Commit graph

162 commits

Author SHA1 Message Date
Linus Torvalds
a8356cdb5b LoongArch changes for v6.3
1, Make -mstrict-align configurable;
 2, Add kernel relocation and KASLR support;
 3, Add single kernel image implementation for kdump;
 4, Add hardware breakpoints/watchpoints support;
 5, Add kprobes/kretprobes/kprobes_on_ftrace support;
 6, Add LoongArch support for some selftests.
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmP+9H0WHGNoZW5odWFj
 YWlAa2VybmVsLm9yZwAKCRAChivD8uImerz+D/98MjkLXM4qtgfAxuBKpVdEVA4U
 bzO19UlpqWlwTJbwrhf0GYsRrAis37PTVJG4eNORJairJ/oTkMtEEBPhwq0D9Whc
 URDEh+VrjzFztLsu2OlvzOA9gE7lpg+xAx2LKflP7ixlOELOWeercDLW3octp5/J
 CJDE8wPaw9tJrMHFWuiVybs03yZmY3YFV55JdWL9hY8Ryy4DY5997mruOfzjvHpl
 EfDgQM2zCn2JSQwaD+Kl3MHxHyRx07Tj2wnZAh9ptaGeptK/yplc7nqRwhe7BevS
 QwClhJNPICcOi+evZ7cDUY0PTL4evpw2KRnF1N4zw+58RhZECjVrCEJNdf6L1scj
 muptQngWKrE/TJvn4way3cJr44stSCtT71elPhn629S23my/CauMmFqCqKpYOPOf
 pxwzzCaqDcaZKwMu96qBkZS76tIrhoNeNFntj+C9RS+8ezY3+o144S3vF1A6A9Zb
 M4gwa2NiQuLqnCUwKK6dZkLQVX2NMIMViUkYNKdUStxNWx/K7fFmXcl0ycAFpGYp
 8Q95LLH34jUrpSgqMSCmcylsPvNiN1QnuXFnw8Tu+zDthp5dOzio60tORLPM1ZUq
 gobPeGjeTQInq4eMCf2B5HH8fOMVtJyj6H4K9G1M6HUMg64UtcBp6BvEbwPxTxNN
 sIOFUjDfDnBiIXWF4w==
 =SzL5
 -----END PGP SIGNATURE-----

Merge tag 'loongarch-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson

Pull LoongArch updates from Huacai Chen:

 - Make -mstrict-align configurable

 - Add kernel relocation and KASLR support

 - Add single kernel image implementation for kdump

 - Add hardware breakpoints/watchpoints support

 - Add kprobes/kretprobes/kprobes_on_ftrace support

 - Add LoongArch support for some selftests.

* tag 'loongarch-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: (23 commits)
  selftests/ftrace: Add LoongArch kprobe args string tests support
  selftests/seccomp: Add LoongArch selftesting support
  tools: Add LoongArch build infrastructure
  samples/kprobes: Add LoongArch support
  LoongArch: Mark some assembler symbols as non-kprobe-able
  LoongArch: Add kprobes on ftrace support
  LoongArch: Add kretprobes support
  LoongArch: Add kprobes support
  LoongArch: Simulate branch and PC* instructions
  LoongArch: ptrace: Add hardware single step support
  LoongArch: ptrace: Add function argument access API
  LoongArch: ptrace: Expose hardware breakpoints to debuggers
  LoongArch: Add hardware breakpoints/watchpoints support
  LoongArch: kdump: Add crashkernel=YM handling
  LoongArch: kdump: Add single kernel image implementation
  LoongArch: Add support for kernel address space layout randomization (KASLR)
  LoongArch: Add support for kernel relocation
  LoongArch: Add la_abs macro implementation
  LoongArch: Add JUMP_VIRT_ADDR macro implementation to avoid using la.abs
  LoongArch: Use la.pcrel instead of la.abs when it's trivially possible
  ...
2023-03-01 09:27:00 -08:00
Tiezhu Yang
fcf77d0162 LoongArch: Mark some assembler symbols as non-kprobe-able
Some assembler symbols are not kprobe safe, such as handle_syscall (used
as syscall exception handler), *memset*/*memcpy*/*memmove* (may cause
recursive exceptions), they can not be instrumented, just blacklist them
for kprobing.

Here is a related problem and discussion:
Link: https://lore.kernel.org/lkml/20230114143859.7ccc45c1c5d9ce302113ab0a@kernel.org/

Tested-by: Jeff Xie <xiehuan09@gmail.com>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:17 +08:00
Tiezhu Yang
3f55368600 LoongArch: Add kretprobes support
Use the generic kretprobe trampoline handler to add kretprobes support
for LoongArch.

Tested-by: Jeff Xie <xiehuan09@gmail.com>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:17 +08:00
Tiezhu Yang
6d4cc40fb5 LoongArch: Add kprobes support
Kprobes allows you to trap at almost any kernel address and execute a
callback function, this commit adds kprobes support for LoongArch.

Tested-by: Jeff Xie <xiehuan09@gmail.com>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:17 +08:00
Tiezhu Yang
9b3441a6b0 LoongArch: Simulate branch and PC* instructions
According to LoongArch Reference Manual, simulate branch and PC*
instructions, this is preparation for later patch.

Link: https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#branch-instructions
Link: https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#_pcaddi_pcaddu121_pcaddu18l_pcalau12i

Tested-by: Jeff Xie <xiehuan09@gmail.com>
Co-developed-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:17 +08:00
Qing Zhang
424421a7f3 LoongArch: ptrace: Add hardware single step support
Use the generic ptrace_resume code for PTRACE_SYSCALL, PTRACE_CONT,
PTRACE_KILL and PTRACE_SINGLESTEP handling. This implies defining
arch_has_single_step() and implementing the user_enable_single_step()
and user_disable_single_step() functions.

LoongArch cannot do hardware single-stepping per se, the hardware
single-stepping it is achieved by configuring the instruction fetch
watchpoints (FWPS) and specifies that the next instruction must trigger
the watch exception by setting the mask bit. In some scenarios
CSR.FWPS.Skip is used to ignore the next hit result, avoid endless
repeated triggering of the same watchpoint without canceling it.

Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:17 +08:00
Qing Zhang
356bd6f236 LoongArch: ptrace: Add function argument access API
Add regs_get_argument() which returns N th argument of the function
call, This enables ftrace kprobe events to access kernel function
arguments via $argN syntax for later use.

E.g.:
echo 'p bio_add_page arg1=$arg1' > kprobe_events
bash: echo: write error: Invalid argument

Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:17 +08:00
Qing Zhang
1a69f7a161 LoongArch: ptrace: Expose hardware breakpoints to debuggers
Implement the regset-based ptrace interface that exposes hardware
breakpoints to user-space debuggers to query and set instruction and
data breakpoints.

Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:17 +08:00
Qing Zhang
edffa33c7b LoongArch: Add hardware breakpoints/watchpoints support
Use perf framework to manage hardware instruction and data breakpoints.

LoongArch defines hardware watchpoint functions for instruction fetch
and memory load/store operations. After the software configures hardware
watchpoints, the processor hardware will monitor the access address of
the instruction fetch and load/store operation, and trigger an exception
of the watchpoint when it meets the conditions set by the watchpoint.

The hardware monitoring points for instruction fetching and load/store
operations each have a register for the overall configuration of all
monitoring points, a register for recording the status of all monitoring
points, and four registers required for configuration of each watchpoint
individually.

Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:17 +08:00
Youling Tang
3f89765d62 LoongArch: kdump: Add single kernel image implementation
This feature depends on the kernel being relocatable.

Enable using single kernel image for kdump, and then no longer need to
build two kernels (production kernel and capture kernel share a single
kernel image).

Also enable CONFIG_CRASH_DUMP in loongson3_defconfig.

Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:17 +08:00
Youling Tang
e5f02b51fa LoongArch: Add support for kernel address space layout randomization (KASLR)
This patch adds support for relocating the kernel to a random address.

Entropy is derived from the banner, which will change every build and
random_get_entropy() which should provide additional runtime entropy.

The kernel is relocated by up to RANDOMIZE_BASE_MAX_OFFSET bytes from
its link address. Because relocation happens so early during the kernel
booting, the amount of physical memory has not yet been determined. This
means the only way to limit relocation within the available memory is
via Kconfig. So we limit the maximum value of RANDOMIZE_BASE_MAX_OFFSET
to 256M (0x10000000) because our memory layout has many holes.

Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Xi Ruoyao <xry111@xry111.site> # Fix compiler warnings
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:17 +08:00
Youling Tang
d8da19fbde LoongArch: Add support for kernel relocation
This config allows to compile kernel as PIE and to relocate it at any
virtual address at runtime: this paves the way to KASLR.

Runtime relocation is possible since relocation metadata are embedded
into the kernel.

Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Xi Ruoyao <xry111@xry111.site> # Use arch_initcall
Signed-off-by: Jinyang He <hejinyang@loongson.cn> # Provide la_abs relocation code
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:16 +08:00
Youling Tang
396233c650 LoongArch: Add la_abs macro implementation
Use the "la_abs macro" instead of the "la.abs pseudo instruction" to
prepare for the subsequent PIE kernel. When PIE is not enabled, la_abs
is equivalent to la.abs.

Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:16 +08:00
Youling Tang
8cbd5ebfe2 LoongArch: Add JUMP_VIRT_ADDR macro implementation to avoid using la.abs
Add JUMP_VIRT_ADDR macro implementation to avoid using la.abs directly.
This is a preparation for subsequent patches.

Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:16 +08:00
Xi Ruoyao
f733f119e9 LoongArch: Use la.pcrel instead of la.abs when it's trivially possible
Let's start to kill la.abs in preparation for the subsequent support of
the PIE kernel.

BTW, Re-tab the indention in arch/loongarch/kernel/entry.S for alignment.

Signed-off-by: Xi Ruoyao <xry111@xry111.site>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:16 +08:00
Jinyang He
fd200632d0 LoongArch: Fix Chinese comma in cpu.h
Fix Chinese comma introduced by accident in cpu.h.

Signed-off-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-02-25 22:12:16 +08:00
Linus Torvalds
3822a7c409 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X bit.
 
 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.
 
 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes
 
 - Johannes Weiner has a series ("mm: push down lock_page_memcg()") which
   does perform some memcg maintenance and cleanup work.
 
 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".  These filters provide users
   with finer-grained control over DAMOS's actions.  SeongJae has also done
   some DAMON cleanup work.
 
 - Kairui Song adds a series ("Clean up and fixes for swap").
 
 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".
 
 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series.  It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.
 
 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".
 
 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".
 
 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".
 
 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".
 
 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series "mm:
   support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap
   PTEs".
 
 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".
 
 - Sergey Senozhatsky has improved zsmalloc's memory utilization with his
   series "zsmalloc: make zspage chain size configurable".
 
 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.  The previous BPF-based approach had
   shortcomings.  See "mm: In-kernel support for memory-deny-write-execute
   (MDWE)".
 
 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
 
 - T.J.  Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".
 
 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a per-node
   basis.  See the series "Introduce per NUMA node memory error
   statistics".
 
 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage during
   compaction".
 
 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".
 
 - Christoph Hellwig has removed block_device_operations.rw_page() in ths
   series "remove ->rw_page".
 
 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".
 
 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier functions".
 
 - Some pagemap cleanup and generalization work in Mike Rapoport's series
   "mm, arch: add generic implementation of pfn_valid() for FLATMEM" and
   "fixups for generic implementation of pfn_valid()"
 
 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
 
 - Jason Gunthorpe rationalized the GUP system's interface to the rest of
   the kernel in the series "Simplify the external interface for GUP".
 
 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface.  To support this, we'll temporarily be
   printing warnings when people use the debugfs interface.  See the series
   "mm/damon: deprecate DAMON debugfs interface".
 
 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.
 
 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".
 
 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY/PoPQAKCRDdBJ7gKXxA
 jlvpAPsFECUBBl20qSue2zCYWnHC7Yk4q9ytTkPB/MMDrFEN9wD/SNKEm2UoK6/K
 DmxHkn0LAitGgJRS/W9w81yrgig9tAQ=
 =MlGs
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
   F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X
   bit.

 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.

 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes

 - Johannes Weiner has a series ("mm: push down lock_page_memcg()")
   which does perform some memcg maintenance and cleanup work.

 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".

   These filters provide users with finer-grained control over DAMOS's
   actions. SeongJae has also done some DAMON cleanup work.

 - Kairui Song adds a series ("Clean up and fixes for swap").

 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".

 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.

 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".

 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".

 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".

 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".

 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series
   "mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
   swap PTEs".

 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".

 - Sergey Senozhatsky has improved zsmalloc's memory utilization with
   his series "zsmalloc: make zspage chain size configurable".

 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.

   The previous BPF-based approach had shortcomings. See "mm: In-kernel
   support for memory-deny-write-execute (MDWE)".

 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".

 - T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".

 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a
   per-node basis. See the series "Introduce per NUMA node memory error
   statistics".

 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage
   during compaction".

 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".

 - Christoph Hellwig has removed block_device_operations.rw_page() in
   ths series "remove ->rw_page".

