Commit Graph

103 Commits

Author SHA1 Message Date
Kees Cook 3d965b33e4 fortify: Improve buffer overflow reporting
Improve the reporting of buffer overflows under CONFIG_FORTIFY_SOURCE to
help accelerate debugging efforts. The calculations are all just sitting
in registers anyway, so pass them along to the function to be reported.

For example, before:

  detected buffer overflow in memcpy

and after:

  memcpy: detected buffer overflow: 4096 byte read of buffer size 1

Link: https://lore.kernel.org/r/20230407192717.636137-10-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
2024-02-29 13:38:02 -08:00
Kees Cook 475ddf1fce fortify: Split reporting and avoid passing string pointer
In preparation for KUnit testing and further improvements in fortify
failure reporting, split out the report and encode the function and access
failure (read or write overflow) into a single u8 argument. This mainly
ends up saving a tiny bit of space in the data segment. For a defconfig
with FORTIFY_SOURCE enabled:

$ size gcc/vmlinux.before gcc/vmlinux.after
   text  	  data     bss     dec    	    hex filename
26132309        9760658 2195460 38088427        2452eeb gcc/vmlinux.before
26132386        9748382 2195460 38076228        244ff44 gcc/vmlinux.after

Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
2024-02-29 13:38:02 -08:00
Ard Biesheuvel d55d5bc5d9 x86/boot: Rename conflicting 'boot_params' pointer to 'boot_params_ptr'
The x86 decompressor is built and linked as a separate executable, but
it shares components with the kernel proper, which are either #include'd
as C files, or linked into the decompresor as a static library (e.g, the
EFI stub)

Both the kernel itself and the decompressor define a global symbol
'boot_params' to refer to the boot_params struct, but in the former
case, it refers to the struct directly, whereas in the decompressor, it
refers to a global pointer variable referring to the struct boot_params
passed by the bootloader or constructed from scratch.

This ambiguity is unfortunate, and makes it impossible to assign this
decompressor variable from the x86 EFI stub, given that declaring it as
extern results in a clash. So rename the decompressor version (whose
scope is limited) to boot_params_ptr.

[ mingo: Renamed 'boot_params_p' to 'boot_params_ptr' for clarity ]

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-kernel@vger.kernel.org
2023-10-18 12:03:03 +02:00
Ard Biesheuvel 8338151935 x86/decompressor: Factor out kernel decompression and relocation
Factor out the decompressor sequence that invokes the decompressor,
parses the ELF and applies the relocations so that it can be called
directly from the EFI stub.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-21-ardb@kernel.org
2023-08-07 20:59:13 +02:00
Ard Biesheuvel 24388292e2 x86/decompressor: Move global symbol references to C code
It is no longer necessary to be cautious when referring to global
variables in the position independent decompressor code, now that it is
built using PIE codegen and makes an assertion in the linker script that
no GOT entries exist (which would require adjustment for the actual
runtime load address of the decompressor binary).

This means global variables can be referenced directly from C code,
instead of having to pass their runtime addresses into C routines from
asm code, which needs to happen at each call site. Do so for the code
that will be called directly from the EFI stub after a subsequent patch,
and avoid the need to duplicate this logic a third time.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-20-ardb@kernel.org
2023-08-07 20:58:02 +02:00
Kirill A. Shutemov 3fd1239a78 x86/boot/compressed: Handle unaccepted memory
The firmware will pre-accept the memory used to run the stub. But, the
stub is responsible for accepting the memory into which it decompresses
the main kernel. Accept memory just before decompression starts.

The stub is also responsible for choosing a physical address in which to
place the decompressed kernel image. The KASLR mechanism will randomize
this physical address. Since the accepted memory region is relatively
small, KASLR would be quite ineffective if it only used the pre-accepted
area (EFI_CONVENTIONAL_MEMORY). Ensure that KASLR randomizes among the
entire physical address space by also including EFI_UNACCEPTED_MEMORY.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230606142637.5171-5-kirill.shutemov@linux.intel.com
2023-06-06 17:17:24 +02:00
Alexander Lobakin 7734a0f31e x86/boot: Robustify calling startup_{32,64}() from the decompressor code
After commit ce697ccee1 ("kbuild: remove head-y syntax"), I
started digging whether x86 is ready for removing this old cruft.
Removing its objects from the list makes the kernel unbootable.
This applies only to bzImage, vmlinux still works correctly.
The reason is that with no strict object order determined by the
linker arguments, not the linker script, startup_64 can be placed
not right at the beginning of the kernel.
Here's vmlinux.map's beginning before removing:

  ffffffff81000000         vmlinux.o:(.head.text)
  ffffffff81000000                 startup_64
  ffffffff81000070                 secondary_startup_64
  ffffffff81000075                 secondary_startup_64_no_verify
  ffffffff81000160                 verify_cpu

and after:

  ffffffff81000000         vmlinux.o:(.head.text)
  ffffffff81000000                 pvh_start_xen
  ffffffff81000080                 startup_64
  ffffffff810000f0                 secondary_startup_64
  ffffffff810000f5                 secondary_startup_64_no_verify

Not a problem itself, but the self-extractor code has the address of
that function hardcoded the beginning, not looking onto the ELF
header, which always contains the address of startup_{32,64}().

So, instead of doing an "act of blind faith", just take the address
from the ELF header and extract a relative offset to the entry
point. The decompressor function already returns a pointer to the
beginning of the kernel to the Asm code, which then jumps to it,
so add that offset to the return value.
This doesn't change anything for now, but allows to resign from the
"head object list" for x86 and makes sure valid Kbuild or any other
improvements won't break anything here in general.

Signed-off-by: Alexander Lobakin <alexandr.lobakin@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jiri Slaby <jirislaby@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20230109170403.4117105-2-alexandr.lobakin@intel.com
2023-01-09 18:22:21 +01:00
Linus Torvalds 3a755ebcc2 Intel Trust Domain Extensions
This is the Intel version of a confidential computing solution called
 Trust Domain Extensions (TDX). This series adds support to run the
 kernel as part of a TDX guest. It provides similar guest protections to
 AMD's SEV-SNP like guest memory and register state encryption, memory
 integrity protection and a lot more.
 
 Design-wise, it differs from AMD's solution considerably: it uses
 a software module which runs in a special CPU mode called (Secure
 Arbitration Mode) SEAM. As the name suggests, this module serves as sort
 of an arbiter which the confidential guest calls for services it needs
 during its lifetime.
 
