibm.com
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
Linus Torvalds 8eee93e257 Char/Misc patches for 4.6-rc1
Here is the big char/misc driver update for 4.6-rc1.
 
 The majority of the patches here is hwtracing and some new mic drivers,
 but there's a lot of other driver updates as well.  Full details in the
 shortlog.
 
 All have been in linux-next for a while with no reported issues.
 
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iEYEABECAAYFAlbp9IcACgkQMUfUDdst+ykyJgCeLTC2QNGrh51kiJglkVJ0yD36
 q4MAn0NkvSX2+iv5Jq8MaX6UQoRa4Nun
 =MNjR
 -----END PGP SIGNATURE-----

Merge tag 'char-misc-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc

Pull char/misc updates from Greg KH:
 "Here is the big char/misc driver update for 4.6-rc1.

  The majority of the patches here is hwtracing and some new mic
  drivers, but there's a lot of other driver updates as well.  Full
  details in the shortlog.

  All have been in linux-next for a while with no reported issues"

* tag 'char-misc-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (238 commits)
  goldfish: Fix build error of missing ioremap on UM
  nvmem: mediatek: Fix later provider initialization
  nvmem: imx-ocotp: Fix return value of imx_ocotp_read
  nvmem: Fix dependencies for !HAS_IOMEM archs
  char: genrtc: replace blacklist with whitelist
  drivers/hwtracing: make coresight-etm-perf.c explicitly non-modular
  drivers: char: mem: fix IS_ERROR_VALUE usage
  char: xillybus: Fix internal data structure initialization
  pch_phub: return -ENODATA if ROM can't be mapped
  Drivers: hv: vmbus: Support kexec on ws2012 r2 and above
  Drivers: hv: vmbus: Support handling messages on multiple CPUs
  Drivers: hv: utils: Remove util transport handler from list if registration fails
  Drivers: hv: util: Pass the channel information during the init call
  Drivers: hv: vmbus: avoid unneeded compiler optimizations in vmbus_wait_for_unload()
  Drivers: hv: vmbus: remove code duplication in message handling
  Drivers: hv: vmbus: avoid wait_for_completion() on crash
  Drivers: hv: vmbus: don't loose HVMSG_TIMER_EXPIRED messages
  misc: at24: replace memory_accessor with nvmem_device_read
  eeprom: 93xx46: extend driver to plug into the NVMEM framework
  eeprom: at25: extend driver to plug into the NVMEM framework
  ...
2016-03-17 13:47:50 -07:00
Vitaly Kuznetsov 31bc3858ea memory-hotplug: add automatic onlining policy for the newly added memory
Currently, all newly added memory blocks remain in 'offline' state
unless someone onlines them, some linux distributions carry special udev
rules like:

  SUBSYSTEM=="memory", ACTION=="add", ATTR{state}=="offline", ATTR{state}="online"

to make this happen automatically.  This is not a great solution for
virtual machines where memory hotplug is being used to address high
memory pressure situations as such onlining is slow and a userspace
process doing this (udev) has a chance of being killed by the OOM killer
as it will probably require to allocate some memory.

Introduce default policy for the newly added memory blocks in
/sys/devices/system/memory/auto_online_blocks file with two possible
values: "offline" which preserves the current behavior and "online"
which causes all newly added memory blocks to go online as soon as
they're added.  The default is "offline".

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Kay Sievers <kay@vrfy.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Andrew Lunn bec3c11bad misc: at24: replace memory_accessor with nvmem_device_read
Now that the AT24 uses the NVMEM framework, replace the
memory_accessor in the setup() callback with nvmem API calls.

Signed-off-by: Andrew Lunn <andrew@lunn.ch>
Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Tested-by: Sekhar Nori <nsekhar@ti.com>
Acked-by: Wolfram Sang <wsa@the-dreams.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-01 16:55:48 -08:00
Bjorn Helgaas e0a8400c69 memory-hotplug: Remove "weak" from memory_block_size_bytes() declaration
drivers/base/memory.c provides a default memory_block_size_bytes()
definition explicitly marked "weak".  Several architectures provide their
own definitions intended to override the default, but the "weak" attribute
on the declaration applied to the arch definitions as well, so the linker
chose one based on link order (see 10629d711e ("PCI: Remove __weak
annotation from pcibios_get_phb_of_node decl")).

Remove the "weak" attribute from the declaration so we always prefer a
non-weak definition over the weak one, independent of link order.