 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".

 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier
   functions".

 - Some pagemap cleanup and generalization work in Mike Rapoport's
   series "mm, arch: add generic implementation of pfn_valid() for
   FLATMEM" and "fixups for generic implementation of pfn_valid()"

 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".

 - Jason Gunthorpe rationalized the GUP system's interface to the rest
   of the kernel in the series "Simplify the external interface for
   GUP".

 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface. To support this, we'll temporarily be
   printing warnings when people use the debugfs interface. See the
   series "mm/damon: deprecate DAMON debugfs interface".

 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.

 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".

 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".

* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
  include/linux/migrate.h: remove unneeded externs
  mm/memory_hotplug: cleanup return value handing in do_migrate_range()
  mm/uffd: fix comment in handling pte markers
  mm: change to return bool for isolate_movable_page()
  mm: hugetlb: change to return bool for isolate_hugetlb()
  mm: change to return bool for isolate_lru_page()
  mm: change to return bool for folio_isolate_lru()
  objtool: add UACCESS exceptions for __tsan_volatile_read/write
  kmsan: disable ftrace in kmsan core code
  kasan: mark addr_has_metadata __always_inline
  mm: memcontrol: rename memcg_kmem_enabled()
  sh: initialize max_mapnr
  m68k/nommu: add missing definition of ARCH_PFN_OFFSET
  mm: percpu: fix incorrect size in pcpu_obj_full_size()
  maple_tree: reduce stack usage with gcc-9 and earlier
  mm: page_alloc: call panic() when memoryless node allocation fails
  mm: multi-gen LRU: avoid futile retries
  migrate_pages: move THP/hugetlb migration support check to simplify code
  migrate_pages: batch flushing TLB
  migrate_pages: share more code between _unmap and _move
  ...
2023-02-23 17:09:35 -08:00
Mike Rapoport (IBM)
e5080a9677 mm, arch: add generic implementation of pfn_valid() for FLATMEM
Every architecture that supports FLATMEM memory model defines its own
version of pfn_valid() that essentially compares a pfn to max_mapnr.

Use mips/powerpc version implemented as static inline as a generic
implementation of pfn_valid() and drop its per-architecture definitions.

[rppt@kernel.org: fix the generic pfn_valid()]
  Link: https://lkml.kernel.org/r/Y9lg7R1Yd931C+y5@kernel.org
Link: https://lkml.kernel.org/r/20230129124235.209895-5-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Guo Ren <guoren@kernel.org>		[csky]
Acked-by: Huacai Chen <chenhuacai@loongson.cn>	[LoongArch]
Acked-by: Stafford Horne <shorne@gmail.com>	[OpenRISC]
Acked-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
Reviewed-by: David Hildenbrand <david@redhat.com>
Tested-by: Conor Dooley <conor.dooley@microchip.com>
Cc: Brian Cain <bcain@quicinc.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-09 16:51:41 -08:00
Suren Baghdasaryan
1c71222e5f mm: replace vma->vm_flags direct modifications with modifier calls
Replace direct modifications to vma->vm_flags with calls to modifier
functions to be able to track flag changes and to keep vma locking
correctness.

[akpm@linux-foundation.org: fix drivers/misc/open-dice.c, per Hyeonggon Yoo]
Link: https://lkml.kernel.org/r/20230126193752.297968-5-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjun Roy <arjunroy@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Oskolkov <posk@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-09 16:51:39 -08:00
David Hildenbrand
950fe885a8 mm: remove __HAVE_ARCH_PTE_SWP_EXCLUSIVE
__HAVE_ARCH_PTE_SWP_EXCLUSIVE is now supported by all architectures that
support swp PTEs, so let's drop it.

Link: https://lkml.kernel.org/r/20230113171026.582290-27-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-02 22:33:11 -08:00
David Hildenbrand
ad3150f11b loongarch/mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE
Let's support __HAVE_ARCH_PTE_SWP_EXCLUSIVE by stealing one bit from the
type.  Generic MM currently only uses 5 bits for the type
(MAX_SWAPFILES_SHIFT), so the stolen bit is effectively unused.

While at it, also mask the type in mk_swap_pte().

Note that this bit does not conflict with swap PMDs and could also be used
in swap PMD context later.

Link: https://lkml.kernel.org/r/20230113171026.582290-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-02 22:33:07 -08:00
Jinyang He
dc74a9e8a8 LoongArch: Add generic ex-handler unwind in prologue unwinder
When exception is triggered, code flow go handle_\exception in some
cases. One of stackframe in this case as follows,

high -> +-------+
        | REGS  |  <- a pt_regs
        |       |
        |       |  <- ex trigger
        | REGS  |  <- ex pt_regs   <-+
        |       |                    |
        |       |                    |
low  -> +-------+           ->unwind-+

When unwinder unwinds to handler_\exception it cannot go on prologue
analysis. Because it is an asynchronous code flow, we should get the
next frame PC from regs->csr_era rather than regs->regs[1]. At init time
we copy the handlers to eentry and also copy them to NUMA-affine memory
named pcpu_handlers if NUMA is enabled. Thus, unwinder cannot unwind
normally. To solve this, we try to give some hints in handler_\exception
and fixup unwinders in unwind_next_frame().

Reported-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-01-17 11:42:16 +08:00
Jinyang He
c5ac25e0d7 LoongArch: Strip guess unwinder out from prologue unwinder
The prolugue unwinder rely on symbol info. When PC is not in kernel text
address, it cannot find relative symbol info and it will be broken. The
guess unwinder will be used in this case. And the guess unwinder code in
prolugue unwinder is redundant. Strip it out and set the unwinder type
in unwind_state. Make guess_unwinder::unwind_next_frame() as default way
when other unwinders cannot unwind in some extreme case.

Signed-off-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-01-17 11:42:16 +08:00
Jinyang He
5bb8d34449 LoongArch: Use correct sp value to get graph addr in stack unwinders
The stack frame when function_graph enable like follows,

---------  <- function sp_on_entry
    |
    |
    |
 FAKE_RA   <- sp_on_entry - sizeof(pt_regs) + PT_R1
    |
---------  <- sp_on_entry - sizeof(pt_regs)

So if we want to get the &FAKE_RA we should get sp_on_entry first. In
the unwinder_prologue case, we can get the sp_on_entry as state->sp,
because we try to calculate each CFA and the ra saved address. But in
the unwinder_guess case, we cannot get it because we do not try to
calculate the CFA. Although LoongArch have not fixed frame, the $ra is
saved at CFA - 8 in most cases, we can try guess, too. As we store the
pc in state, we not need to dereference state->sp, too.