 Just like AMD's SNP set, this series reworks and streamlines certain
 parts of x86 arch code so that this feature can be properly accomodated.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLbisACgkQEsHwGGHe
 VUqZLg/7B55iygCwzz0W/KLcXL2cISatUpzGbFs1XTbE9DMz06BPkOsEjF2k8ckv
 kfZjgqhSx3GvUI80gK0Tn2M2DfIj3nKuNSXd1pfextP7AxEf68FFJsQz1Ju7bHpT
 pZaG+g8IK4+mnEHEKTCO9ANg/Zw8yqJLdtsCaCNE9SUGUfQ6m/ujTEfsambXDHNm
 khyCAgpIGSOt51/4apoR9ebyrNCaeVbDawpIPjTy+iyFRc/WyaLFV9CQ8klw4gbw
 r/90x2JYxvAf0/z/ifT9Wa+TnYiQ0d4VjFbfr0iJ4GcPn5L3EIoIKPE8vPGMpoSX
 fLSzoNmAOT3ja57ytUUQ3o0edoRUIPEdixOebf9qWvE/aj7W37YRzrlJ8Ej/x9Jy
 HcI4WZF6Dr1bh6FnI/xX2eVZRzLOL4j9gNyPCwIbvgr1NjDqQnxU7nhxVMmQhJrs
 IdiEcP5WYerLKfka/uF//QfWUg5mDBgFa1/3xK57Z3j0iKWmgjaPpR0SWlOKjj8G
 tr0gGN9ejikZTqXKGsHn8fv/R3bjXvbVD8z0IEcx+MIrRmZPnX2QBlg7UA1AXV5n
 HoVwPFdH1QAtjZq1MRcL4hTOjz3FkS68rg7ZH0f2GWJAzWmEGytBIhECRnN/PFFq
 VwRB4dCCt0bzqRxkiH5lzdgR+xqRe61juQQsMzg+Flv/trpXDqM=
 =ac9K
 -----END PGP SIGNATURE-----

Merge tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull Intel TDX support from Borislav Petkov:
 "Intel Trust Domain Extensions (TDX) support.

  This is the Intel version of a confidential computing solution called
  Trust Domain Extensions (TDX). This series adds support to run the
  kernel as part of a TDX guest. It provides similar guest protections
  to AMD's SEV-SNP like guest memory and register state encryption,
  memory integrity protection and a lot more.

  Design-wise, it differs from AMD's solution considerably: it uses a
  software module which runs in a special CPU mode called (Secure
  Arbitration Mode) SEAM. As the name suggests, this module serves as
  sort of an arbiter which the confidential guest calls for services it
  needs during its lifetime.

  Just like AMD's SNP set, this series reworks and streamlines certain
  parts of x86 arch code so that this feature can be properly
  accomodated"

* tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
  x86/tdx: Fix RETs in TDX asm
  x86/tdx: Annotate a noreturn function
  x86/mm: Fix spacing within memory encryption features message
  x86/kaslr: Fix build warning in KASLR code in boot stub
  Documentation/x86: Document TDX kernel architecture
  ACPICA: Avoid cache flush inside virtual machines
  x86/tdx/ioapic: Add shared bit for IOAPIC base address
  x86/mm: Make DMA memory shared for TD guest
  x86/mm/cpa: Add support for TDX shared memory
  x86/tdx: Make pages shared in ioremap()
  x86/topology: Disable CPU online/offline control for TDX guests
  x86/boot: Avoid #VE during boot for TDX platforms
  x86/boot: Set CR0.NE early and keep it set during the boot
  x86/acpi/x86/boot: Add multiprocessor wake-up support
  x86/boot: Add a trampoline for booting APs via firmware handoff
  x86/tdx: Wire up KVM hypercalls
  x86/tdx: Port I/O: Add early boot support
  x86/tdx: Port I/O: Add runtime hypercalls
  x86/boot: Port I/O: Add decompression-time support for TDX
  x86/boot: Port I/O: Allow to hook up alternative helpers
  ...
2022-05-23 17:51:12 -07:00
Michael Roth 6044d159b5 x86/boot: Put globals that are accessed early into the .data section
The helpers in arch/x86/boot/compressed/efi.c might be used during
early boot to access the EFI system/config tables, and in some cases
these EFI helpers might attempt to print debug/error messages, before
console_init() has been called.

__putstr() checks some variables to avoid printing anything before
the console has been initialized, but this isn't enough since those
variables live in .bss, which may not have been cleared yet. This can
lead to a triple-fault occurring, primarily when booting in legacy/CSM
mode (where EFI helpers will attempt to print some debug messages).

Fix this by declaring these globals in .data section instead so there
is no dependency on .bss being cleared before accessing them.

Fixes: c01fce9cef ("x86/compressed: Add SEV-SNP feature detection/setup")
Reported-by: Borislav Petkov <bp@suse.de>
Suggested-by: Thomas Lendacky <Thomas.Lendacky@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220420152613.145077-1-michael.roth@amd.com
2022-04-20 20:10:54 +02:00
Kirill A. Shutemov eb4ea1ae8f x86/boot: Port I/O: Allow to hook up alternative helpers
Port I/O instructions trigger #VE in the TDX environment. In response to
the exception, kernel emulates these instructions using hypercalls.

But during early boot, on the decompression stage, it is cumbersome to
deal with #VE. It is cleaner to go to hypercalls directly, bypassing #VE
handling.

Add a way to hook up alternative port I/O helpers in the boot stub with
a new pio_ops structure.  For now, set the ops structure to just call
the normal I/O operation functions.

out*()/in*() macros redefined to use pio_ops callbacks. It eliminates
need in changing call sites. io_delay() changed to use port I/O helper
instead of inline assembly.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220405232939.73860-16-kirill.shutemov@linux.intel.com
2022-04-07 08:27:52 -07:00
Kuppuswamy Sathyanarayanan 4b05f81504 x86/tdx: Detect TDX at early kernel decompression time
The early decompression code does port I/O for its console output. But,
handling the decompression-time port I/O demands a different approach
from normal runtime because the IDT required to support #VE based port
I/O emulation is not yet set up. Paravirtualizing I/O calls during
the decompression step is acceptable because the decompression code
doesn't have a lot of call sites to IO instruction.

To support port I/O in decompression code, TDX must be detected before
the decompression code might do port I/O. Detect whether the kernel runs
in a TDX guest.

Add an early_is_tdx_guest() interface to query the cached TDX guest
status in the decompression code.

TDX is detected with CPUID. Make cpuid_count() accessible outside
boot/cpuflags.c.

TDX detection in the main kernel is very similar. Move common bits
into <asm/shared/tdx.h>.

The actual port I/O paravirtualization will come later in the series.

Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220405232939.73860-13-kirill.shutemov@linux.intel.com
2022-04-07 08:27:51 -07:00
Kees Cook 938a000e3f fortify: Detect struct member overflows in memmove() at compile-time
As done for memcpy(), also update memmove() to use the same tightened
compile-time checks under CONFIG_FORTIFY_SOURCE.

Signed-off-by: Kees Cook <keescook@chromium.org>
2022-02-13 16:50:06 -08:00
Kees Cook 33f98a9798 x86/boot/compressed: Avoid duplicate malloc() implementations
The early malloc() and free() implementation in include/linux/decompress/mm.h
(which is also included by the static decompressors) is static. This is
fine when the only thing interested in using malloc() is the decompression
code, but the x86 early boot environment may use malloc() in a couple places,
leading to a potential collision when the static copies of the available
memory region ("malloc_ptr") gets reset to the global "free_mem_ptr" value.
As it happened, the existing usage pattern was accidentally safe because each
user did 1 malloc() and 1 free() before returning and were not nested:

extract_kernel() (misc.c)
	choose_random_location() (kaslr.c)
		mem_avoid_init()
			handle_mem_options()
				malloc()
				...
				free()
	...
	parse_elf() (misc.c)
		malloc()
		...
		free()

Once the future FGKASLR series is added, however, it will insert
additional malloc() calls local to fgkaslr.c in the middle of
parse_elf()'s malloc()/free() pair:

	parse_elf() (misc.c)
		malloc()
		if (...) {
			layout_randomized_image(output, &ehdr, phdrs);
				malloc() <- boom
				...
		else
			layout_image(output, &ehdr, phdrs);
		free()

To avoid collisions, there must be a single implementation of malloc().
Adjust include/linux/decompress/mm.h so that visibility can be
controlled, provide prototypes in misc.h, and implement the functions in
misc.c. This also results in a small size savings:

$ size vmlinux.before vmlinux.after
   text    data     bss     dec     hex filename
8842314     468  178320 9021102  89a6ae vmlinux.before
8842240     468  178320 9021028  89a664 vmlinux.after

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211013175742.1197608-4-keescook@chromium.org
2021-10-27 11:07:59 +02:00
Nick Desaulniers a554e740b6 x86/boot/compressed: Enable -Wundef
A discussion around -Wundef showed that there were still a few boolean
Kconfigs where #if was used rather than #ifdef to guard different code.
Kconfig doesn't define boolean configs, which can result in -Wundef
warnings.

arch/x86/boot/compressed/Makefile resets the CFLAGS used for this
directory, and doesn't re-enable -Wundef as the top level Makefile does.
If re-added, with RANDOMIZE_BASE and X86_NEED_RELOCS disabled, the
following warnings are visible.

  arch/x86/boot/compressed/misc.h:82:5: warning: 'CONFIG_RANDOMIZE_BASE'
  is not defined, evaluates to 0 [-Wundef]
      ^
  arch/x86/boot/compressed/misc.c:175:5: warning: 'CONFIG_X86_NEED_RELOCS'
  is not defined, evaluates to 0 [-Wundef]
      ^

Simply fix these and re-enable this warning for this directory.

Suggested-by: Nathan Chancellor <nathan@kernel.org>
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20210422190450.3903999-1-ndesaulniers@google.com
2021-05-12 21:39:56 +02:00
Linus Torvalds 90e66ce9e8 Consolidation and cleanup of the early memory reservations, along with a
couple of gcc11 warning fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmBgACgkQEsHwGGHe
 VUox6xAAus7u9Bpyu4UCr93j4PmkfLf0du7A7mfuxfATFFNTy+lQWq+tuJJsFMSI
 ShbRNKxE1clDtCpWHI9hi9B0GmrMlgjii2YtNfM7pkZYom3aA6IeXDedE3Ot1KwI
 Ox7DsUjgdwwF2O/pYHL4Jg6Vra5daNHYOSlAe7Rk78kcECFlXj77CJYiPtvtkYHD
 JH2tu2vaNcbp11vrWbbx7St4w+vDB37Y3NczatbqXMS4Uiwoyfjzyi4qmf97p92u
 9aDNq+hj+90b/PYUzd9wyCWc0S6TcQo3OYfZq1/hHdS8UE8kq4AY3FFnzFGIKi7k
 IcQDJivkKjXOURD8Btjgbp9dkcbZtiuKS7RcjDuBbmH/q8iBIRYK8GfMxyna0TpE
 VKC9Wdn/LvNPS8t0vyB6fK+vt7uxvBXscRA0GtCva3WWSORdI3bFV9n998ArSVZa
 Itj0GBQXx4zNIjfg4U+aDsqICKmxGZqoKHm8pDVJUDrZi9A1kWxmhivMSQg58+as
 pDKPArtXN2NzN+DCU+UWyFk9qvMSVQh+t3204w4PM0PiHpOyFh7jRXCvzn3ulVJP
 LBm3L/Bj7m7qwfmB0iWOGvhwGFIOG0jUk2abudBn864TFuMqEPRadQUwMNC+ezOT
 1bp5LWh2s71n610I5LPBYF1diwwxwmx5jhfhXjjfejzCcEy/Xp0=
 =PLgK
 -----END PGP SIGNATURE-----

Merge tag 'x86_boot_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 boot updates from Borislav Petkov:
 "Consolidation and cleanup of the early memory reservations, along with
  a couple of gcc11 warning fixes"

* tag 'x86_boot_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/setup: Move trim_snb_memory() later in setup_arch() to fix boot hangs
  x86/setup: Merge several reservations of start of memory
  x86/setup: Consolidate early memory reservations
  x86/boot/compressed: Avoid gcc-11 -Wstringop-overread warning
  x86/boot/tboot: Avoid Wstringop-overread-warning
2021-04-26 09:24:06 -07:00
Arnd Bergmann e14cfb3bdd x86/boot/compressed: Avoid gcc-11 -Wstringop-overread warning
GCC gets confused by the comparison of a pointer to an integer literal,
with the assumption that this is an offset from a NULL pointer and that
dereferencing it is invalid:

  In file included from arch/x86/boot/compressed/misc.c:18:
  In function ‘parse_elf’,
      inlined from ‘extract_kernel’ at arch/x86/boot/compressed/misc.c:442:2:
  arch/x86/boot/compressed/../string.h:15:23: error: ‘__builtin_memcpy’ reading 64 bytes from a region of size 0 [-Werror=stringop-overread]
     15 | #define memcpy(d,s,l) __builtin_memcpy(d,s,l)
        |                       ^~~~~~~~~~~~~~~~~~~~~~~
  arch/x86/boot/compressed/misc.c:283:9: note: in expansion of macro ‘memcpy’
    283 |         memcpy(&ehdr, output, sizeof(ehdr));
        |         ^~~~~~

