Commit graph

9035 commits

Author SHA1 Message Date
Nikolay Borisov
43c69849ae btrfs: make get_extent_allocation_hint take btrfs_inode
It doesn't use the vfs inode for anything, can just as easily take
btrfs_inode.  Follow up patches will convert callers as well.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:25 +02:00
Nikolay Borisov
da69fea9f7 btrfs: make __btrfs_add_ordered_extent take struct btrfs_inode
This is internal btrfs function what really needs the vfs_inode only for
igrab and a tracepoint.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:25 +02:00
Filipe Manana
3ef64143a7 btrfs: remove no longer used trans_list member of struct btrfs_ordered_extent
The 'trans_list' member of an ordered extent was used to keep track of the
ordered extents for which a transaction commit had to wait. These were
ordered extents that were started and logged by an fsync. However we don't
do that anymore and before we stopped doing it we changed the approach to
wait for the ordered extents in commit 161c3549b4 ("Btrfs: change how
we wait for pending ordered extents"), which stopped using that list and
therefore the 'trans_list' member is not used anymore since that commit.
So just remove it since it's doing nothing and making each ordered extent
structure waste memory (2 pointers).

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:25 +02:00
Filipe Manana
cd8d39f4ae btrfs: remove no longer used log_list member of struct btrfs_ordered_extent
The 'log_list' member of an ordered extent was used keep track of which
ordered extents we needed to wait after logging metadata, but is not used
anymore since commit 5636cf7d6d ("btrfs: remove the logged extents
infrastructure"), as we now always wait on ordered extent completion
before logging metadata. So just remove it since it's doing nothing and
making each ordered extent structure waste more memory (2 pointers).

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:25 +02:00
David Sterba
ce6ef5abe6 btrfs: add little-endian optimized key helpers
The CPU and on-disk keys are mapped to two different structures because
of the endianness. There's an intermediate buffer used to do the
conversion, but this is not necessary when CPU and on-disk endianness
match.

Add optimized versions of helpers that take disk_key and use the buffer
directly for CPU keys or drop the intermediate buffer and conversion.

This saves a lot of stack space accross many functions and removes about
6K of generated binary code:

   text    data     bss     dec     hex filename
1090439   17468   14912 1122819  112203 pre/btrfs.ko
1084613   17456   14912 1116981  110b35 post/btrfs.ko

Delta: -5826

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:24 +02:00
Qu Wenruo
5958253cf6 btrfs: qgroup: catch reserved space leaks at unmount time
Before this patch, qgroup completely relies on per-inode extent io tree
to detect reserved data space leak.

However previous bug has already shown how release page before
btrfs_finish_ordered_io() could lead to leak, and since it's
QGROUP_RESERVED bit cleared without triggering qgroup rsv, it can't be
detected by per-inode extent io tree.

So this patch adds another (and hopefully the final) safety net to catch
qgroup data reserved space leak.  At least the new safety net catches
all the leaks during development, so it should be pretty useful in the
real world.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:24 +02:00
Qu Wenruo
7dbeaad0af btrfs: change timing for qgroup reserved space for ordered extents to fix reserved space leak
[BUG]
The following simple workload from fsstress can lead to qgroup reserved
data space leak:
  0/0: creat f0 x:0 0 0
  0/0: creat add id=0,parent=-1
  0/1: write f0[259 1 0 0 0 0] [600030,27288] 0
  0/4: dwrite - xfsctl(XFS_IOC_DIOINFO) f0[259 1 0 0 64 627318] return 25, fallback to stat()
  0/4: dwrite f0[259 1 0 0 64 627318] [610304,106496] 0

This would cause btrfs qgroup to leak 20480 bytes for data reserved
space.  If btrfs qgroup limit is enabled, such leak can lead to
unexpected early EDQUOT and unusable space.

[CAUSE]
When doing direct IO, kernel will try to writeback existing buffered
page cache, then invalidate them:
  generic_file_direct_write()
  |- filemap_write_and_wait_range();
  |- invalidate_inode_pages2_range();

However for btrfs, the bi_end_io hook doesn't finish all its heavy work
right after bio ends.  In fact, it delays its work further:

  submit_extent_page(end_io_func=end_bio_extent_writepage);
  end_bio_extent_writepage()
  |- btrfs_writepage_endio_finish_ordered()
     |- btrfs_init_work(finish_ordered_fn);

  <<< Work queue execution >>>
  finish_ordered_fn()
  |- btrfs_finish_ordered_io();
     |- Clear qgroup bits

This means, when filemap_write_and_wait_range() returns,
btrfs_finish_ordered_io() is not guaranteed to be executed, thus the
qgroup bits for related range are not cleared.

Now into how the leak happens, this will only focus on the overlapping
part of buffered and direct IO part.

1. After buffered write
   The inode had the following range with QGROUP_RESERVED bit:
   	596		616K
	|///////////////|
   Qgroup reserved data space: 20K

2. Writeback part for range [596K, 616K)
   Write back finished, but btrfs_finish_ordered_io() not get called
   yet.
   So we still have:
   	596K		616K
	|///////////////|
   Qgroup reserved data space: 20K

3. Pages for range [596K, 616K) get released
   This will clear all qgroup bits, but don't update the reserved data
   space.
   So we have:
   	596K		616K
	|		|
   Qgroup reserved data space: 20K
   That number doesn't match the qgroup bit range anymore.

4. Dio prepare space for range [596K, 700K)
   Qgroup reserved data space for that range, we got:
   	596K		616K			700K
	|///////////////|///////////////////////|
   Qgroup reserved data space: 20K + 104K = 124K

5. btrfs_finish_ordered_range() gets executed for range [596K, 616K)
   Qgroup free reserved space for that range, we got:
   	596K		616K			700K
	|		|///////////////////////|
   We need to free that range of reserved space.
   Qgroup reserved data space: 124K - 20K = 104K

6. btrfs_finish_ordered_range() gets executed for range [596K, 700K)
   However qgroup bit for range [596K, 616K) is already cleared in
   previous step, so we only free 84K for qgroup reserved space.
   	596K		616K			700K
	|		|			|
   We need to free that range of reserved space.
   Qgroup reserved data space: 104K - 84K = 20K

   Now there is no way to release that 20K unless disabling qgroup or
   unmounting the fs.

[FIX]
This patch will change the timing of btrfs_qgroup_release/free_data()
call.  Here it uses buffered COW write as an example.

	The new timing			|	The old timing
----------------------------------------+---------------------------------------
 btrfs_buffered_write()			| btrfs_buffered_write()
 |- btrfs_qgroup_reserve_data() 	| |- btrfs_qgroup_reserve_data()
					|
 btrfs_run_delalloc_range()		| btrfs_run_delalloc_range()
 |- btrfs_add_ordered_extent()  	|
    |- btrfs_qgroup_release_data()	|
       The reserved is passed into	|
       btrfs_ordered_extent structure	|
					|
 btrfs_finish_ordered_io()		| btrfs_finish_ordered_io()
 |- The reserved space is passed to 	| |- btrfs_qgroup_release_data()
    btrfs_qgroup_record			|    The resereved space is passed
					|    to btrfs_qgroup_recrod
					|
 btrfs_qgroup_account_extents()		| btrfs_qgroup_account_extents()
 |- btrfs_qgroup_free_refroot()		| |- btrfs_qgroup_free_refroot()

The point of such change is to ensure, when ordered extents are
submitted, the qgroup reserved space is already released, to keep the
timing aligned with file_write_and_wait_range().

So that qgroup data reserved space is all bound to btrfs_ordered_extent
and solve the timing mismatch.

Fixes: f695fdcef8 ("btrfs: qgroup: Introduce functions to release/free qgroup reserve data space")
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:24 +02:00
Qu Wenruo
a7f8b1c2ac btrfs: file: reserve qgroup space after the hole punch range is locked
The incoming qgroup reserved space timing will move the data reservation
to ordered extent completely.

However in btrfs_punch_hole_lock_range() will call
btrfs_invalidate_page(), which will clear QGROUP_RESERVED bit for the
range.