Signed-off-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-01-17 11:42:16 +08:00
Youling Tang
3200983fa8 LoongArch: Simplify larch_insn_gen_xxx implementation
Simplify larch_insn_gen_xxx implementation by reusing emit_xxx.

Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-01-17 11:42:16 +08:00
Tiezhu Yang
2959fce7fd LoongArch: Use common function sign_extend64()
There exists a common function sign_extend64() to sign extend a 64-bit
value using specified bit as sign-bit in include/linux/bitops.h, it is
more efficient, let us use it and remove the arch-specific sign_extend()
under arch/loongarch.

Suggested-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-01-17 11:42:16 +08:00
Linus Torvalds
2f26e42455 LoongArch changes for v6.2
1, Switch to relative exception tables;
 2, Add unaligned access support;
 3, Add alternative runtime patching mechanism;
 4, Add FDT booting support from efi system table;
 5, Add suspend/hibernation (ACPI S3/S4) support;
 6, Add basic STACKPROTECTOR support;
 7, Add ftrace (function tracer) support;
 8, Update the default config file.
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmOZHLwWHGNoZW5odWFj
 YWlAa2VybmVsLm9yZwAKCRAChivD8uImege9D/0XkNpVHM/8H2JaEKT7V8PldsPb
 l8JIsU8UJRebcB9vOLHCfotFB3MuUakvAq6Mse+hQTGuajb9iIo3Zrpy4UG3WcEn
 3UF6YwT8UZ4MBJzlJvZT8G1465xYDCnL57VsbYYmkatZYwkOhVGvwdAPWlA5l86e
 LoFsmAxUYdk4RtdUNrvyhKMeeVwx4WWgKEitx8vXv18G8C+tabwSro58n5x/RxBL
 T82Pgy2aPA58ccUvbxctzNytPlem+WKRqKKCUCRzJPeJ1O4E/DIyR6kACb9Dv5Eh
 GVxF6P98+KL3XckNxwNgoeY54j+NmD23z1qZJqPW8DN8gNVU3zZBNYfuEXSuff9i
 Ti4NuFrRtWyJHkb8Gc0zkMZV6AjnQsuO8KF9NE/Bki88g+1WbE9xrbyJkAqhGggj
 ddSkVs5duXxzL/10RAcyZbdG1/IsIReRifi52FYe/3QsMOAbTR3RHehv8k803ITM
 sXrl4KoTmfe9/tNCIP205ipXO3xw7PRjOSZtOXIMhHcAq5SLAXAw+1TbWC9xyzAL
 LQMIoQHA1Q+AhD4wXk3HK+8i9jzZzPsdu1/N33VEfSLLwpguQ3JDBYmw2tTmWxQR
 Yo3YJIj3L78FGUPFOSiKiHMsEcwh7QggSdqIcM33Y2XQPTyr5n9pZ0liclgQrl5a
 /jfLo1FQxCVNztChEw==
 =iplm
 -----END PGP SIGNATURE-----

Merge tag 'loongarch-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson

Pull LoongArch updates from Huacai Chen:

 - Switch to relative exception tables

 - Add unaligned access support

 - Add alternative runtime patching mechanism

 - Add FDT booting support from efi system table

 - Add suspend/hibernation (ACPI S3/S4) support

 - Add basic STACKPROTECTOR support

 - Add ftrace (function tracer) support

 - Update the default config file

* tag 'loongarch-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: (24 commits)
  LoongArch: Update Loongson-3 default config file
  LoongArch: modules/ftrace: Initialize PLT at load time
  LoongArch/ftrace: Add HAVE_FUNCTION_GRAPH_RET_ADDR_PTR support
  LoongArch/ftrace: Add HAVE_DYNAMIC_FTRACE_WITH_ARGS support
  LoongArch/ftrace: Add HAVE_DYNAMIC_FTRACE_WITH_REGS support
  LoongArch/ftrace: Add dynamic function graph tracer support
  LoongArch/ftrace: Add dynamic function tracer support
  LoongArch/ftrace: Add recordmcount support
  LoongArch/ftrace: Add basic support
  LoongArch: module: Use got/plt section indices for relocations
  LoongArch: Add basic STACKPROTECTOR support
  LoongArch: Add hibernation (ACPI S4) support
  LoongArch: Add suspend (ACPI S3) support
  LoongArch: Add processing ISA Node in DeviceTree
  LoongArch: Add FDT booting support from efi system table
  LoongArch: Use alternative to optimize libraries
  LoongArch: Add alternative runtime patching mechanism
  LoongArch: Add unaligned access support
  LoongArch: BPF: Add BPF exception tables
  LoongArch: Remove the .fixup section usage
  ...
2022-12-19 08:23:27 -06:00
Linus Torvalds
e2ca6ba6ba MM patches for 6.2-rc1.
- More userfaultfs work from Peter Xu.
 
 - Several convert-to-folios series from Sidhartha Kumar and Huang Ying.
 
 - Some filemap cleanups from Vishal Moola.
 
 - David Hildenbrand added the ability to selftest anon memory COW handling.
 
 - Some cpuset simplifications from Liu Shixin.
 
 - Addition of vmalloc tracing support by Uladzislau Rezki.
 
 - Some pagecache folioifications and simplifications from Matthew Wilcox.
 
 - A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use it.
 
 - Miguel Ojeda contributed some cleanups for our use of the
   __no_sanitize_thread__ gcc keyword.  This series shold have been in the
   non-MM tree, my bad.
 
 - Naoya Horiguchi improved the interaction between memory poisoning and
   memory section removal for huge pages.
 
 - DAMON cleanups and tuneups from SeongJae Park
 
 - Tony Luck fixed the handling of COW faults against poisoned pages.
 
 - Peter Xu utilized the PTE marker code for handling swapin errors.
 
 - Hugh Dickins reworked compound page mapcount handling, simplifying it
   and making it more efficient.
 
 - Removal of the autonuma savedwrite infrastructure from Nadav Amit and
   David Hildenbrand.
 
 - zram support for multiple compression streams from Sergey Senozhatsky.
 
 - David Hildenbrand reworked the GUP code's R/O long-term pinning so
   that drivers no longer need to use the FOLL_FORCE workaround which
   didn't work very well anyway.
 
 - Mel Gorman altered the page allocator so that local IRQs can remnain
   enabled during per-cpu page allocations.
 
 - Vishal Moola removed the try_to_release_page() wrapper.
 
 - Stefan Roesch added some per-BDI sysfs tunables which are used to
   prevent network block devices from dirtying excessive amounts of
   pagecache.
 
 - David Hildenbrand did some cleanup and repair work on KSM COW
   breaking.
 