I could not find any good workaround for this, but as this is only
a warning for a failure during early boot, removing the line entirely
works around the warning.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Sebor <msebor@gmail.com>
Link: https://lore.kernel.org/r/20210322160253.4032422-2-arnd@kernel.org
2021-03-23 00:16:25 +01:00
Joerg Roedel b099155e2d x86/boot/compressed/64: Cleanup exception handling before booting kernel
Disable the exception handling before booting the kernel to make sure
any exceptions that happen during early kernel boot are not directed to
the pre-decompression code.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210312123824.306-2-joro@8bytes.org
2021-03-18 16:44:36 +01:00
Joerg Roedel 597cfe4821 x86/boot/compressed/64: Setup a GHCB-based VC Exception handler
Install an exception handler for #VC exception that uses a GHCB. Also
add the infrastructure for handling different exit-codes by decoding
the instruction that caused the exception and error handling.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-24-joro@8bytes.org
2020-09-07 19:45:25 +02:00
Arvind Sankar 394b19d6cb x86/boot/compressed: Use builtin mem functions for decompressor
Since commits

  c041b5ad86 ("x86, boot: Create a separate string.h file to provide standard string functions")
  fb4cac573e ("x86, boot: Move memcmp() into string.h and string.c")

the decompressor stub has been using the compiler's builtin memcpy,
memset and memcmp functions, _except_ where it would likely have the
largest impact, in the decompression code itself.

Remove the #undef's of memcpy and memset in misc.c so that the
decompressor code also uses the compiler builtins.

The rationale given in the comment doesn't really apply: just because
some functions use the out-of-line version is no reason to not use the
builtin version in the rest.

Replace the comment with an explanation of why memzero and memmove are
being #define'd.

Drop the suggestion to #undef in boot/string.h as well: the out-of-line
versions are not really optimized versions, they're generic code that's
good enough for the preboot environment. The compiler will likely
generate better code for constant-size memcpy/memset/memcmp if it is
allowed to.

Most decompressors' performance is unchanged, with the exception of LZ4
and 64-bit ZSTD.

	Before	After ARCH
LZ4	  73ms	 10ms   32
LZ4	 120ms	 10ms	64
ZSTD	  90ms	 74ms	64

Measurements on QEMU on 2.2GHz Broadwell Xeon, using defconfig kernels.

Decompressor code size has small differences, with the largest being
that 64-bit ZSTD decreases just over 2k. The largest code size increase
was on 64-bit XZ, of about 400 bytes.

Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Suggested-by: Nick Terrell <nickrterrell@gmail.com>
Tested-by: Nick Terrell <nickrterrell@gmail.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-19 11:23:45 -07:00
Nick Terrell fb46d057db x86: Add support for ZSTD compressed kernel
- Add support for zstd compressed kernel

- Define __DISABLE_EXPORTS in Makefile

- Remove __DISABLE_EXPORTS definition from kaslr.c

- Bump the heap size for zstd.

- Update the documentation.

Integrates the ZSTD decompression code to the x86 pre-boot code.

Zstandard requires slightly more memory during the kernel decompression
on x86 (192 KB vs 64 KB), and the memory usage is independent of the
window size.

__DISABLE_EXPORTS is now defined in the Makefile, which covers both
the existing use in kaslr.c, and the use needed by the zstd decompressor
in misc.c.

This patch has been boot tested with both a zstd and gzip compressed
kernel on i386 and x86_64 using buildroot and QEMU.

Additionally, this has been tested in production on x86_64 devices.
We saw a 2 second boot time reduction by switching kernel compression
from xz to zstd.

Signed-off-by: Nick Terrell <terrelln@fb.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20200730190841.2071656-7-nickrterrell@gmail.com
2020-07-31 11:49:09 +02:00
Steve Wahl 1869dbe87c x86/boot/64: Round memory hole size up to next PMD page
The kernel image map is created using PMD pages, which can include
some extra space beyond what's actually needed.  Round the size of the
memory hole we search for up to the next PMD boundary, to be certain
all of the space to be mapped is usable RAM and includes no reserved
areas.

Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: dimitri.sivanich@hpe.com
Cc: Feng Tang <feng.tang@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: mike.travis@hpe.com
Cc: russ.anderson@hpe.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Link: https://lkml.kernel.org/r/df4f49f05c0c27f108234eb93db5c613d09ea62e.1569358539.git.steve.wahl@hpe.com
2019-10-11 18:47:23 +02:00
Zhenzhong Duan 8c5477e804 x86, boot: Remove multiple copy of static function sanitize_boot_params()
Kernel build warns:
 'sanitize_boot_params' defined but not used [-Wunused-function]

at below files:
  arch/x86/boot/compressed/cmdline.c
  arch/x86/boot/compressed/error.c
  arch/x86/boot/compressed/early_serial_console.c
  arch/x86/boot/compressed/acpi.c

That's becausethey each include misc.h which includes a definition of
sanitize_boot_params() via bootparam_utils.h.

Remove the inclusion from misc.h and have the c file including
bootparam_utils.h directly.

Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1563283092-1189-1-git-send-email-zhenzhong.duan@oracle.com
2019-07-18 21:41:57 +02:00
Borislav Petkov 5b51ae969e x86/boot: Call get_rsdp_addr() after console_init()
... so that early debugging output from the RSDP parsing code can be
visible and collected.

Suggested-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chao Fan <fanc.fnst@cn.fujitsu.com>
Cc: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: kexec@lists.infradead.org
Cc: x86@kernel.org
2019-06-06 20:29:27 +02:00
Borislav Petkov 8e44c78404 Revert "x86/boot: Disable RSDP parsing temporarily"
TODO:

- ask dyoung and Dirk van der Merwe <dirk.vandermerwe@netronome.com> to
test again.

This reverts commit 36f0c42355.

Now that the required fixes are in place, reenable early RSDP parsing.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chao Fan <fanc.fnst@cn.fujitsu.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: indou.takao@jp.fujitsu.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: kasong@redhat.com
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: msys.mizuma@gmail.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
2019-06-06 20:29:06 +02:00
Borislav Petkov 36f0c42355 x86/boot: Disable RSDP parsing temporarily
The original intention to move RDSP parsing very early, before KASLR
does its ranges selection, was to accommodate movable memory regions
machines (CONFIG_MEMORY_HOTREMOVE) to still be able to do memory
hotplug.

However, that broke kexec'ing a kernel on EFI machines because depending
on where the EFI systab was mapped, on at least one machine it isn't
present in the kexec mapping of the second kernel, leading to a triple
fault in the early code.