In current stage it's OK, but if we're making ordered extents handle the
reserved space, then btrfs_punch_hole_lock_range() can clear the
QGROUP_RESERVED bit before we submit ordered extent, leading to qgroup
reserved space leakage.

So here change the timing to make reserve data space after
btrfs_punch_hole_lock_range().
The new timing is fine for either current code or the new code.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:24 +02:00
Qu Wenruo
9729f10a60 btrfs: inode: move qgroup reserved space release to the callers of insert_reserved_file_extent()
This is to prepare for the incoming timing change of qgroup reserved
data space and ordered extent.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:24 +02:00
Qu Wenruo
203f44c519 btrfs: inode: refactor the parameters of insert_reserved_file_extent()
Function insert_reserved_file_extent() takes a long list of parameters,
which are all for btrfs_file_extent_item, even including two reserved
members, encryption and other_encoding.

This makes the parameter list unnecessary long for a function which only
gets called twice.

This patch will refactor the parameter list, by using
btrfs_file_extent_item as parameter directly to hugely reduce the number
of parameters.

Also, since there are only two callers, one in btrfs_finish_ordered_io()
which inserts file extent for ordered extent, and one
__btrfs_prealloc_file_range().

These two call sites have completely different context, where ordered
extent can be compressed, but will always be regular extent, while the
preallocated one is never going to be compressed and always has PREALLOC
type.

So use two small wrapper for these two different call sites to improve
readability.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:23 +02:00
David Sterba
100aa5d9f9 btrfs: scrub: clean up temporary page variables in scrub_checksum_tree_block
Add proper variable for the scrub page and use it instead of repeatedly
dereferencing the other structures.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:23 +02:00
David Sterba
521e102227 btrfs: scrub: simplify tree block checksum calculation
Use a simpler iteration over tree block pages, same what csum_tree_block
does: first page always exists, loop over the rest.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:23 +02:00
David Sterba
d41ebef200 btrfs: scrub: clean up temporary page variables in scrub_checksum_data
Add proper variable for the scrub page and use it instead of repeatedly
dereferencing the other structures.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:23 +02:00
David Sterba
771aba0d12 btrfs: scrub: simplify data block checksum calculation
We have sectorsize same as PAGE_SIZE, the checksum can be calculated in
one go.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:23 +02:00
David Sterba
c746054109 btrfs: scrub: clean up temporary page variables in scrub_checksum_super
Add proper variable for the scrub page and use it instead of repeatedly
dereferencing the other structures.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:23 +02:00
David Sterba
74710cf1fb btrfs: scrub: remove temporary csum array in scrub_checksum_super
The page contents with the checksum is available during the entire
function so we don't need to make a copy.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:22 +02:00
David Sterba
83cf6d5eae btrfs: scrub: simplify superblock checksum calculation
BTRFS_SUPER_INFO_SIZE is 4096, and fits to a page on all supported
architectures, so we can calculate the checksum in one go.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:22 +02:00
David Sterba
b04852520e btrfs: scrub: unify naming of page address variables
As the page mapping has been removed, rename the variables to 'kaddr'
that we use everywhere else. The type is changed to 'char *' so pointer
arithmetic works without casts.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:22 +02:00
David Sterba
a8b3a89074 btrfs: scrub: remove kmap/kunmap of pages
All pages that scrub uses in the scrub_block::pagev array are allocated
with GFP_KERNEL and never part of any mapping, so kmap is not necessary,
we only need to know the page address.

In scrub_write_page_to_dev_replace we don't even need to call
flush_dcache_page because of the same reason as above.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:22 +02:00
Qu Wenruo
74ef00185e btrfs: introduce "rescue=" mount option
This patch introduces a new "rescue=" mount option group for all mount
options for data recovery.

Different rescue sub options are seperated by ':'. E.g
"ro,rescue=nologreplay:usebackuproot".

The original plan was to use ';', but ';' needs to be escaped/quoted,
or it will be interpreted by bash, similar to '|'.

And obviously, user can specify rescue options one by one like:
"ro,rescue=nologreplay,rescue=usebackuproot".

The following mount options are converted to "rescue=", old mount
options are deprecated but still available for compatibility purpose:

- usebackuproot
  Now it's "rescue=usebackuproot"

- nologreplay
  Now it's "rescue=nologreplay"

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:22 +02:00
Filipe Manana
a89ef455dd btrfs: use btrfs_alloc_data_chunk_ondemand() when allocating space for relocation
We currently use btrfs_check_data_free_space() when allocating space for
relocating data extents, but that is not necessary because that function
combines btrfs_alloc_data_chunk_ondemand(), which does the actual space
reservation, and btrfs_qgroup_reserve_data().

We can use btrfs_alloc_data_chunk_ondemand() directly because we know we
do not need to reserve qgroup space since we are dealing with a relocation
tree, which can never have qgroups (btrfs_qgroup_reserve_data() does
nothing as is_fstree() returns false for a relocation tree).

Conversely we can use btrfs_free_reserved_data_space_noquota() directly
instead of btrfs_free_reserved_data_space(), since we had no qgroup
reservation when allocating space.

This change is preparatory work for another patch in this series that
makes relocation reserve the exact amount of space it needs to relocate
a data block group. The function btrfs_check_data_free_space() has
the incovenient of requiring a start offset argument and we will want to
be able to allocate space for multiple ranges, which are not consecutive,
at once.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:21 +02:00
Filipe Manana
46d4dac888 btrfs: remove the start argument from btrfs_free_reserved_data_space_noquota()
The start argument for btrfs_free_reserved_data_space_noquota() is only
used to make sure the amount of bytes we decrement from the bytes_may_use
counter of the data space_info object is aligned to the filesystem's
sector size. It serves no other purpose.

All its current callers always pass a length argument that is already
aligned to the sector size, so we can make the start argument go away.
In fact its presence makes it impossible to use it in a context where we
just want to free a number of bytes for a range for which either we do
not know its start offset or for freeing multiple ranges at once (which
are not contiguous).

This change is preparatory work for a patch (third patch in this series)
that makes relocation of data block groups that are not full reserve less
data space.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:21 +02:00
Liao Pingfang
ab48300921 btrfs: check-integrity: remove unnecessary failure messages during memory allocation
As there is a dump_stack() done on memory allocation failures, these
messages might as well be deleted instead.

Signed-off-by: Liao Pingfang <liao.pingfang@zte.com.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor tweaks ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:21 +02:00
Anand Jain
b5790d5180 btrfs: use helper btrfs_get_block_group
Use the helper function where it is open coded to increment the
block_group reference count As btrfs_get_block_group() is a one-liner we
could have open-coded it, but its partner function
btrfs_put_block_group() isn't one-liner which does the free part in it.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:21 +02:00
Anand Jain
69b0e093c7 btrfs: let btrfs_return_cluster_to_free_space() return void
__btrfs_return_cluster_to_free_space() returns only 0. And all its
parent functions don't need the return value either so make this a void
function.

Further, as none of the callers of btrfs_return_cluster_to_free_space()
is actually using the return from this function, make this function also
return void.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:21 +02:00
Filipe Manana
f22f457a1a btrfs: remove no longer necessary chunk mutex locking cases
Initially when the 'removed' flag was added to a block group to avoid
races between block group removal and fitrim, by commit 04216820fe
("Btrfs: fix race between fs trimming and block group remove/allocation"),
we had to lock the chunks mutex because we could be moving the block
group from its current list, the pending chunks list, into the pinned
chunks list, or we could just be adding it to the pinned chunks if it was
not in the pending chunks list. Both lists were protected by the chunk
mutex.

However we no longer have those lists since commit 1c11b63eff
("btrfs: replace pending/pinned chunks lists with io tree"), and locking
the chunk mutex is no longer necessary because of that. The same happens
at btrfs_unfreeze_block_group(), we lock the chunk mutex because the block
group's extent map could be part of the pinned chunks list and the call
to remove_extent_mapping() could be deleting it from that list, which
used to be protected by that mutex.