Fixes: 41f107266b ("drivers: base: Add prototype declaration to the header file")
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
CC: Rashika Kheria <rashika.kheria@gmail.com>
CC: Nathan Fontenot <nfont@austin.ibm.com>
CC: Anton Blanchard <anton@au1.ibm.com>
CC: Heiko Carstens <heiko.carstens@de.ibm.com>
CC: Yinghai Lu <yinghai@kernel.org>
2014-10-22 16:14:04 -06:00
Rashika Kheria 41f107266b drivers: base: Add prototype declaration to the header file
Add prototype declaration of function memory_block_size_bytes() to
the header file include/linux/memory.h.

This eliminates the following warning in memory.c:
drivers/base/memory.c:87:1: warning: no previous prototype for ‘memory_block_size_bytes’ [-Wmissing-prototypes]

Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-20 12:20:26 -08:00
Seth Jennings fa2be40fe7 drivers: base: use standard device online/offline for state change
There are two ways to set the online/offline state for a memory block:
echo 0|1 > online and echo online|online_kernel|online_movable|offline >
state.

The state attribute can online a memory block with extra data, the
"online type", where the online attribute uses a default online type of
ONLINE_KEEP, same as echo online > state.

Currently there is a state_mutex that provides consistency between the
memory block state and the underlying memory.

The problem is that this code does a lot of things that the common
device layer can do for us, such as the serialization of the
online/offline handlers using the device lock, setting the dev->offline
field, and calling kobject_uevent().

This patch refactors the online/offline code to allow the common
device_[online|offline] functions to be used.  The result is a simpler
and more common code path for the two state setting mechanisms.  It also
removes the state_mutex from the struct memory_block as the memory block
device lock provides the state consistency.

No functional change is intended by this patch.

Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-21 11:52:20 -07:00
Seth Jennings 37a7bd6255 drivers: base: reduce add_memory_section() for boot-time only
Now that add_memory_section() is only called from boot time, reduce
the logic and remove the enum.

Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-21 11:48:41 -07:00
Vincent Stehlé ace6128d60 memory hotplug: fix warnings
Fix the following compilation warnings:

  mm/slab.c: In function `kmem_cache_init_late':
  mm/slab.c:1778:2: warning: statement with no effect [-Wunused-value]

  mm/page_cgroup.c: In function `page_cgroup_init':
  mm/page_cgroup.c:305:2: warning: statement with no effect [-Wunused-value]

Signed-off-by: Vincent Stehlé <vincent.stehle@laposte.net>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 17:04:00 -07:00
David Rientjes 4edd7ceff0 mm, hotplug: avoid compiling memory hotremove functions when disabled
__remove_pages() is only necessary for CONFIG_MEMORY_HOTREMOVE.  PowerPC
pseries will return -EOPNOTSUPP if unsupported.

Adding an #ifdef causes several other functions it depends on to also
become unnecessary, which saves in .text when disabled (it's disabled in
most defconfigs besides powerpc, including x86).  remove_memory_block()
becomes static since it is not referenced outside of
drivers/base/memory.c.

Build tested on x86 and powerpc with CONFIG_MEMORY_HOTREMOVE both enabled
and disabled.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:37 -07:00
Andrew Morton f02c696800 include/linux/memory.h: implement register_hotmemory_notifier()
When CONFIG_MEMORY_HOTPLUG=n, we don't want the memory-hotplug notifier
handlers to be included in the .o files, for space reasons.

The existing hotplug_memory_notifier() tries to handle this but testing
with gcc-4.4.4 shows that it doesn't work - the hotplug functions are
still present in the .o files.

So implement a new register_hotmemory_notifier() which is a copy of
register_hotcpu_notifier(), and which actually works as desired.
hotplug_memory_notifier() and register_memory_notifier() callsites
should be converted to use this new register_hotmemory_notifier().

While we're there, let's repair the existing hotplug_memory_notifier():
it simply stomps on the register_memory_notifier() return value, so
well-behaved code cannot check for errors.  Apparently non of the
existing callers were well-behaved :(

Cc: Andrew Shewmaker <agshew@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:36 -07:00
Lai Jiangshan 6715ddf945 hotplug: update nodemasks management
Update nodemasks management for N_MEMORY.

[lliubbo@gmail.com: fix build]
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lin Feng <linfeng@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 17:38:33 -08:00
Lai Jiangshan d9713679db memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY]
Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it
forgets to manage node_states[N_NORMAL_MEMORY].  This may cause
node_states[N_NORMAL_MEMORY] to become incorrect.

Example, if a node is empty before online, and we online a memory which is
in ZONE_NORMAL.  And after online, node_states[N_HIGH_MEMORY] is correct,
but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set
the new online node to node_states[N_NORMAL_MEMORY].