 - Nhat Pham and Johannes Weiner have implemented writeback in zswap's
   zsmalloc backend.
 
 - Brian Foster has fixed a longstanding corner-case oddity in
   file[map]_write_and_wait_range().
 
 - sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
   Chen.
 
 - Shiyang Ruan has done some work on fsdax, to make its reflink mode
   work better under xfstests.  Better, but still not perfect.
 
 - Christoph Hellwig has removed the .writepage() method from several
   filesystems.  They only need .writepages().
 
 - Yosry Ahmed wrote a series which fixes the memcg reclaim target
   beancounting.
 
 - David Hildenbrand has fixed some of our MM selftests for 32-bit
   machines.
 
 - Many singleton patches, as usual.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY5j6ZwAKCRDdBJ7gKXxA
 jkDYAP9qNeVqp9iuHjZNTqzMXkfmJPsw2kmy2P+VdzYVuQRcJgEAgoV9d7oMq4ml
 CodAgiA51qwzId3GRytIo/tfWZSezgA=
 =d19R
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - More userfaultfs work from Peter Xu

 - Several convert-to-folios series from Sidhartha Kumar and Huang Ying

 - Some filemap cleanups from Vishal Moola

 - David Hildenbrand added the ability to selftest anon memory COW
   handling

 - Some cpuset simplifications from Liu Shixin

 - Addition of vmalloc tracing support by Uladzislau Rezki

 - Some pagecache folioifications and simplifications from Matthew
   Wilcox

 - A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
   it

 - Miguel Ojeda contributed some cleanups for our use of the
   __no_sanitize_thread__ gcc keyword.

   This series should have been in the non-MM tree, my bad

 - Naoya Horiguchi improved the interaction between memory poisoning and
   memory section removal for huge pages

 - DAMON cleanups and tuneups from SeongJae Park

 - Tony Luck fixed the handling of COW faults against poisoned pages

 - Peter Xu utilized the PTE marker code for handling swapin errors

 - Hugh Dickins reworked compound page mapcount handling, simplifying it
   and making it more efficient

 - Removal of the autonuma savedwrite infrastructure from Nadav Amit and
   David Hildenbrand

 - zram support for multiple compression streams from Sergey Senozhatsky

 - David Hildenbrand reworked the GUP code's R/O long-term pinning so
   that drivers no longer need to use the FOLL_FORCE workaround which
   didn't work very well anyway

 - Mel Gorman altered the page allocator so that local IRQs can remnain
   enabled during per-cpu page allocations

 - Vishal Moola removed the try_to_release_page() wrapper

 - Stefan Roesch added some per-BDI sysfs tunables which are used to
   prevent network block devices from dirtying excessive amounts of
   pagecache

 - David Hildenbrand did some cleanup and repair work on KSM COW
   breaking

 - Nhat Pham and Johannes Weiner have implemented writeback in zswap's
   zsmalloc backend

 - Brian Foster has fixed a longstanding corner-case oddity in
   file[map]_write_and_wait_range()

 - sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
   Chen

 - Shiyang Ruan has done some work on fsdax, to make its reflink mode
   work better under xfstests. Better, but still not perfect

 - Christoph Hellwig has removed the .writepage() method from several
   filesystems. They only need .writepages()

 - Yosry Ahmed wrote a series which fixes the memcg reclaim target
   beancounting

 - David Hildenbrand has fixed some of our MM selftests for 32-bit
   machines

 - Many singleton patches, as usual

* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
  mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
  mm: mmu_gather: allow more than one batch of delayed rmaps
  mm: fix typo in struct pglist_data code comment
  kmsan: fix memcpy tests
  mm: add cond_resched() in swapin_walk_pmd_entry()
  mm: do not show fs mm pc for VM_LOCKONFAULT pages
  selftests/vm: ksm_functional_tests: fixes for 32bit
  selftests/vm: cow: fix compile warning on 32bit
  selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
  mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
  mm,thp,rmap: fix races between updates of subpages_mapcount
  mm: memcg: fix swapcached stat accounting
  mm: add nodes= arg to memory.reclaim
  mm: disable top-tier fallback to reclaim on proactive reclaim
  selftests: cgroup: make sure reclaim target memcg is unprotected
  selftests: cgroup: refactor proactive reclaim code to reclaim_until()
  mm: memcg: fix stale protection of reclaim target memcg
  mm/mmap: properly unaccount memory on mas_preallocate() failure
  omfs: remove ->writepage
  jfs: remove ->writepage
  ...
2022-12-13 19:29:45 -08:00
Qing Zhang
28ac0a9e04 LoongArch: modules/ftrace: Initialize PLT at load time
This patch implements ftrace trampolines through plt entry.

Tested by forcing ftrace_make_call() to use the module PLT, and then
loading up a module after setting up ftrace with:

| echo ":mod:<module-name>" > set_ftrace_filter;
| echo function > current_tracer;
| modprobe <module-name>

Since FTRACE_ADDR/FTRACE_REGS_ADDR is only defined when CONFIG_DYNAMIC_
FTRACE is selected, we wrap their usage in module_init_ftrace_plt() with
ifdeffery rather than using IS_ENABLED().

Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:41:54 +08:00
Qing Zhang
a51ac5246d LoongArch/ftrace: Add HAVE_FUNCTION_GRAPH_RET_ADDR_PTR support
ftrace_graph_ret_addr() can be called by stack unwinding code to convert
a found stack return address ('ret') to its original value, in case the
function graph tracer has modified it to be 'return_to_handler'. If the
hasn't been modified, the unchanged value of 'ret' is returned.

Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:41:54 +08:00
Qing Zhang
ac7127e1cc LoongArch/ftrace: Add HAVE_DYNAMIC_FTRACE_WITH_ARGS support
Allow for arguments to be passed in to ftrace_regs by default. If this
is set, then arguments and stack can be found from the pt_regs.

1. HAVE_DYNAMIC_FTRACE_WITH_ARGS don't need special hook for graph
tracer entry point, but instead we can use graph_ops::func function to
install the return_hooker.

2. Livepatch requires this option in the future.

Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:41:53 +08:00
Qing Zhang
8778ba2c8a LoongArch/ftrace: Add HAVE_DYNAMIC_FTRACE_WITH_REGS support
This patch implements CONFIG_DYNAMIC_FTRACE_WITH_REGS on LoongArch,
which allows a traced function's arguments (and some other registers)
to be captured into a struct pt_regs, allowing these to be inspected
and modified.

Co-developed-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:41:53 +08:00
Qing Zhang
4733f09d88 LoongArch/ftrace: Add dynamic function tracer support
The compiler has inserted 2 NOPs before the regular function prologue.
T series registers are available and safe because of LoongArch's psABI.