So just remove those lock and unlock calls as they are not needed anymore.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:21 +02:00
Johannes Thumshirn
e3ba67a108 btrfs: factor out reading of bg from find_frist_block_group
When find_first_block_group() finds a block group item in the extent-tree,
it does a lookup of the object in the extent mapping tree and does further
checks on the item.

Factor out this step from find_first_block_group() so we can further
simplify the code.

While we're at it, we can also just return early in
find_first_block_group(), if the tree slot isn't found.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:20 +02:00
Johannes Thumshirn
89d7da9bc5 btrfs: get mapping tree directly from fsinfo in find_first_block_group
We already have an fs_info in our function parameters, there's no need
to do the maths again and get fs_info from the extent_root just to get
the mapping_tree.

Instead directly grab the mapping_tree from fs_info.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:20 +02:00
Nikolay Borisov
96f9b0f2fa btrfs: simplify checks when adding excluded ranges
Adresses held in 'logical' array are always guaranteed to fall within
the boundaries of the block group. That is, 'start' can never be
smaller than cache->start. This invariant follows from the way the
address are calculated in btrfs_rmap_block:

    stripe_nr = physical - map->stripes[i].physical;
    stripe_nr = div64_u64(stripe_nr, map->stripe_len);
    bytenr = chunk_start + stripe_nr * io_stripe_size;

I.e it's always some IO stripe within the given chunk.

Exploit this invariant to simplify the body of the loop by removing the
unnecessary 'if' since its 'else' part is the one always executed.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:20 +02:00
Nikolay Borisov
9e22b92598 btrfs: read stripe len directly in btrfs_rmap_block
extent_map::orig_block_len contains the size of a physical stripe when
it's used to describe block groups (calculated in read_one_chunk via
calc_stripe_length or calculated in decide_stripe_size and then assigned
to extent_map::orig_block_len in create_chunk). Exploit this fact to get
the size directly rather than opencoding the calculations. No functional
changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:20 +02:00
Nikolay Borisov
6a3c7f5c87 btrfs: don't balance btree inode pages from buffered write path
The call to btrfs_btree_balance_dirty has been there since the early
days of BTRFS, when the btree was directly modified from the write path,
hence dirtied btree inode pages. With the implementation of b888db2bd7
("Btrfs: Add delayed allocation to the extent based page tree code")
13 years ago the btree is no longer modified from the write path, hence
there is no point in calling this function. Just remove it.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:20 +02:00
Linus Torvalds
0669704270 for-5.8-rc6-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl8auzgACgkQxWXV+ddt
 WDv0CRAAooFO+hloV+br40eEfJwZJJk+iIvc3tyq3TRUrmt1D0G4F7nUtiHjb8JU
 ch2HK+GNZkIK4747OCgcFREpYZV2m0hrKybzf/j4mYb7OXzHmeHTMfGVut1g80e7
 dlpvP7q4VZbBP8BTo/8wqdSAdCUiNhLFy5oYzyUwyflJ5S8FpjY+3dXIRHUnhxPU
 lxMANWhX9y/qQEceGvxqwqJBiYT6WI7dwONiULc1klWDIug/2BGZQR0WuC5PVr0G
 YNuxcEU6rluWzKWJ5k3104t+N1Nc5+xglIgBLeLKAyTVYq8zAMf+P8bBPnQ3QDkV
 zniNIH9ND8tYSjmGkmO0ltExFrE2o9NRnjapOFXfB0WGXee5LfzFfzd5Hk9YV+Ua
 bs98VNGR4B12Iw++DvrbhbFAMxBHiBfAX/O44xJ81uAYVUs21OfefxHWrLzTJK+1
 xYfiyfCDxZDGpC/weg9GOPcIZAzzoSAvqDqWHyWY5cCZdB60RaelGJprdG5fP/gA
 Y+hDIdutVXMHfhaX0ktWsDvhPRXcC7MT0bjasljkN5WUJ/xZZQr6QmgngY+FA8G/
 0n/dv0pYdOTK/8YVZAMO+VklzrDhziqzc2sBrH1k3MA9asa/Ls5v+r2PU+qBKZJm
 cBJGtxxsx72CHbkIhtd5oGj5LNTXFdXeHph37ErzW3ajeamO4X0=
 =51h/
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into master

Pull btrfs fixes from David Sterba:
 "A few resouce leak fixes from recent patches, all are stable material.

  The problems have been observed during testing or have a reproducer"

* tag 'for-5.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: fix mount failure caused by race with umount
  btrfs: fix page leaks after failure to lock page for delalloc
  btrfs: qgroup: fix data leak caused by race between writeback and truncate
  btrfs: fix double free on ulist after backref resolution failure
2020-07-24 14:11:43 -07:00
Boris Burkov
48cfa61b58 btrfs: fix mount failure caused by race with umount
It is possible to cause a btrfs mount to fail by racing it with a slow
umount. The crux of the sequence is generic_shutdown_super not yet
calling sop->put_super before btrfs_mount_root calls btrfs_open_devices.
If that occurs, btrfs_open_devices will decide the opened counter is
non-zero, increment it, and skip resetting fs_devices->total_rw_bytes to
0. From here, mount will call sget which will result in grab_super
trying to take the super block umount semaphore. That semaphore will be
held by the slow umount, so mount will block. Before up-ing the
semaphore, umount will delete the super block, resulting in mount's sget
reliably allocating a new one, which causes the mount path to dutifully
fill it out, and increment total_rw_bytes a second time, which causes
the mount to fail, as we see double the expected bytes.

Here is the sequence laid out in greater detail:

CPU0                                                    CPU1
down_write sb->s_umount
btrfs_kill_super
  kill_anon_super(sb)
    generic_shutdown_super(sb);
      shrink_dcache_for_umount(sb);
      sync_filesystem(sb);
      evict_inodes(sb); // SLOW

                                              btrfs_mount_root
                                                btrfs_scan_one_device
                                                fs_devices = device->fs_devices
                                                fs_info->fs_devices = fs_devices
                                                // fs_devices-opened makes this a no-op
                                                btrfs_open_devices(fs_devices, mode, fs_type)
                                                s = sget(fs_type, test, set, flags, fs_info);
                                                  find sb in s_instances
                                                  grab_super(sb);
                                                    down_write(&s->s_umount); // blocks

      sop->put_super(sb)
        // sb->fs_devices->opened == 2; no-op
      spin_lock(&sb_lock);
      hlist_del_init(&sb->s_instances);
      spin_unlock(&sb_lock);
      up_write(&sb->s_umount);
                                                    return 0;
                                                  retry lookup
                                                  don't find sb in s_instances (deleted by CPU0)
                                                  s = alloc_super
                                                  return s;
                                                btrfs_fill_super(s, fs_devices, data)
                                                  open_ctree // fs_devices total_rw_bytes improperly set!
                                                    btrfs_read_chunk_tree
                                                      read_one_dev // increment total_rw_bytes again!!
                                                      super_total_bytes < fs_devices->total_rw_bytes // ERROR!!!

To fix this, we clear total_rw_bytes from within btrfs_read_chunk_tree
before the calls to read_one_dev, while holding the sb umount semaphore
and the uuid mutex.

To reproduce, it is sufficient to dirty a decent number of inodes, then
quickly umount and mount.

  for i in $(seq 0 500)
  do
    dd if=/dev/zero of="/mnt/foo/$i" bs=1M count=1
  done
  umount /mnt/foo&
  mount /mnt/foo

does the trick for me.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-21 22:08:54 +02:00
Robbie Ko
5909ca110b btrfs: fix page leaks after failure to lock page for delalloc
When locking pages for delalloc, we check if it's dirty and mapping still
matches. If it does not match, we need to return -EAGAIN and release all
pages. Only the current page was put though, iterate over all the
remaining pages too.

CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-21 22:08:53 +02:00
Qu Wenruo
fa91e4aa17 btrfs: qgroup: fix data leak caused by race between writeback and truncate
[BUG]
When running tests like generic/013 on test device with btrfs quota
enabled, it can normally lead to data leak, detected at unmount time:

  BTRFS warning (device dm-3): qgroup 0/5 has unreleased space, type 0 rsv 4096
  ------------[ cut here ]------------
  WARNING: CPU: 11 PID: 16386 at fs/btrfs/disk-io.c:4142 close_ctree+0x1dc/0x323 [btrfs]
  RIP: 0010:close_ctree+0x1dc/0x323 [btrfs]
  Call Trace:
   btrfs_put_super+0x15/0x17 [btrfs]
   generic_shutdown_super+0x72/0x110
   kill_anon_super+0x18/0x30
   btrfs_kill_super+0x17/0x30 [btrfs]
   deactivate_locked_super+0x3b/0xa0
   deactivate_super+0x40/0x50
   cleanup_mnt+0x135/0x190
   __cleanup_mnt+0x12/0x20
   task_work_run+0x64/0xb0
   __prepare_exit_to_usermode+0x1bc/0x1c0
   __syscall_return_slowpath+0x47/0x230
   do_syscall_64+0x64/0xb0
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  ---[ end trace caf08beafeca2392 ]---
  BTRFS error (device dm-3): qgroup reserved space leaked

[CAUSE]
In the offending case, the offending operations are:
2/6: writev f2X[269 1 0 0 0 0] [1006997,67,288] 0
2/7: truncate f2X[269 1 0 0 48 1026293] 18388 0

The following sequence of events could happen after the writev():
	CPU1 (writeback)		|		CPU2 (truncate)
-----------------------------------------------------------------
btrfs_writepages()			|
|- extent_write_cache_pages()		|
   |- Got page for 1003520		|
   |  1003520 is Dirty, no writeback	|
   |  So (!clear_page_dirty_for_io())   |
   |  gets called for it		|
   |- Now page 1003520 is Clean.	|
   |					| btrfs_setattr()
   |					| |- btrfs_setsize()
   |					|    |- truncate_setsize()
   |					|       New i_size is 18388
   |- __extent_writepage()		|
   |  |- page_offset() > i_size		|
      |- btrfs_invalidatepage()		|
	 |- Page is clean, so no qgroup |
	    callback executed

This means, the qgroup reserved data space is not properly released in
btrfs_invalidatepage() as the page is Clean.

[FIX]
Instead of checking the dirty bit of a page, call
btrfs_qgroup_free_data() unconditionally in btrfs_invalidatepage().

As qgroup rsv are completely bound to the QGROUP_RESERVED bit of
io_tree, not bound to page status, thus we won't cause double freeing
anyway.

Fixes: 0b34c261e2 ("btrfs: qgroup: Prevent qgroup->reserved from going subzero")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-21 22:08:32 +02:00
Filipe Manana
580c079b57 btrfs: fix double free on ulist after backref resolution failure
At btrfs_find_all_roots_safe() we allocate a ulist and set the **roots
argument to point to it. However if later we fail due to an error returned
by find_parent_nodes(), we free that ulist but leave a dangling pointer in
the **roots argument. Upon receiving the error, a caller of this function
can attempt to free the same ulist again, resulting in an invalid memory
access.

One such scenario is during qgroup accounting:

btrfs_qgroup_account_extents()

 --> calls btrfs_find_all_roots() passes &new_roots (a stack allocated
     pointer) to btrfs_find_all_roots()

   --> btrfs_find_all_roots() just calls btrfs_find_all_roots_safe()
       passing &new_roots to it

     --> allocates ulist and assigns its address to **roots (which
         points to new_roots from btrfs_qgroup_account_extents())

     --> find_parent_nodes() returns an error, so we free the ulist
         and leave **roots pointing to it after returning

 --> btrfs_qgroup_account_extents() sees btrfs_find_all_roots() returned
     an error and jumps to the label 'cleanup', which just tries to
     free again the same ulist

Stack trace example:

 ------------[ cut here ]------------
 BTRFS: tree first key check failed
 WARNING: CPU: 1 PID: 1763215 at fs/btrfs/disk-io.c:422 btrfs_verify_level_key+0xe0/0x180 [btrfs]
 Modules linked in: dm_snapshot dm_thin_pool (...)
 CPU: 1 PID: 1763215 Comm: fsstress Tainted: G        W         5.8.0-rc3-btrfs-next-64 #1
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
 RIP: 0010:btrfs_verify_level_key+0xe0/0x180 [btrfs]
 Code: 28 5b 5d (...)
 RSP: 0018:ffffb89b473779a0 EFLAGS: 00010286
 RAX: 0000000000000000 RBX: ffff90397759bf08 RCX: 0000000000000000
 RDX: 0000000000000001 RSI: 0000000000000027 RDI: 00000000ffffffff
 RBP: ffff9039a419c000 R08: 0000000000000000 R09: 0000000000000000
 R10: 0000000000000000 R11: ffffb89b43301000 R12: 000000000000005e
 R13: ffffb89b47377a2e R14: ffffb89b473779af R15: 0000000000000000
 FS:  00007fc47e1e1000(0000) GS:ffff9039ac200000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007fc47e1df000 CR3: 00000003d9e4e001 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  read_block_for_search+0xf6/0x350 [btrfs]
  btrfs_next_old_leaf+0x242/0x650 [btrfs]
  resolve_indirect_refs+0x7cf/0x9e0 [btrfs]
  find_parent_nodes+0x4ea/0x12c0 [btrfs]
  btrfs_find_all_roots_safe+0xbf/0x130 [btrfs]
  btrfs_qgroup_account_extents+0x9d/0x390 [btrfs]
  btrfs_commit_transaction+0x4f7/0xb20 [btrfs]
  btrfs_sync_file+0x3d4/0x4d0 [btrfs]
  do_fsync+0x38/0x70
  __x64_sys_fdatasync+0x13/0x20
  do_syscall_64+0x5c/0xe0
  entry_SYSCALL_64_after_hwframe+0x44/0xa9
 RIP: 0033:0x7fc47e2d72e3
 Code: Bad RIP value.
 RSP: 002b:00007fffa32098c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fc47e2d72e3
 RDX: 00007fffa3209830 RSI: 00007fffa3209830 RDI: 0000000000000003
 RBP: 000000000000072e R08: 0000000000000001 R09: 0000000000000003
 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000000003e8
 R13: 0000000051eb851f R14: 00007fffa3209970 R15: 00005607c4ac8b50
 irq event stamp: 0
 hardirqs last  enabled at (0): [<0000000000000000>] 0x0
 hardirqs last disabled at (0): [<ffffffffb8eb5e85>] copy_process+0x755/0x1eb0
 softirqs last  enabled at (0): [<ffffffffb8eb5e85>] copy_process+0x755/0x1eb0
 softirqs last disabled at (0): [<0000000000000000>] 0x0
 ---[ end trace 8639237550317b48 ]---
 BTRFS error (device sdc): tree first key mismatch detected, bytenr=62324736 parent_transid=94 key expected=(262,108,1351680) has=(259,108,1921024)
 general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
 CPU: 2 PID: 1763215 Comm: fsstress Tainted: G        W         5.8.0-rc3-btrfs-next-64 #1
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
 RIP: 0010:ulist_release+0x14/0x60 [btrfs]
 Code: c7 07 00 (...)
 RSP: 0018:ffffb89b47377d60 EFLAGS: 00010282
 RAX: 6b6b6b6b6b6b6b6b RBX: ffff903959b56b90 RCX: 0000000000000000
 RDX: 0000000000000001 RSI: 0000000000270024 RDI: ffff9036e2adc840
 RBP: ffff9036e2adc848 R08: 0000000000000000 R09: 0000000000000000
 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9036e2adc840
 R13: 0000000000000015 R14: ffff9039a419ccf8 R15: ffff90395d605840
 FS:  00007fc47e1e1000(0000) GS:ffff9039ac600000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007f8c1c0a51c8 CR3: 00000003d9e4e004 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  ulist_free+0x13/0x20 [btrfs]
  btrfs_qgroup_account_extents+0xf3/0x390 [btrfs]
  btrfs_commit_transaction+0x4f7/0xb20 [btrfs]
  btrfs_sync_file+0x3d4/0x4d0 [btrfs]
  do_fsync+0x38/0x70
  __x64_sys_fdatasync+0x13/0x20
  do_syscall_64+0x5c/0xe0
  entry_SYSCALL_64_after_hwframe+0x44/0xa9
 RIP: 0033:0x7fc47e2d72e3
 Code: Bad RIP value.
 RSP: 002b:00007fffa32098c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fc47e2d72e3
 RDX: 00007fffa3209830 RSI: 00007fffa3209830 RDI: 0000000000000003
 RBP: 000000000000072e R08: 0000000000000001 R09: 0000000000000003
 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000000003e8
 R13: 0000000051eb851f R14: 00007fffa3209970 R15: 00005607c4ac8b50
 Modules linked in: dm_snapshot dm_thin_pool (...)
 ---[ end trace 8639237550317b49 ]---
 RIP: 0010:ulist_release+0x14/0x60 [btrfs]
 Code: c7 07 00 (...)
 RSP: 0018:ffffb89b47377d60 EFLAGS: 00010282
 RAX: 6b6b6b6b6b6b6b6b RBX: ffff903959b56b90 RCX: 0000000000000000
 RDX: 0000000000000001 RSI: 0000000000270024 RDI: ffff9036e2adc840
 RBP: ffff9036e2adc848 R08: 0000000000000000 R09: 0000000000000000
 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9036e2adc840
 R13: 0000000000000015 R14: ffff9039a419ccf8 R15: ffff90395d605840
 FS:  00007fc47e1e1000(0000) GS:ffff9039ad200000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007f6a776f7d40 CR3: 00000003d9e4e002 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400