Fixing this properly requires significantly involved surgery and we
cannot allow ourselves to do that, that close to the merge window.

So disable the RSDP parsing code temporarily until it is fixed properly
in the next release cycle.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chao Fan <fanc.fnst@cn.fujitsu.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: indou.takao@jp.fujitsu.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: kasong@redhat.com
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: msys.mizuma@gmail.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190419141952.GE10324@zn.tnic
2019-04-22 11:36:43 +02:00
Chao Fan 3a63f70bf4 x86/boot: Early parse RSDP and save it in boot_params
The RSDP is needed by KASLR so parse it early and save it in
boot_params.acpi_rsdp_addr, before KASLR setup runs.

RSDP is needed by other kernel facilities so have the parsing code
built-in instead of a long "depends on" line in Kconfig.

 [ bp:
    - Trim commit message and comments
    - Add CONFIG_ACPI dependency in the Makefile
    - Move ->acpi_rsdp_addr assignment with the rest of boot_params massaging in extract_kernel().
 ]

Signed-off-by: Chao Fan <fanc.fnst@cn.fujitsu.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: bhe@redhat.com
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: indou.takao@jp.fujitsu.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: kasong@redhat.com
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: msys.mizuma@gmail.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190123110850.12433-6-fanc.fnst@cn.fujitsu.com
2019-02-01 11:52:55 +01:00
Ingo Molnar 0bc91d4ba7 Linux 4.16-rc7
-----BEGIN PGP SIGNATURE-----
 
 iQEcBAABAgAGBQJauCZfAAoJEHm+PkMAQRiGWGUH/2rhdQDkoJpYWnjaQkolECG8
 MxpGE7nmIIHxQcbSDdHTGJ8IhVm6Z5wZ7ym/PwCDTT043Y1y341sJrIwL2/nTG6d
 HVidk8hFvgN6QzlzVAHT3ZZMII/V9Zt+VV5SUYLGnPAVuJNHo/6uzWlTU5g+NTFo
 IquFDdQUaGBlkKqby+NoAFnkV1UAIkW0g22cfvPnlO5GMer0gusGyVNvVp7TNj3C
 sqj4Hvt3RMDLMNe9RZ2pFTiOD096n8FWpYftZneUTxFImhRV3Jg5MaaYZm9SI3HW
 tXrv/LChT/F1mi5Pkx6tkT5Hr8WvcrwDMJ4It1kom10RqWAgjxIR3CMm448ileY=
 =YKUG
 -----END PGP SIGNATURE-----

Merge tag 'v4.16-rc7' into x86/mm, to fix up conflict

 Conflicts:
	arch/x86/mm/init_64.c

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-27 08:43:39 +02:00
H.J. Lu c55b8550fa x86/boot/64: Verify alignment of the LOAD segment
Since the x86-64 kernel must be aligned to 2MB, refuse to boot the
kernel if the alignment of the LOAD segment isn't a multiple of 2MB.

Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/CAMe9rOrR7xSJgUfiCoZLuqWUwymRxXPoGBW38%2BpN%3D9g%2ByKNhZw@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-20 08:03:03 +01:00
Kirill A. Shutemov 3548e131ec x86/boot/compressed/64: Find a place for 32-bit trampoline
If a bootloader enables 64-bit mode with 4-level paging, we might need to
switch over to 5-level paging. The switching requires the disabling of
paging, which works fine if kernel itself is loaded below 4G.

But if the bootloader puts the kernel above 4G (not sure if anybody does
this), we would lose control as soon as paging is disabled, because the
code becomes unreachable to the CPU.

To handle the situation, we need a trampoline in lower memory that would
take care of switching on 5-level paging.

This patch finds a spot in low memory for a trampoline.

The heuristic is based on code in reserve_bios_regions().

We find the end of low memory based on BIOS and EBDA start addresses.
The trampoline is put just before end of low memory. It's mimic approach
taken to allocate memory for realtime trampoline.

Tested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180226180451.86788-3-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-12 09:37:23 +01:00
Kirill A. Shutemov 6657fca06e x86/mm: Allow to boot without LA57 if CONFIG_X86_5LEVEL=y
All pieces of the puzzle are in place and we can now allow to boot with
CONFIG_X86_5LEVEL=y on a machine without LA57 support.

Kernel will detect that LA57 is missing and fold p4d at runtime.

Update the documentation and the Kconfig option description to reflect the
change.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180214182542.69302-10-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-16 10:48:49 +01:00
Kirill A. Shutemov 6d7e0ba2d2 x86/boot/compressed/64: Print error if 5-level paging is not supported
If the machine does not support the paging mode for which the kernel was
compiled, the boot process cannot continue.

It's not possible to let the kernel detect the mismatch as it does not even
reach the point where cpu features can be evaluted due to a triple fault in
the KASLR setup.

Instead of instantaneous silent reboot, emit an error message which gives
the user the information why the boot fails.

Fixes: 77ef56e4f0 ("x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y")
Reported-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: stable@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: linux-mm@kvack.org
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20171204124059.63515-3-kirill.shutemov@linux.intel.com
2017-12-07 10:36:26 +01:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Jan H. Schönherr fb1cc2f916 x86/boot: Prevent faulty bootparams.screeninfo from causing harm
If a zero for the number of lines manages to slip through, scroll()
may underflow some offset calculations, causing accesses outside the
video memory.

Make the check in __putstr() more pessimistic to prevent that.

Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1503858223-14983-1-git-send-email-jschoenh@amazon.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-29 13:32:50 +02:00
Daniel Micay 6974f0c455 include/linux/string.h: add the option of fortified string.h functions
This adds support for compiling with a rough equivalent to the glibc
_FORTIFY_SOURCE=1 feature, providing compile-time and runtime buffer
overflow checks for string.h functions when the compiler determines the
size of the source or destination buffer at compile-time.  Unlike glibc,
it covers buffer reads in addition to writes.

GNU C __builtin_*_chk intrinsics are avoided because they would force a
much more complex implementation.  They aren't designed to detect read
overflows and offer no real benefit when using an implementation based
on inline checks.  Inline checks don't add up to much code size and
allow full use of the regular string intrinsics while avoiding the need
for a bunch of _chk functions and per-arch assembly to avoid wrapper
overhead.

This detects various overflows at compile-time in various drivers and
some non-x86 core kernel code.  There will likely be issues caught in
regular use at runtime too.

Future improvements left out of initial implementation for simplicity,
as it's all quite optional and can be done incrementally:

* Some of the fortified string functions (strncpy, strcat), don't yet
  place a limit on reads from the source based on __builtin_object_size of
  the source buffer.

* Extending coverage to more string functions like strlcat.