The same thing will happen when offlining (the offline code doesn't clear
the node from node_states[N_NORMAL_MEMORY] when needed).  Some memory
managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up
the node_states[N_NORMAL_MEMORY].

We add node_states_check_changes_online() and
node_states_check_changes_offline() to detect whether
node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed
while hotpluging.

Also add @status_change_nid_normal to struct memory_notify, thus the
memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are
changed.  (We can add a @flags and reuse @status_change_nid instead of
introducing @status_change_nid_normal, but it will add much more
complexity in memory hotplug callback in every subsystem.  So introducing
@status_change_nid_normal is better and it doesn't change the sematics of
@status_change_nid)

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Rob Landley <rob@landley.net>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11 17:22:23 -08:00
Jianguo Wu 05cf96398e mm/ia64: fix a memory block size bug
I found following definition in include/linux/memory.h, in my IA64
platform, SECTION_SIZE_BITS is equal to 32, and MIN_MEMORY_BLOCK_SIZE
will be 0.

  #define MIN_MEMORY_BLOCK_SIZE     (1 << SECTION_SIZE_BITS)

Because MIN_MEMORY_BLOCK_SIZE is int type and length of 32bits,
so MIN_MEMORY_BLOCK_SIZE(1 << 32) will will equal to 0.
Actually when SECTION_SIZE_BITS >= 31, MIN_MEMORY_BLOCK_SIZE will be wrong.
This will cause wrong system memory infomation in sysfs.
I think it should be:

  #define MIN_MEMORY_BLOCK_SIZE     (1UL << SECTION_SIZE_BITS)

And "echo offline > memory0/state" will cause following call trace:

  kernel BUG at mm/memory_hotplug.c:885!
  sh[6455]: bugcheck! 0 [1]
  Pid: 6455, CPU 0, comm:                   sh
  psr : 0000101008526030 ifs : 8000000000000fa4 ip  : [<a0000001008c40f0>]    Not tainted (3.6.0-rc1)
  ip is at offline_pages+0x210/0xee0
  Call Trace:
    show_stack+0x80/0xa0
    show_regs+0x640/0x920
    die+0x190/0x2c0
    die_if_kernel+0x50/0x80
    ia64_bad_break+0x3d0/0x6e0
    ia64_native_leave_kernel+0x0/0x270
    offline_pages+0x210/0xee0
    alloc_pages_current+0x180/0x2a0

Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-09-17 15:00:37 -07:00
Kay Sievers 10fbcf4c6c convert 'memory' sysdev_class to a regular subsystem
This moves the 'memory sysdev_class' over to a regular 'memory' subsystem
and converts the devices to regular devices. The sysdev drivers are
implemented as subsystem interfaces now.

After all sysdev classes are ported to regular driver core entities, the
sysdev implementation will be entirely removed from the kernel.

Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-21 14:48:43 -08:00
Benjamin Herrenschmidt a63fdc5156 mm: Move definition of MIN_MEMORY_BLOCK_SIZE to a header
The macro MIN_MEMORY_BLOCK_SIZE is currently defined twice in two .c
files, and I need it in a third one to fix a powerpc bug, so let's
first move it into a header

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
2011-07-12 11:08:01 +10:00
Nathan Fontenot d33601644c memory hotplug: Update phys_index to [start|end]_section_nr
Update the 'phys_index' property of a the memory_block struct to be
called start_section_nr, and add a end_section_nr property.  The
data tracked here is the same but the updated naming is more in line
with what is stored here, namely the first and last section number
that the memory block spans.

The names presented to userspace remain the same, phys_index for
start_section_nr and end_phys_index for end_section_nr, to avoid breaking
anything in userspace.

This also updates the node sysfs code to be aware of the new capability for
a memory block to contain multiple memory sections and be aware of the memory
block structure name changes (start_section_nr).  This requires an additional
parameter to unregister_mem_sect_under_nodes so that we know which memory
section of the memory block to unregister.

Signed-off-by: Nathan Fontenot <nfont@austin.ibm.com>
Reviewed-by: Robin Holt <holt@sgi.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-03 16:08:57 -08:00
Nathan Fontenot 0768121597 Driver core: Add section count to memory_block struct
Add a section count property to the memory_block struct to track the number
of memory sections that have been added/removed from a memory block. This
allows us to know when the last memory section of a memory block has been
removed so we can remove the memory block.

Signed-off-by: Nathan Fontenot <nfont@austin.ibm.com>
Reviewed-by: Robin Holt <holt@sgi.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-10-22 10:16:44 -07:00