Fix this by making btrfs_find_all_roots_safe() set *roots to NULL after
it frees the ulist.

Fixes: 8da6d5815c ("Btrfs: added btrfs_find_all_roots()")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-21 21:59:15 +02:00
Linus Torvalds
72c34e8d70 for-5.8-rc4-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl8K3ugACgkQxWXV+ddt
 WDsDNBAAn5iaMNwlCBYpwAaWlltMog3SKg+vgpEcFD9qLlmimW/1TlrjjGRzp6Mn
 nnNp+YjYDotqU9pP1OwESpY1LTzuVQlQL1yaiPLrehw/WsZgjdDWBk/EyU0n1vz1
 Sr5wcyCVyVZZyO2/BEVTDhkvu+sj9Rcwo2QCsC2aIOTVSfQGFSklMp2VNdu2YQBy
 zyTOhbwpn3OPPZsvScEujvSY9oUAN3J8WYA9jmgtwjZD7sr6UNyNI9vy8woi0VAQ
 Uo7nXc43ZcS1xTwziGOpC6fZi90zrF7ZvfFT0qY92EEDcAQcCzPDl6f4OnAjr6/b
 rnZcLvusEcENjFQn3pD7fCuXiIRrN8eHspj5+K/oRBTXWC5AykBwsLWt7M+tTMYa
 ljEBRZlQlHMlC3xSEZNDccEvScXrEIu3Q2WrTOTXSgXi4e3q89VUTEIjAhfnTTzJ
 VwHhGZIB6o+V7wZ0EhWdt9b1/Ro/AcADddV+AxTsfC1YCHVZOsSSa3DxV243ORsA
 /U3t2a4SMp/iSHTtoLIwbr/O1Uj9UaOk2n1DcNbGIgdn14yYt6YWOhvrOPBampEa
 zfBzmAOx9r5Mf2wWD0iTm4gJEZsrB+IpboYZ6cuBcOI29+A4k0POBfRLXgf8/jMo
 5kBWm+C3KKkZO8u/Z4gtVG1ZFdxsnYAc+q+UXS5ZSJMH+++UoZQ=
 =hTok
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "Two refcounting fixes and one prepartory patch for upcoming splice
  cleanup:

   - fix double put of block group with nodatacow

   - fix missing block group put when remounting with discard=async

   - explicitly set splice callback (no functional change), to ease
     integrating splice cleanup patches"

* tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: wire up iter_file_splice_write
  btrfs: fix double put of block group with nocow
  btrfs: discard: add missing put when grabbing block group from unused list
2020-07-12 10:58:35 -07:00
Christoph Hellwig
d777659113 btrfs: wire up iter_file_splice_write
btrfs implements the iter_write op and thus can use the more efficient
iov_iter based splice implementation.  For now falling back to the less
efficient default is pretty harmless, but I have a pending series that
removes the default, and thus would cause btrfs to not support splice
at all.

Reported-by: Andy Lavr <andy.lavr@gmail.com>
Tested-by: Andy Lavr <andy.lavr@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-09 19:57:58 +02:00
Josef Bacik
230ed39743 btrfs: fix double put of block group with nocow
While debugging a patch that I wrote I was hitting use-after-free panics
when accessing block groups on unmount.  This turned out to be because
in the nocow case if we bail out of doing the nocow for whatever reason
we need to call btrfs_dec_nocow_writers() if we called the inc.  This
puts our block group, but a few error cases does

if (nocow) {
    btrfs_dec_nocow_writers();
    goto error;
}

unfortunately, error is

error:
	if (nocow)
		btrfs_dec_nocow_writers();

so we get a double put on our block group.  Fix this by dropping the
error cases calling of btrfs_dec_nocow_writers(), as it's handled at the
error label now.

Fixes: 762bf09893 ("btrfs: improve error handling in run_delalloc_nocow")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-09 17:44:26 +02:00
Linus Torvalds
aa27b32b76 for-5.8-rc4-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl8EdTkACgkQxWXV+ddt
 WDv6xA/9Hguo/k6oj/7Nl9n3UUZ7gp44R/jy37fhMuNcwuEDuqIEfAgGXupdJVaj
 pYDorUMRUQfI2yLB1iHAnPgBMKBidSroDsdrRHKuimnhABSO2/KX/KXPianIIRGi
 wPvqZR04L565LNpRlDQx7OYkJWey7b6xf47UZqDglivnKY1OwCJlXgfCj/9FApr0
 Y+PVlgEU78ExTeAHs/h8ofZ/f5T2eqiluBSFVykzCg1NngaQVOKpN3gnWEatUAvM
 ekm6U4E1ZR9oOprdhlf6V96ztGzVTRKB1vFIeCvJLqLNIe+0pxlRfRn2aOj8vzEO
 DRjgOlhyAIgypp78SwCspjhvejvVneSFdEGSVvHOw1ombB//OJ1qBb5G/lIcwCj3
 PZ3OnQJV7+/Ty7Xt/X26W841zvnu90K0di0CsOPehtbkgkR4txgHCJB9mSlsMugN
 awN5Ryy1rw1cAM5GspXG9EEOvJmnSizQf4BcK649IG5eUKThYYLc5mp68jiMljs0
 NHFPg5P4yTRjk7Yqgxq5VvTPLLJo5j5xxqtY/1zDWuguRa40wIoy/JUJaJoPg9Vd
 221/qRG4R4xGyZXGx6XTiWK+M3qjTlS9My9tGoWygwlExRkr7Uli9Ikef3U0tBoF
 bjTcfCNOuCp+JECHNcnMZ9fhhFaMwIL1V4OflB1iicBAtXxo8Lk=
 =+4BZ
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:

 - regression fix of a leak in global block reserve accounting

 - fix a (hard to hit) race of readahead vs releasepage that could lead
   to crash

 - convert all remaining uses of comment fall through annotations to the
   pseudo keyword

 - fix crash when mounting a fuzzed image with -o recovery

* tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: reset tree root pointer after error in init_tree_roots
  btrfs: fix reclaim_size counter leak after stealing from global reserve
  btrfs: fix fatal extent_buffer readahead vs releasepage race
  btrfs: convert comments to fallthrough annotations
2020-07-07 14:10:33 -07:00
Qu Wenruo
04e484c597 btrfs: discard: add missing put when grabbing block group from unused list
[BUG]
The following small test script can trigger ASSERT() at unmount time:

  mkfs.btrfs -f $dev
  mount $dev $mnt
  mount -o remount,discard=async $mnt
  umount $mnt