* It should be possible to optionally use __builtin_object_size(x, 1) for
  some functions (C strings) to detect intra-object overflows (like
  glibc's _FORTIFY_SOURCE=2), but for now this takes the conservative
  approach to avoid likely compatibility issues.

* The compile-time checks should be made available via a separate config
  option which can be enabled by default (or always enabled) once enough
  time has passed to get the issues it catches fixed.

Kees said:
 "This is great to have. While it was out-of-tree code, it would have
  blocked at least CVE-2016-3858 from being exploitable (improper size
  argument to strlcpy()). I've sent a number of fixes for
  out-of-bounds-reads that this detected upstream already"

[arnd@arndb.de: x86: fix fortified memcpy]
  Link: http://lkml.kernel.org/r/20170627150047.660360-1-arnd@arndb.de
[keescook@chromium.org: avoid panic() in favor of BUG()]
  Link: http://lkml.kernel.org/r/20170626235122.GA25261@beast
[keescook@chromium.org: move from -mm, add ARCH_HAS_FORTIFY_SOURCE, tweak Kconfig help]
Link: http://lkml.kernel.org/r/20170526095404.20439-1-danielmicay@gmail.com
Link: http://lkml.kernel.org/r/1497903987-21002-8-git-send-email-keescook@chromium.org
Signed-off-by: Daniel Micay <danielmicay@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Daniel Axtens <dja@axtens.net>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:03 -07:00
Baoquan He 8eabf42ae5 x86/boot/KASLR: Fix kexec crash due to 'virt_addr' calculation bug
Kernel text KASLR is separated into physical address and virtual
address randomization. And for virtual address randomization, we
only randomiza to get an offset between 16M and KERNEL_IMAGE_SIZE.
So the initial value of 'virt_addr' should be LOAD_PHYSICAL_ADDR,
but not the original kernel loading address 'output'.

The bug will cause kernel boot failure if kernel is loaded at a different
position than the address, 16M, which is decided at compiled time.
Kexec/kdump is such practical case.

To fix it, just assign LOAD_PHYSICAL_ADDR to virt_addr as initial
value.

Tested-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 8391c73 ("x86/KASLR: Randomize virtual address separately")
Link: http://lkml.kernel.org/r/1498567146-11990-3-git-send-email-bhe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-30 08:53:14 +02:00
Baoquan He b892cb873c x86/boot/KASLR: Add checking for the offset of kernel virtual address randomization
For kernel text KASLR, the virtual address is confined to area of 1G,
[0xffffffff80000000, 0xffffffffc0000000). For the implemenataion of
virtual address randomization, we only randomize to get an offset
between 16M and 1G, then add this offset to the starting address,
0xffffffff80000000. Here 16M is the offset which is decided at linking
stage. So the amount of the local variable 'virt_addr' which respresents
the offset plus the kernel output size can not exceed KERNEL_IMAGE_SIZE.

Add a debug check for the offset. If out of bounds, print error
message and hang there.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1498567146-11990-2-git-send-email-bhe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-30 08:53:14 +02:00
Baoquan He 8391c73c96 x86/KASLR: Randomize virtual address separately
The current KASLR implementation randomizes the physical and virtual
addresses of the kernel together (both are offset by the same amount). It
calculates the delta of the physical address where vmlinux was linked
to load and where it is finally loaded. If the delta is not equal to 0
(i.e. the kernel was relocated), relocation handling needs be done.

On 64-bit, this patch randomizes both the physical address where kernel
is decompressed and the virtual address where kernel text is mapped and
will execute from. We now have two values being chosen, so the function
arguments are reorganized to pass by pointer so they can be directly
updated. Since relocation handling only depends on the virtual address,
we must check the virtual delta, not the physical delta for processing
kernel relocations. This also populates the page table for the new
virtual address range. 32-bit does not support a separate virtual address,
so it continues to use the physical offset for its virtual offset.

Additionally updates the sanity checks done on the resulting kernel
addresses since they are potentially separate now.

[kees: rewrote changelog, limited virtual split to 64-bit only, update checks]
[kees: fix CONFIG_RANDOMIZE_BASE=n boot failure]
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1464216334-17200-4-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-26 12:32:04 +02:00
Borislav Petkov 549f90db68 x86/boot: Simplify pointer casting in choose_random_location()
Pass them down as 'unsigned long' directly and get rid of more casting and
assignments.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: bhe@redhat.com
Cc: dyoung@redhat.com
Cc: linux-tip-commits@vger.kernel.org
Cc: luto@kernel.org
Cc: vgoyal@redhat.com
Cc: yinghai@kernel.org
Link: http://lkml.kernel.org/r/20160506115015.GI24044@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-07 07:38:38 +02:00
Kees Cook dc425a6e14 x86/boot: Extract error reporting functions
Currently to use warn(), a caller would need to include misc.h. However,
this means they would get the (unavailable during compressed boot)
gcc built-in memcpy family of functions. But since string.c is defining
these memcpy functions for use by misc.c, we end up in a weird circular
dependency.

To break this loop, move the error reporting functions outside of misc.c
with their own header so that they can be independently included by
other sources. Since the screen-writing routines use memmove(), keep the
low-level *_putstr() functions in misc.c.

Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Lasse Collin <lasse.collin@tukaani.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1462229461-3370-2-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-03 08:15:58 +02:00
Yinghai Lu 4abf061bf8 x86/boot: Correctly bounds-check relocations
Relocation handling performs bounds checking on the resulting calculated
addresses. The existing code uses output_len (VO size plus relocs size) as
the max address. This is not right since the max_addr check should stop at
the end of VO and exclude bss, brk, etc, which follows.  The valid range
should be VO [_text, __bss_start] in the loaded physical address space.

This patch adds an export for __bss_start in voffset.h and uses it to
set the correct limit for max_addr.

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
[ Rewrote the changelog. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: lasse.collin@tukaani.org
Link: http://lkml.kernel.org/r/1461888548-32439-7-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-29 11:03:30 +02:00
Yinghai Lu 4d2d542482 x86/KASLR: Clean up unused code from old 'run_size' and rename it to 'kernel_total_size'
Since 'run_size' is now calculated in misc.c, the old script and associated
argument passing is no longer needed. This patch removes them, and renames
'run_size' to the more descriptive 'kernel_total_size'.