The call trace:
  assertion failed: atomic_read(&block_group->count) == 1, in fs/btrfs/block-group.c:3431
  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.h:3204!
  invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
  CPU: 4 PID: 10389 Comm: umount Tainted: G           O      5.8.0-rc3-custom+ #68
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  Call Trace:
   btrfs_free_block_groups.cold+0x22/0x55 [btrfs]
   close_ctree+0x2cb/0x323 [btrfs]
   btrfs_put_super+0x15/0x17 [btrfs]
   generic_shutdown_super+0x72/0x110
   kill_anon_super+0x18/0x30
   btrfs_kill_super+0x17/0x30 [btrfs]
   deactivate_locked_super+0x3b/0xa0
   deactivate_super+0x40/0x50
   cleanup_mnt+0x135/0x190
   __cleanup_mnt+0x12/0x20
   task_work_run+0x64/0xb0
   __prepare_exit_to_usermode+0x1bc/0x1c0
   __syscall_return_slowpath+0x47/0x230
   do_syscall_64+0x64/0xb0
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

The code:
                ASSERT(atomic_read(&block_group->count) == 1);
                btrfs_put_block_group(block_group);

[CAUSE]
Obviously it's some btrfs_get_block_group() call doesn't get its put
call.

The offending btrfs_get_block_group() happens here:

  void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
  {
  	if (list_empty(&bg->bg_list)) {
  		btrfs_get_block_group(bg);
		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
  	}
  }

So every call sites removing the block group from unused_bgs list should
reduce the ref count of that block group.

However for async discard, it didn't follow the call convention:

  void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
  {
  	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
  				 bg_list) {
  		list_del_init(&block_group->bg_list);
  		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
  	}
  }

And in btrfs_discard_queue_work(), it doesn't call
btrfs_put_block_group() either.

[FIX]
Fix the problem by reducing the reference count when we grab the block
group from unused_bgs list.

Reported-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Fixes: 6e80d4f8c4 ("btrfs: handle empty block_group removal for async discard")
CC: stable@vger.kernel.org # 5.6+
Tested-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-07 16:06:28 +02:00
Josef Bacik
0465337c55 btrfs: reset tree root pointer after error in init_tree_roots
Eric reported an issue where mounting -o recovery with a fuzzed fs
resulted in a kernel panic.  This is because we tried to free the tree
node, except it was an error from the read.  Fix this by properly
resetting the tree_root->node == NULL in this case.  The panic was the
following

  BTRFS warning (device loop0): failed to read tree root
  BUG: kernel NULL pointer dereference, address: 000000000000001f
  RIP: 0010:free_extent_buffer+0xe/0x90 [btrfs]
  Call Trace:
   free_root_extent_buffers.part.0+0x11/0x30 [btrfs]
   free_root_pointers+0x1a/0xa2 [btrfs]
   open_ctree+0x1776/0x18a5 [btrfs]
   btrfs_mount_root.cold+0x13/0xfa [btrfs]
   ? selinux_fs_context_parse_param+0x37/0x80
   legacy_get_tree+0x27/0x40
   vfs_get_tree+0x25/0xb0
   fc_mount+0xe/0x30
   vfs_kern_mount.part.0+0x71/0x90
   btrfs_mount+0x147/0x3e0 [btrfs]
   ? cred_has_capability+0x7c/0x120
   ? legacy_get_tree+0x27/0x40
   legacy_get_tree+0x27/0x40
   vfs_get_tree+0x25/0xb0
   do_mount+0x735/0xa40
   __x64_sys_mount+0x8e/0xd0
   do_syscall_64+0x4d/0x90
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

Nik says: this is problematic only if we fail on the last iteration of
the loop as this results in init_tree_roots returning err value with
tree_root->node = -ERR. Subsequently the caller does: fail_tree_roots
which calls free_root_pointers on the bogus value.

Reported-by: Eric Sandeen <sandeen@redhat.com>
Fixes: b8522a1e5f ("btrfs: Factor out tree roots initialization during mount")
CC: stable@vger.kernel.org # 5.5+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add details how the pointer gets dereferenced ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-02 10:27:12 +02:00
Filipe Manana
6d548b9e5d btrfs: fix reclaim_size counter leak after stealing from global reserve
Commit 7f9fe61440 ("btrfs: improve global reserve stealing logic"),
added in the 5.8 merge window, introduced another leak for the space_info's
reclaim_size counter. This is very often triggered by the test cases
generic/269 and generic/416 from fstests, producing a stack trace like the
following during unmount:

[37079.155499] ------------[ cut here ]------------
[37079.156844] WARNING: CPU: 2 PID: 2000423 at fs/btrfs/block-group.c:3422 btrfs_free_block_groups+0x2eb/0x300 [btrfs]
[37079.158090] Modules linked in: dm_snapshot btrfs dm_thin_pool (...)
[37079.164440] CPU: 2 PID: 2000423 Comm: umount Tainted: G        W         5.7.0-rc7-btrfs-next-62 #1
[37079.165422] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), (...)
[37079.167384] RIP: 0010:btrfs_free_block_groups+0x2eb/0x300 [btrfs]
[37079.168375] Code: bd 58 ff ff ff 00 4c 8d (...)
[37079.170199] RSP: 0018:ffffaa53875c7de0 EFLAGS: 00010206
[37079.171120] RAX: ffff98099e701cf8 RBX: ffff98099e2d4000 RCX: 0000000000000000
[37079.172057] RDX: 0000000000000001 RSI: ffffffffc0acc5b1 RDI: 00000000ffffffff
[37079.173002] RBP: ffff98099e701cf8 R08: 0000000000000000 R09: 0000000000000000
[37079.173886] R10: 0000000000000000 R11: 0000000000000000 R12: ffff98099e701c00
[37079.174730] R13: ffff98099e2d5100 R14: dead000000000122 R15: dead000000000100
[37079.175578] FS:  00007f4d7d0a5840(0000) GS:ffff9809ec600000(0000) knlGS:0000000000000000
[37079.176434] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[37079.177289] CR2: 0000559224dcc000 CR3: 000000012207a004 CR4: 00000000003606e0
[37079.178152] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[37079.178935] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[37079.179675] Call Trace:
[37079.180419]  close_ctree+0x291/0x2d1 [btrfs]
[37079.181162]  generic_shutdown_super+0x6c/0x100
[37079.181898]  kill_anon_super+0x14/0x30
[37079.182641]  btrfs_kill_super+0x12/0x20 [btrfs]
[37079.183371]  deactivate_locked_super+0x31/0x70
[37079.184012]  cleanup_mnt+0x100/0x160
[37079.184650]  task_work_run+0x68/0xb0
[37079.185284]  exit_to_usermode_loop+0xf9/0x100
[37079.185920]  do_syscall_64+0x20d/0x260
[37079.186556]  entry_SYSCALL_64_after_hwframe+0x49/0xb3
[37079.187197] RIP: 0033:0x7f4d7d2d9357
[37079.187836] Code: eb 0b 00 f7 d8 64 89 01 48 (...)
[37079.189180] RSP: 002b:00007ffee4e0d368 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[37079.189845] RAX: 0000000000000000 RBX: 00007f4d7d3fb224 RCX: 00007f4d7d2d9357
[37079.190515] RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000559224dc5c90
[37079.191173] RBP: 0000559224dc1970 R08: 0000000000000000 R09: 00007ffee4e0c0e0
[37079.191815] R10: 0000559224dc7b00 R11: 0000000000000246 R12: 0000000000000000
[37079.192451] R13: 0000559224dc5c90 R14: 0000559224dc1a80 R15: 0000559224dc1ba0
[37079.193096] irq event stamp: 0
[37079.193729] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
[37079.194379] hardirqs last disabled at (0): [<ffffffff97ab8935>] copy_process+0x755/0x1ea0
[37079.195033] softirqs last  enabled at (0): [<ffffffff97ab8935>] copy_process+0x755/0x1ea0
[37079.195700] softirqs last disabled at (0): [<0000000000000000>] 0x0
[37079.196318] ---[ end trace b32710d864dea887 ]---

In the past commit d611add48b ("btrfs: fix reclaim counter leak of
space_info objects") fixed similar cases. That commit however has a date
more recent (April 7 2020) then the commit mentioned before (March 13
2020), however it was merged in kernel 5.7 while the older commit, which
introduces a new leak, was merged only in the 5.8 merge window. So the
leak sneaked in unnoticed.

Fix this by making steal_from_global_rsv() remove the ticket using the
helper remove_ticket(), which decrements the reclaim_size counter of the
space_info object.

Fixes: 7f9fe61440 ("btrfs: improve global reserve stealing logic")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-02 10:18:34 +02:00
Boris Burkov
6bf9cd2eed btrfs: fix fatal extent_buffer readahead vs releasepage race
Under somewhat convoluted conditions, it is possible to attempt to
release an extent_buffer that is under io, which triggers a BUG_ON in
btrfs_release_extent_buffer_pages.

This relies on a few different factors. First, extent_buffer reads done
as readahead for searching use WAIT_NONE, so they free the local extent
buffer reference while the io is outstanding. However, they should still
be protected by TREE_REF. However, if the system is doing signficant
reclaim, and simultaneously heavily accessing the extent_buffers, it is
possible for releasepage to race with two concurrent readahead attempts
in a way that leaves TREE_REF unset when the readahead extent buffer is
released.

Essentially, if two tasks race to allocate a new extent_buffer, but the
winner who attempts the first io is rebuffed by a page being locked
(likely by the reclaim itself) then the loser will still go ahead with
issuing the readahead. The loser's call to find_extent_buffer must also
race with the reclaim task reading the extent_buffer's refcount as 1 in
a way that allows the reclaim to re-clear the TREE_REF checked by
find_extent_buffer.

The following represents an example execution demonstrating the race:

            CPU0                                                         CPU1                                           CPU2
reada_for_search                                            reada_for_search
  readahead_tree_block                                        readahead_tree_block
    find_create_tree_block                                      find_create_tree_block
      alloc_extent_buffer                                         alloc_extent_buffer
                                                                  find_extent_buffer // not found
                                                                  allocates eb
                                                                  lock pages
                                                                  associate pages to eb
                                                                  insert eb into radix tree
                                                                  set TREE_REF, refs == 2
                                                                  unlock pages
                                                              read_extent_buffer_pages // WAIT_NONE
                                                                not uptodate (brand new eb)
                                                                                                            lock_page
                                                                if !trylock_page
                                                                  goto unlock_exit // not an error
                                                              free_extent_buffer
                                                                release_extent_buffer
                                                                  atomic_dec_and_test refs to 1
        find_extent_buffer // found
                                                                                                            try_release_extent_buffer
                                                                                                              take refs_lock
                                                                                                              reads refs == 1; no io
          atomic_inc_not_zero refs to 2
          mark_buffer_accessed
            check_buffer_tree_ref
              // not STALE, won't take refs_lock
              refs == 2; TREE_REF set // no action
    read_extent_buffer_pages // WAIT_NONE
                                                                                                              clear TREE_REF
                                                                                                              release_extent_buffer
                                                                                                                atomic_dec_and_test refs to 1
                                                                                                                unlock_page
      still not uptodate (CPU1 read failed on trylock_page)
      locks pages
      set io_pages > 0
      submit io
      return
    free_extent_buffer
      release_extent_buffer
        dec refs to 0
        delete from radix tree
        btrfs_release_extent_buffer_pages
          BUG_ON(io_pages > 0)!!!

We observe this at a very low rate in production and were also able to
reproduce it in a test environment by introducing some spurious delays
and by introducing probabilistic trylock_page failures.

To fix it, we apply check_tree_ref at a point where it could not
possibly be unset by a competing task: after io_pages has been
incremented. All the codepaths that clear TREE_REF check for io, so they
would not be able to clear it after this point until the io is done.

Stack trace, for reference:
[1417839.424739] ------------[ cut here ]------------
[1417839.435328] kernel BUG at fs/btrfs/extent_io.c:4841!
[1417839.447024] invalid opcode: 0000 [#1] SMP
[1417839.502972] RIP: 0010:btrfs_release_extent_buffer_pages+0x20/0x1f0
[1417839.517008] Code: ed e9 ...
[1417839.558895] RSP: 0018:ffffc90020bcf798 EFLAGS: 00010202
[1417839.570816] RAX: 0000000000000002 RBX: ffff888102d6def0 RCX: 0000000000000028
[1417839.586962] RDX: 0000000000000002 RSI: ffff8887f0296482 RDI: ffff888102d6def0
[1417839.603108] RBP: ffff88885664a000 R08: 0000000000000046 R09: 0000000000000238
[1417839.619255] R10: 0000000000000028 R11: ffff88885664af68 R12: 0000000000000000
[1417839.635402] R13: 0000000000000000 R14: ffff88875f573ad0 R15: ffff888797aafd90
[1417839.651549] FS:  00007f5a844fa700(0000) GS:ffff88885f680000(0000) knlGS:0000000000000000
[1417839.669810] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1417839.682887] CR2: 00007f7884541fe0 CR3: 000000049f609002 CR4: 00000000003606e0
[1417839.699037] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[1417839.715187] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[1417839.731320] Call Trace:
[1417839.737103]  release_extent_buffer+0x39/0x90
[1417839.746913]  read_block_for_search.isra.38+0x2a3/0x370
[1417839.758645]  btrfs_search_slot+0x260/0x9b0
[1417839.768054]  btrfs_lookup_file_extent+0x4a/0x70
[1417839.778427]  btrfs_get_extent+0x15f/0x830
[1417839.787665]  ? submit_extent_page+0xc4/0x1c0
[1417839.797474]  ? __do_readpage+0x299/0x7a0
[1417839.806515]  __do_readpage+0x33b/0x7a0
[1417839.815171]  ? btrfs_releasepage+0x70/0x70
[1417839.824597]  extent_readpages+0x28f/0x400
[1417839.833836]  read_pages+0x6a/0x1c0
[1417839.841729]  ? startup_64+0x2/0x30
[1417839.849624]  __do_page_cache_readahead+0x13c/0x1a0
[1417839.860590]  filemap_fault+0x6c7/0x990
[1417839.869252]  ? xas_load+0x8/0x80
[1417839.876756]  ? xas_find+0x150/0x190
[1417839.884839]  ? filemap_map_pages+0x295/0x3b0
[1417839.894652]  __do_fault+0x32/0x110
[1417839.902540]  __handle_mm_fault+0xacd/0x1000
[1417839.912156]  handle_mm_fault+0xaa/0x1c0
[1417839.921004]  __do_page_fault+0x242/0x4b0
[1417839.930044]  ? page_fault+0x8/0x30
[1417839.937933]  page_fault+0x1e/0x30
[1417839.945631] RIP: 0033:0x33c4bae
[1417839.952927] Code: Bad RIP value.
[1417839.960411] RSP: 002b:00007f5a844f7350 EFLAGS: 00010206
[1417839.972331] RAX: 000000000000006e RBX: 1614b3ff6a50398a RCX: 0000000000000000
[1417839.988477] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000002
[1417840.004626] RBP: 00007f5a844f7420 R08: 000000000000006e R09: 00007f5a94aeccb8
[1417840.020784] R10: 00007f5a844f7350 R11: 0000000000000000 R12: 00007f5a94aecc79
[1417840.036932] R13: 00007f5a94aecc78 R14: 00007f5a94aecc90 R15: 00007f5a94aecc40

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-02 10:18:33 +02:00
Marcos Paulo de Souza
c730ae0c6b btrfs: convert comments to fallthrough annotations
Convert fall through comments to the pseudo-keyword which is now the
preferred way.

Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-02 10:18:30 +02:00
Linus Torvalds
3e08a95294 for-5.8-rc2-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7yABEACgkQxWXV+ddt
 WDtGoQ//cBWRRWLlLTRgpaKnY6t8JgVUqNvPJISHHf45cNbOJh0yo8hUuKMW+440
 8ovYqtFoZD+JHcHDE2sMueHBFe38rG5eT/zh8j/ruhBzeJcTb3lSYz53d7sfl5kD
 cIVngPEVlGziDqW2PsWLlyh8ulBGzY3YmS6kAEkyP/6/uhE/B1dq6qn3GUibkbKI
 dfNjHTLwZVmwnqoxLu8ZE2/hHFbzhl0sm09snsXYSVu13g36+edp0Z+pF0MlKGVk
 G6YrnZcts8TWwneZ4nogD9f2CMvzMhYDDLyEjsX0Ouhb+Cu2WNxdfrJ2ZbPNU82w
 EGbo451mIt6Ht8wicEjh27LWLI7YMraF/Ig/ODMdvFBYDbhl4voX2t+4n+p5Czbg
 AW6Wtg/q5EaaNFqrTsqAAiUn0+R3sMiDWrE0AewcE7syPGqQ2XMwP4la5pZ36rz8
 8Vo5KIGo44PIJ1dMwcX+bg3HTtUnBJSxE5fUi0rJ3ZfHKGjLS79VonEeQjh3QD6W
 0UlK+jCjo6KZoe33XdVV2hVkHd63ZIlliXWv0LOR+gpmqqgW2b3wf181zTvo/5sI
 v0fDjstA9caqf68ChPE9jJi7rZPp/AL1yAQGEiNzjKm4U431TeZJl2cpREicMJDg
 FCDU51t9425h8BFkM4scErX2/53F1SNNNSlAsFBGvgJkx6rTENs=
 =/eCR
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "A number of fixes, located in two areas, one performance fix and one
  fixup for better integration with another patchset.

   - bug fixes in nowait aio:
       - fix snapshot creation hang after nowait-aio was used
       - fix failure to write to prealloc extent past EOF
       - don't block when extent range is locked

   - block group fixes:
       - relocation failure when scrub runs in parallel
       - refcount fix when removing fails
       - fix race between removal and creation
       - space accounting fixes

   - reinstante fast path check for log tree at unlink time, fixes
     performance drop up to 30% in REAIM

   - kzfree/kfree fixup to ease treewide patchset renaming kzfree"

* tag 'for-5.8-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: use kfree() in btrfs_ioctl_get_subvol_info()
  btrfs: fix RWF_NOWAIT writes blocking on extent locks and waiting for IO
  btrfs: fix RWF_NOWAIT write not failling when we need to cow
  btrfs: fix failure of RWF_NOWAIT write into prealloc extent beyond eof
  btrfs: fix hang on snapshot creation after RWF_NOWAIT write
  btrfs: check if a log root exists before locking the log_mutex on unlink
  btrfs: fix bytes_may_use underflow when running balance and scrub in parallel
  btrfs: fix data block group relocation failure due to concurrent scrub
  btrfs: fix race between block group removal and block group creation
  btrfs: fix a block group ref counter leak after failure to remove block group
2020-06-23 09:20:11 -07:00
Waiman Long
b091f7fede btrfs: use kfree() in btrfs_ioctl_get_subvol_info()
In btrfs_ioctl_get_subvol_info(), there is a classic case where kzalloc()
was incorrectly paired with kzfree(). According to David Sterba, there
isn't any sensitive information in the subvol_info that needs to be
cleared before freeing. So kzfree() isn't really needed, use kfree()
instead.

Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:24:03 +02:00
Filipe Manana
5dbb75ed69 btrfs: fix RWF_NOWAIT writes blocking on extent locks and waiting for IO
A RWF_NOWAIT write is not supposed to wait on filesystem locks that can be
held for a long time or for ongoing IO to complete.

However when calling check_can_nocow(), if the inode has prealloc extents
or has the NOCOW flag set, we can block on extent (file range) locks
through the call to btrfs_lock_and_flush_ordered_range(). Such lock can
take a significant amount of time to be available. For example, a fiemap
task may be running, and iterating through the entire file range checking
all extents and doing backref walking to determine if they are shared,
or a readpage operation may be in progress.

Also at btrfs_lock_and_flush_ordered_range(), called by check_can_nocow(),
after locking the file range we wait for any existing ordered extent that
is in progress to complete. Another operation that can take a significant
amount of time and defeat the purpose of RWF_NOWAIT.

So fix this by trying to lock the file range and if it's currently locked
return -EAGAIN to user space. If we are able to lock the file range without
waiting and there is an ordered extent in the range, return -EAGAIN as
well, instead of waiting for it to complete. Finally, don't bother trying
to lock the snapshot lock of the root when attempting a RWF_NOWAIT write,
as that is only important for buffered writes.

Fixes: edf064e7c6 ("btrfs: nowait aio support")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:22:45 +02:00
Filipe Manana
260a63395f btrfs: fix RWF_NOWAIT write not failling when we need to cow
If we attempt to do a RWF_NOWAIT write against a file range for which we
can only do NOCOW for a part of it, due to the existence of holes or
shared extents for example, we proceed with the write as if it were
possible to NOCOW the whole range.

Example:

  $ mkfs.btrfs -f /dev/sdb
  $ mount /dev/sdb /mnt

  $ touch /mnt/sdj/bar
  $ chattr +C /mnt/sdj/bar

  $ xfs_io -d -c "pwrite -S 0xab -b 256K 0 256K" /mnt/bar
  wrote 262144/262144 bytes at offset 0
  256 KiB, 1 ops; 0.0003 sec (694.444 MiB/sec and 2777.7778 ops/sec)

  $ xfs_io -c "fpunch 64K 64K" /mnt/bar
  $ sync

  $ xfs_io -d -c "pwrite -N -V 1 -b 128K -S 0xfe 0 128K" /mnt/bar
  wrote 131072/131072 bytes at offset 0
  128 KiB, 1 ops; 0.0007 sec (160.051 MiB/sec and 1280.4097 ops/sec)

This last write should fail with -EAGAIN since the file range from 64K to
128K is a hole. On xfs it fails, as expected, but on ext4 it currently
succeeds because apparently it is expensive to check if there are extents
allocated for the whole range, but I'll check with the ext4 people.

Fix the issue by checking if check_can_nocow() returns a number of
NOCOW'able bytes smaller then the requested number of bytes, and if it
does return -EAGAIN.

Fixes: edf064e7c6 ("btrfs: nowait aio support")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:22:37 +02:00
Filipe Manana
4b1946284d btrfs: fix failure of RWF_NOWAIT write into prealloc extent beyond eof
If we attempt to write to prealloc extent located after eof using a
RWF_NOWAIT write, we always fail with -EAGAIN.

We do actually check if we have an allocated extent for the write at
the start of btrfs_file_write_iter() through a call to check_can_nocow(),
but later when we go into the actual direct IO write path we simply
return -EAGAIN if the write starts at or beyond EOF.

Trivial to reproduce:

  $ mkfs.btrfs -f /dev/sdb
  $ mount /dev/sdb /mnt

  $ touch /mnt/foo
  $ chattr +C /mnt/foo

  $ xfs_io -d -c "pwrite -S 0xab 0 64K" /mnt/foo
  wrote 65536/65536 bytes at offset 0
  64 KiB, 16 ops; 0.0004 sec (135.575 MiB/sec and 34707.1584 ops/sec)

  $ xfs_io -c "falloc -k 64K 1M" /mnt/foo

  $ xfs_io -d -c "pwrite -N -V 1 -S 0xfe -b 64K 64K 64K" /mnt/foo
  pwrite: Resource temporarily unavailable

On xfs and ext4 the write succeeds, as expected.

Fix this by removing the wrong check at btrfs_direct_IO().

Fixes: edf064e7c6 ("btrfs: nowait aio support")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:22:31 +02:00