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Baoquan He <bhe@redhat.com>
[ Rewrote the changelog, renamed 'run_size' to 'kernel_total_size' ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Junjie Mao <eternal.n08@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: lasse.collin@tukaani.org
Link: http://lkml.kernel.org/r/1461888548-32439-6-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-29 11:03:30 +02:00
Yinghai Lu 67b6662559 x86/boot: Fix "run_size" calculation
Currently, the "run_size" variable holds the total kernel size
(size of code plus brk and bss) and is calculated via the shell script
arch/x86/tools/calc_run_size.sh. It gets the file offset and mem size
of the .bss and .brk sections from the vmlinux, and adds them as follows:

  run_size = $(( $offsetA + $sizeA + $sizeB ))

However, this is not correct (it is too large). To illustrate, here's
a walk-through of the script's calculation, compared to the correct way
to find it.

First, offsetA is found as the starting address of the first .bss or
.brk section seen in the ELF file. The sizeA and sizeB values are the
respective section sizes.

 [bhe@x1 linux]$ objdump -h vmlinux

 vmlinux:     file format elf64-x86-64

 Sections:
 Idx Name    Size      VMA               LMA               File off  Algn
  27 .bss    00170000  ffffffff81ec8000  0000000001ec8000  012c8000  2**12
             ALLOC
  28 .brk    00027000  ffffffff82038000  0000000002038000  012c8000  2**0
             ALLOC

Here, offsetA is 0x012c8000, with sizeA at 0x00170000 and sizeB at
0x00027000. The resulting run_size is 0x145f000:

 0x012c8000 + 0x00170000 + 0x00027000 = 0x145f000

However, if we instead examine the ELF LOAD program headers, we see a
different picture.

 [bhe@x1 linux]$ readelf -l vmlinux

 Elf file type is EXEC (Executable file)
 Entry point 0x1000000
 There are 5 program headers, starting at offset 64

 Program Headers:
  Type        Offset             VirtAddr           PhysAddr
              FileSiz            MemSiz              Flags  Align
  LOAD        0x0000000000200000 0xffffffff81000000 0x0000000001000000
              0x0000000000b5e000 0x0000000000b5e000  R E    200000
  LOAD        0x0000000000e00000 0xffffffff81c00000 0x0000000001c00000
              0x0000000000145000 0x0000000000145000  RW     200000
  LOAD        0x0000000001000000 0x0000000000000000 0x0000000001d45000
              0x0000000000018158 0x0000000000018158  RW     200000
  LOAD        0x000000000115e000 0xffffffff81d5e000 0x0000000001d5e000
              0x000000000016a000 0x0000000000301000  RWE    200000
  NOTE        0x000000000099bcac 0xffffffff8179bcac 0x000000000179bcac
              0x00000000000001bc 0x00000000000001bc         4

 Section to Segment mapping:
  Segment Sections...
   00     .text .notes __ex_table .rodata __bug_table .pci_fixup .tracedata
          __ksymtab __ksymtab_gpl __ksymtab_strings __init_rodata __param
          __modver
   01     .data .vvar
   02     .data..percpu
   03     .init.text .init.data .x86_cpu_dev.init .parainstructions
          .altinstructions .altinstr_replacement .iommu_table .apicdrivers
          .exit.text .smp_locks .bss .brk
   04     .notes

As mentioned, run_size needs to be the size of the running kernel
including .bss and .brk. We can see from the Section/Segment mapping
above that .bss and .brk are included in segment 03 (which corresponds
to the final LOAD program header). To find the run_size, we calculate
the end of the LOAD segment from its PhysAddr start (0x0000000001d5e000)
and its MemSiz (0x0000000000301000), minus the physical load address of
the kernel (the first LOAD segment's PhysAddr: 0x0000000001000000). The
resulting run_size is 0x105f000:

 0x0000000001d5e000 + 0x0000000000301000 - 0x0000000001000000 = 0x105f000

So, from this we can see that the existing run_size calculation is
0x400000 too high. And, as it turns out, the correct run_size is
actually equal to VO_end - VO_text, which is certainly easier to calculate.
_end: 0xffffffff8205f000
_text:0xffffffff81000000

 0xffffffff8205f000 - 0xffffffff81000000 = 0x105f000

As a result, run_size is a simple constant, so we don't need to pass it
around; we already have voffset.h for such things. We can share voffset.h
between misc.c and header.S instead of getting run_size in other ways.
This patch moves voffset.h creation code to boot/compressed/Makefile,
and switches misc.c to use the VO_end - VO_text calculation for run_size.

Dependence before:

 boot/header.S ==> boot/voffset.h ==> vmlinux
 boot/header.S ==> compressed/vmlinux ==> compressed/misc.c

Dependence after:

 boot/header.S ==> compressed/vmlinux ==> compressed/misc.c ==> boot/voffset.h ==> vmlinux

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Baoquan He <bhe@redhat.com>
[ Rewrote the changelog. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Junjie Mao <eternal.n08@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: lasse.collin@tukaani.org
Fixes: e6023367d7 ("x86, kaslr: Prevent .bss from overlaping initrd")
Link: http://lkml.kernel.org/r/1461888548-32439-5-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-29 11:03:30 +02:00
Yinghai Lu 974f221c84 x86/boot: Move compressed kernel to the end of the decompression buffer
This change makes later calculations about where the kernel is located
easier to reason about. To better understand this change, we must first
clarify what 'VO' and 'ZO' are. These values were introduced in commits
by hpa:

  77d1a49995 ("x86, boot: make symbols from the main vmlinux available")
  37ba7ab5e3 ("x86, boot: make kernel_alignment adjustable; new bzImage fields")

Specifically:

All names prefixed with 'VO_':

 - relate to the uncompressed kernel image

 - the size of the VO image is: VO__end-VO__text ("VO_INIT_SIZE" define)

All names prefixed with 'ZO_':

 - relate to the bootable compressed kernel image (boot/compressed/vmlinux),
   which is composed of the following memory areas:
     - head text
     - compressed kernel (VO image and relocs table)
     - decompressor code

 - the size of the ZO image is: ZO__end - ZO_startup_32 ("ZO_INIT_SIZE" define, though see below)

The 'INIT_SIZE' value is used to find the larger of the two image sizes:

 #define ZO_INIT_SIZE    (ZO__end - ZO_startup_32 + ZO_z_extract_offset)
 #define VO_INIT_SIZE    (VO__end - VO__text)

 #if ZO_INIT_SIZE > VO_INIT_SIZE
 # define INIT_SIZE ZO_INIT_SIZE
 #else
 # define INIT_SIZE VO_INIT_SIZE
 #endif

The current code uses extract_offset to decide where to position the
copied ZO (i.e. ZO starts at extract_offset). (This is why ZO_INIT_SIZE
currently includes the extract_offset.)

Why does z_extract_offset exist? It's needed because we are trying to minimize
the amount of RAM used for the whole act of creating an uncompressed, executable,
properly relocation-linked kernel image in system memory. We do this so that
kernels can be booted on even very small systems.

To achieve the goal of minimal memory consumption we have implemented an in-place
decompression strategy: instead of cleanly separating the VO and ZO images and
also allocating some memory for the decompression code's runtime needs, we instead
create this elaborate layout of memory buffers where the output (decompressed)
stream, as it progresses, overlaps with and destroys the input (compressed)
stream. This can only be done safely if the ZO image is placed to the end of the
VO range, plus a certain amount of safety distance to make sure that when the last
bytes of the VO range are decompressed, the compressed stream pointer is safely
beyond the end of the VO range.

z_extract_offset is calculated in arch/x86/boot/compressed/mkpiggy.c during
the build process, at a point when we know the exact compressed and
uncompressed size of the kernel images and can calculate this safe minimum
offset value. (Note that the mkpiggy.c calculation is not perfect, because
we don't know the decompressor used at that stage, so the z_extract_offset
calculation is necessarily imprecise and is mostly based on gzip internals -
we'll improve that in the next patch.)

When INIT_SIZE is bigger than VO_INIT_SIZE (uncommon but possible),
the copied ZO occupies the memory from extract_offset to the end of
decompression buffer. It overlaps with the soon-to-be-uncompressed kernel
like this:

                            |-----compressed kernel image------|
                            V                                  V
0                       extract_offset                      +INIT_SIZE
|-----------|---------------|-------------------------|--------|
            |               |                         |        |
          VO__text      startup_32 of ZO          VO__end    ZO__end
            ^                                         ^
            |-------uncompressed kernel image---------|

When INIT_SIZE is equal to VO_INIT_SIZE (likely) there's still space
left from end of ZO to the end of decompressing buffer, like below.

                            |-compressed kernel image-|
                            V                         V
0                       extract_offset                      +INIT_SIZE
|-----------|---------------|-------------------------|--------|
            |               |                         |        |
          VO__text      startup_32 of ZO          ZO__end    VO__end
            ^                                                  ^
            |------------uncompressed kernel image-------------|

To simplify calculations and avoid special cases, it is cleaner to
always place the compressed kernel image in memory so that ZO__end
is at the end of the decompression buffer, instead of placing t at
the start of extract_offset as is currently done.

This patch adds BP_init_size (which is the INIT_SIZE as passed in from
the boot_params) into asm-offsets.c to make it visible to the assembly
code.

Then when moving the ZO, it calculates the starting position of
the copied ZO (via BP_init_size and the ZO run size) so that the VO__end
will be at the end of the decompression buffer. To make the position
calculation safe, the end of ZO is page aligned (and a comment is added
to the existing VO alignment for good measure).

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
[ Rewrote changelog and comments. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: lasse.collin@tukaani.org
Link: http://lkml.kernel.org/r/1461888548-32439-3-git-send-email-keescook@chromium.org
[ Rewrote the changelog some more. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-29 11:03:29 +02:00
Baoquan He 6f9af75faa x86/KASLR: Handle kernel relocations above 2G correctly
When processing the relocation table, the offset used to calculate the
relocation is an 'int'. This is sufficient for calculating the physical
address of the relocs entry on 32-bit systems and on 64-bit systems when
the relocation is under 2G.

To handle relocations above 2G (seen in situations like kexec, netboot, etc),
this offset needs to be calculated using a 'long' to avoid wrapping and
miscalculating the relocation.

Signed-off-by: Baoquan He <bhe@redhat.com>
[ Rewrote the changelog. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: lasse.collin@tukaani.org
Link: http://lkml.kernel.org/r/1461888548-32439-2-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-29 09:58:26 +02:00
Kees Cook 81b785f3e4 x86/boot: Rename overlapping memcpy() to memmove()
Instead of having non-standard memcpy() behavior, explicitly call the new
function memmove(), make it available to the decompressors, and switch
the two overlap cases (screen scrolling and ELF parsing) to use memmove().
Additionally documents the purpose of compressed/string.c.

Suggested-by: Lasse Collin <lasse.collin@tukaani.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20160426214606.GA5758@www.outflux.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-28 11:02:29 +02:00
Kees Cook 0f8ede1b8c x86/KASLR: Warn when KASLR is disabled
If KASLR is built in but not available at run-time (either due to the
current conflict with hibernation, command-line request, or e820 parsing
failures), announce the state explicitly. To support this, a new "warn"
function is created, based on the existing "error" function.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1461185746-8017-6-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-22 10:00:51 +02:00
Kees Cook bf0118dbba x86/boot: Make memcpy() handle overlaps
Two uses of memcpy() (screen scrolling and ELF parsing) were handling
overlapping memory areas. While there were no explicitly noticed bugs
here (yet), it is best to fix this so that the copying will always be
safe.

Instead of making a new memmove() function that might collide with other
memmove() definitions in the decompressors, this just makes the compressed
boot code's copy of memcpy() overlap-safe.

Suggested-by: Lasse Collin <lasse.collin@tukaani.org>
Reported-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1461185746-8017-5-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-22 10:00:50 +02:00
Kees Cook 1f208de37d x86/boot: Clean up things used by decompressors
This rearranges the pieces needed to include the decompressor code
in misc.c. It wasn't obvious why things were there, so a comment was
added and definitions consolidated.

Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1461185746-8017-4-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-22 10:00:50 +02:00
Baoquan He 4252db1055 x86/KASLR: Update description for decompressor worst case size
The comment that describes the analysis for the size of the decompressor
code only took gzip into account (there are currently 6 other decompressors
that could be used). The actual z_extract_offset calculation in code was
already handling the correct maximum size, but this documentation hadn't
been updated. This updates the documentation, fixes several typos, moves
the comment to header.S, updates references, and adds a note at the end
of the decompressor include list to remind us about updating the comment
in the future.

(Instead of moving the comment to mkpiggy.c, where the calculation
is currently happening, it is being moved to header.S because
the calculations in mkpiggy.c will be removed in favor of header.S
calculations in a following patch, and it seemed like overkill to move
the giant comment twice, especially when there's already reference to
z_extract_offset in header.S.)

Signed-off-by: Baoquan He <bhe@redhat.com>
[ Rewrote changelog, cleaned up comment style, moved comments around. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1461185746-8017-2-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-22 10:00:50 +02:00
Kees Cook 7de828dfe6 x86/KASLR: Clarify purpose of kaslr.c
The name "choose_kernel_location" isn't specific enough, and doesn't
describe the primary thing it does: choosing a random location. This
patch renames it to "choose_random_location", and clarifies the what
routines are contained in the kaslr.c source file.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1460997735-24785-6-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-19 10:30:51 +02:00