At runtime, we can replace nop with bl to enable ftrace call and replace
bl with nop to disable ftrace call. The bl instruction requires us to
save the original RA value, so it saves RA at t0 here.

Details are:

| Compiled   |       Disabled         |        Enabled         |
+------------+------------------------+------------------------+
| nop        | move     t0, ra        | move    t0, ra         |
| nop        | nop                    | bl      ftrace_caller  |
| func_body  | func_body              | func_body              |

The RA value will be recovered by ftrace_regs_entry, and restored into
RA before returning to the regular function prologue. When a function is
not being traced, the "move t0, ra" is not harmful.

1) ftrace_make_call, ftrace_make_nop (in kernel/ftrace.c)
   The two functions turn each recorded call site of filtered functions
   into a call to ftrace_caller or nops.

2) ftracce_update_ftrace_func (in kernel/ftrace.c)
   turns the nops at ftrace_call into a call to a generic entry for
   function tracers.

3) ftrace_caller (in kernel/mcount_dyn.S)
   The entry where each _mcount call sites calls to once they are
   filtered to be traced.

Co-developed-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:41:53 +08:00
Qing Zhang
dbe3ba3018 LoongArch/ftrace: Add basic support
This patch contains basic ftrace support for LoongArch. Specifically,
function tracer (HAVE_FUNCTION_TRACER), function graph tracer (HAVE_
FUNCTION_GRAPH_TRACER) are implemented following the instructions in
Documentation/trace/ftrace-design.txt.

Use `-pg` makes stub like a child function `void _mcount(void *ra)`.
Thus, it can be seen store RA and alloc stack before `call _mcount`.
Find `alloc stack` at first, and then find `store RA`.

Note that the functions in both inst.c and time.c should not be hooked
with the compiler's -pg option: to prevent infinite self-referencing for
the former, and to ignore early setup stuff for the latter.

Co-developed-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:41:53 +08:00
Huacai Chen
9151dde403 LoongArch: module: Use got/plt section indices for relocations
Instead of saving a pointer to the .got, .plt and .plt_idx sections to
apply {got,plt}-based relocations, save and use their section indices
instead.

The mod->arch.{core,init}.{got,plt} pointers were problematic for live-
patch because they pointed within temporary section headers (provided by
the module loader via info->sechdrs) that would be freed after module
load. Since livepatch modules may need to apply relocations post-module-
load (for example, to patch a module that is loaded later), using section
indices to offset into the section headers (instead of accessing them
through a saved pointer) allows livepatch modules on LoongArch to pass
in their own copy of the section headers to apply_relocate_add() to
apply delayed relocations.

The method used is same as commit c8ebf64eab ("arm64/module: use plt
section indices for relocations").

Signed-off-by: Hongchen Zhang <zhanghongchen@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:41:53 +08:00
Huacai Chen
09f33601bf LoongArch: Add basic STACKPROTECTOR support
Add basic stack protector support similar to other architectures. A
constant canary value is set at boot time, and with help of compiler's
-fstack-protector we can detect stack corruption.

Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:41:53 +08:00
Huacai Chen
366bb35a8e LoongArch: Add suspend (ACPI S3) support
Add suspend (Suspend To RAM, aka ACPI S3) support for LoongArch.

Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:41:53 +08:00
Binbin Zhou
88d4d957ed LoongArch: Add FDT booting support from efi system table
Since commit 40cd01a9c324("efi/loongarch: libstub: remove dependency on
flattened DT"), we can parse the FDT from efi system table.

And now, LoongArch is coming to support booting with FDT, so we add the
relevant booting support as well as parameter parsing.

Signed-off-by: Binbin Zhou <zhoubinbin@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:41:53 +08:00
Huacai Chen
a275a82dcd LoongArch: Use alternative to optimize libraries
Use the alternative to optimize common libraries according whether CPU
has UAL (hardware unaligned access support) feature, including memset(),
memcopy(), memmove(), copy_user() and clear_user().

We have tested UnixBench on a Loongson-3A5000 quad-core machine (1.6GHz):

1, One copy, before patch:

System Benchmarks Index Values               BASELINE       RESULT    INDEX
Dhrystone 2 using register variables         116700.0    9566582.0    819.8
Double-Precision Whetstone                       55.0       2805.3    510.1
Execl Throughput                                 43.0       2120.0    493.0
File Copy 1024 bufsize 2000 maxblocks          3960.0     209833.0    529.9
File Copy 256 bufsize 500 maxblocks            1655.0      89400.0    540.2
File Copy 4096 bufsize 8000 maxblocks          5800.0     320036.0    551.8
Pipe Throughput                               12440.0     340624.0    273.8
Pipe-based Context Switching                   4000.0     109939.1    274.8
Process Creation                                126.0       4728.7    375.3
Shell Scripts (1 concurrent)                     42.4       2223.1    524.3
Shell Scripts (8 concurrent)                      6.0        883.1   1471.9
System Call Overhead                          15000.0     518639.1    345.8
                                                                   ========
System Benchmarks Index Score                                         500.2

2, One copy, after patch:

System Benchmarks Index Values               BASELINE       RESULT    INDEX
Dhrystone 2 using register variables         116700.0    9567674.7    819.9
Double-Precision Whetstone                       55.0       2805.5    510.1
Execl Throughput                                 43.0       2392.7    556.4
File Copy 1024 bufsize 2000 maxblocks          3960.0     417804.0   1055.1
File Copy 256 bufsize 500 maxblocks            1655.0     112909.5    682.2
File Copy 4096 bufsize 8000 maxblocks          5800.0    1255207.4   2164.2
Pipe Throughput                               12440.0     555712.0    446.7
Pipe-based Context Switching                   4000.0      99964.5    249.9
Process Creation                                126.0       5192.5    412.1
Shell Scripts (1 concurrent)                     42.4       2302.4    543.0
Shell Scripts (8 concurrent)                      6.0        919.6   1532.6
System Call Overhead                          15000.0     511159.3    340.8
                                                                   ========
System Benchmarks Index Score                                         640.1

3, Four copies, before patch:

System Benchmarks Index Values               BASELINE       RESULT    INDEX
Dhrystone 2 using register variables         116700.0   38268610.5   3279.2
Double-Precision Whetstone                       55.0      11222.2   2040.4
Execl Throughput                                 43.0       7892.0   1835.3
File Copy 1024 bufsize 2000 maxblocks          3960.0     235149.6    593.8
File Copy 256 bufsize 500 maxblocks            1655.0      74959.6    452.9
File Copy 4096 bufsize 8000 maxblocks          5800.0     545048.5    939.7
Pipe Throughput                               12440.0    1337359.0   1075.0
Pipe-based Context Switching                   4000.0     473663.9   1184.2
Process Creation                                126.0      17491.2   1388.2
Shell Scripts (1 concurrent)                     42.4       6865.7   1619.3
Shell Scripts (8 concurrent)                      6.0       1015.9   1693.1
System Call Overhead                          15000.0    1899535.2   1266.4
                                                                   ========
System Benchmarks Index Score                                        1278.3

4, Four copies, after patch:

System Benchmarks Index Values               BASELINE       RESULT    INDEX
Dhrystone 2 using register variables         116700.0   38272815.5   3279.6
Double-Precision Whetstone                       55.0      11222.8   2040.5
Execl Throughput                                 43.0       8839.2   2055.6
File Copy 1024 bufsize 2000 maxblocks          3960.0     313912.9    792.7
File Copy 256 bufsize 500 maxblocks            1655.0      80976.1    489.3
File Copy 4096 bufsize 8000 maxblocks          5800.0    1176594.3   2028.6
Pipe Throughput                               12440.0    2100941.9   1688.9
Pipe-based Context Switching                   4000.0     476696.4   1191.7
Process Creation                                126.0      18394.7   1459.9
Shell Scripts (1 concurrent)                     42.4       7172.2   1691.6
Shell Scripts (8 concurrent)                      6.0       1058.3   1763.9
System Call Overhead                          15000.0    1874714.7   1249.8
                                                                   ========
System Benchmarks Index Score                                        1488.8

Signed-off-by: Jun Yi <yijun@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:36:11 +08:00
Huacai Chen
19e5eb15b0 LoongArch: Add alternative runtime patching mechanism
Introduce the "alternative" mechanism from ARM64 and x86 for LoongArch
to apply runtime patching. The main purpose of this patch is to provide
a framework. In future we can use this mechanism (i.e., the ALTERNATIVE
and ALTERNATIVE_2 macros) to optimize hotspot functions according to cpu
features.

Signed-off-by: Jun Yi <yijun@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:36:11 +08:00
Huacai Chen
61a6fccc0b LoongArch: Add unaligned access support
Loongson-2 series (Loongson-2K500, Loongson-2K1000) don't support
unaligned access in hardware, while Loongson-3 series (Loongson-3A5000,
Loongson-3C5000) are configurable whether support unaligned access in
hardware. This patch add unaligned access emulation for those LoongArch
processors without hardware support.

Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:36:11 +08:00
Youling Tang
dbcd7f5faf LoongArch: BPF: Add BPF exception tables
Inspired by commit 800834285361("bpf, arm64: Add BPF exception tables"),
do similar to LoongArch to add BPF exception tables.

When a tracing BPF program attempts to read memory without using the
bpf_probe_read() helper, the verifier marks the load instruction with
the BPF_PROBE_MEM flag. Since the LoongArch JIT does not currently
recognize this flag it falls back to the interpreter.

Add support for BPF_PROBE_MEM, by appending an exception table to the
BPF program. If the load instruction causes a data abort, the fixup
infrastructure finds the exception table and fixes up the fault, by
clearing the destination register and jumping over the faulting
instruction.

To keep the compact exception table entry format, inspect the pc in
fixup_exception(). A more generic solution would add a "handler" field
to the table entry, like on x86, s390 and arm64, etc.

Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:36:11 +08:00
Youling Tang
672999cfae LoongArch: extable: Add a dedicated uaccess handler
Inspired by commit 2e77a62cb3a6("arm64: extable: add a dedicated uaccess
handler"), do similar to LoongArch to add a dedicated uaccess exception
handler to update registers in exception context and subsequently return
back into the function which faulted, so we remove the need for fixups
specialized to each faulting instruction.

Add gpr-num.h here because we need to map the same GPR names to integer
constants, so that we can use this to build meta-data for the exception
fixups.

The compiler treats gpr 0 as zero rather than $r0, so set it separately
to .L__gpr_num_zero, otherwise the following assembly error will occurs:

{standard input}: Assembler messages:
{standard input}:1074: Error: invalid operands (*UND* and *ABS* sections) for `<<'
{standard input}:1160: Error: invalid operands (*UND* and *ABS* sections) for `<<'
make[1]: *** [scripts/Makefile.build:249: fs/fcntl.o] Error 1

Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:36:11 +08:00
Youling Tang
26bc824412 LoongArch: extable: Add type and data fields
This is a LoongArch port of commit d6e2cc5647 ("arm64: extable: add
`type` and `data` fields").

Subsequent patches will add specialized handlers for fixups, in addition
to the simple PC fixup we have today. In preparation, this patch adds a
new `type` field to struct exception_table_entry, and uses this to
distinguish the fixup and other cases. A `data` field is also added so
that subsequent patches can associate data specific to each exception
site (e.g. register numbers).

Handlers are named ex_handler_*() for consistency, following the example
of x86. At the same time, get_ex_fixup() is split out into a helper so
that it can be used by other ex_handler_*() functions in the subsequent
patches.

Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:36:11 +08:00
Youling Tang
3d36f4298b LoongArch: Switch to relative exception tables
Similar to other architectures such as arm64, x86, riscv and so on, use
offsets relative to the exception table entry values rather than their
absolute addresses for both the exception location and the fixup.

However, LoongArch label difference because it will actually produce two
relocations, a pair of R_LARCH_ADD32 and R_LARCH_SUB32. Take simple code
below for example:

$ cat test_ex_table.S
.section .text
1:
        nop
.section __ex_table,"a"
        .balign 4
        .long (1b - .)
.previous

$ loongarch64-unknown-linux-gnu-gcc -c test_ex_table.S
$ loongarch64-unknown-linux-gnu-readelf -Wr test_ex_table.o

Relocation section '.rela__ex_table' at offset 0x100 contains 2 entries:
    Offset            Info             Type         Symbol's Value   Symbol's Name + Addend
0000000000000000 0000000600000032 R_LARCH_ADD32    0000000000000000  .L1^B1 + 0
0000000000000000 0000000500000037 R_LARCH_SUB32    0000000000000000  L0^A + 0

The modpost will complain the R_LARCH_SUB32 relocation, so we need to
patch modpost.c to skip this relocation for .rela__ex_table section.

Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:36:11 +08:00
Youling Tang
508f28c671 LoongArch: Consolidate __ex_table construction
Consolidate all the __ex_table constuction code with a _ASM_EXTABLE or
_asm_extable helper.

There should be no functional change as a result of this patch.

Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-12-14 08:36:11 +08:00
Linus Torvalds
fc4c9f4504 EFI updates for v6.2:
- Refactor the zboot code so that it incorporates all the EFI stub
   logic, rather than calling the decompressed kernel as a EFI app.
 - Add support for initrd= command line option to x86 mixed mode.
 - Allow initrd= to be used with arbitrary EFI accessible file systems
   instead of just the one the kernel itself was loaded from.
 - Move some x86-only handling and manipulation of the EFI memory map
   into arch/x86, as it is not used anywhere else.
 - More flexible handling of any random seeds provided by the boot
   environment (i.e., systemd-boot) so that it becomes available much
   earlier during the boot.
 - Allow improved arch-agnostic EFI support in loaders, by setting a
   uniform baseline of supported features, and adding a generic magic
   number to the DOS/PE header. This should allow loaders such as GRUB or
   systemd-boot to reduce the amount of arch-specific handling
   substantially.
 - (arm64) Run EFI runtime services from a dedicated stack, and use it to
   recover from synchronous exceptions that might occur in the firmware
   code.
 - (arm64) Ensure that we don't allocate memory outside of the 48-bit
   addressable physical range.
 - Make EFI pstore record size configurable
 - Add support for decoding CXL specific CPER records
 -----BEGIN PGP SIGNATURE-----
 
 iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmOTQ1cACgkQw08iOZLZ
 jyQRkAv+LqaZFWeVwhAQHiw/N3RnRM0nZHea6++D2p1y/ZbCpwv3pdLl2YHQ1KmW
 wDG9Nr4C1ITLtfy1YZKeYpwloQtq9S1GZDWnFpVv/hdo7L924eRAwIlxowWn1OnP
 ruxv2PaYXyb0plh1YD1f6E1BqrfUOtajET55Kxs9ZsxmnMtDpIX3NiYy4LKMBIZC
 +Eywt41M3uBX+wgmSujFBMVVJjhOX60WhUYXqy0RXwDKOyrz/oW5td+eotSCreB6
 FVbjvwQvUdtzn4s1FayOMlTrkxxLw4vLhsaUGAdDOHd3rg3sZT9Xh1HqFFD6nss6
 ZAzAYQ6BzdiV/5WSB9meJe+BeG1hjTNKjJI6JPO2lctzYJqlnJJzI6JzBuH9vzQ0
 dffLB8NITeEW2rphIh+q+PAKFFNbXWkJtV4BMRpqmzZ/w7HwupZbUXAzbWE8/5km
 qlFpr0kmq8GlVcbXNOFjmnQVrJ8jPYn+O3AwmEiVAXKZJOsMH0sjlXHKsonme9oV
 Sk71c6Em
 =JEXz
 -----END PGP SIGNATURE-----

Merge tag 'efi-next-for-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi

Pull EFI updates from Ard Biesheuvel:
 "Another fairly sizable pull request, by EFI subsystem standards.

  Most of the work was done by me, some of it in collaboration with the
  distro and bootloader folks (GRUB, systemd-boot), where the main focus
  has been on removing pointless per-arch differences in the way EFI
  boots a Linux kernel.

   - Refactor the zboot code so that it incorporates all the EFI stub
     logic, rather than calling the decompressed kernel as a EFI app.

   - Add support for initrd= command line option to x86 mixed mode.

   - Allow initrd= to be used with arbitrary EFI accessible file systems
     instead of just the one the kernel itself was loaded from.

   - Move some x86-only handling and manipulation of the EFI memory map
     into arch/x86, as it is not used anywhere else.

   - More flexible handling of any random seeds provided by the boot
     environment (i.e., systemd-boot) so that it becomes available much
     earlier during the boot.

   - Allow improved arch-agnostic EFI support in loaders, by setting a
     uniform baseline of supported features, and adding a generic magic
     number to the DOS/PE header. This should allow loaders such as GRUB
     or systemd-boot to reduce the amount of arch-specific handling
     substantially.

   - (arm64) Run EFI runtime services from a dedicated stack, and use it
     to recover from synchronous exceptions that might occur in the
     firmware code.

   - (arm64) Ensure that we don't allocate memory outside of the 48-bit
     addressable physical range.

   - Make EFI pstore record size configurable

   - Add support for decoding CXL specific CPER records"

* tag 'efi-next-for-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (43 commits)
  arm64: efi: Recover from synchronous exceptions occurring in firmware
  arm64: efi: Execute runtime services from a dedicated stack
  arm64: efi: Limit allocations to 48-bit addressable physical region
  efi: Put Linux specific magic number in the DOS header
  efi: libstub: Always enable initrd command line loader and bump version
  efi: stub: use random seed from EFI variable
  efi: vars: prohibit reading random seed variables
  efi: random: combine bootloader provided RNG seed with RNG protocol output
  efi/cper, cxl: Decode CXL Error Log
  efi/cper, cxl: Decode CXL Protocol Error Section
  efi: libstub: fix efi_load_initrd_dev_path() kernel-doc comment
  efi: x86: Move EFI runtime map sysfs code to arch/x86
  efi: runtime-maps: Clarify purpose and enable by default for kexec
  efi: pstore: Add module parameter for setting the record size
  efi: xen: Set EFI_PARAVIRT for Xen dom0 boot on all architectures
  efi: memmap: Move manipulation routines into x86 arch tree
  efi: memmap: Move EFI fake memmap support into x86 arch tree
  efi: libstub: Undeprecate the command line initrd loader
  efi: libstub: Add mixed mode support to command line initrd loader
  efi: libstub: Permit mixed mode return types other than efi_status_t
  ...
2022-12-13 14:31:47 -08:00
Huacai Chen
1a34e7f2fc ACPI updates for 6.2-rc1
- Update the ACPICA code in the kernel to the 20221020 upstream
    version and fix a couple of issues in it:
 
    * Make acpi_ex_load_op() match upstream implementation (Rafael
      Wysocki).
    * Add support for loong_arch-specific APICs in MADT (Huacai Chen).
    * Add support for fixed PCIe wake event (Huacai Chen).
    * Add EBDA pointer sanity checks (Vit Kabele).
    * Avoid accessing VGA memory when EBDA < 1KiB (Vit Kabele).
    * Add CCEL table support to both compiler/disassembler (Kuppuswamy
      Sathyanarayanan).
    * Add a couple of new UUIDs to the known UUID list (Bob Moore).
    * Add support for FFH Opregion special context data (Sudeep Holla).
    * Improve warning message for "invalid ACPI name" (Bob Moore).
    * Add support for CXL 3.0 structures (CXIMS & RDPAS) in the CEDT
      table (Alison Schofield).
    * Prepare IORT support for revision E.e (Robin Murphy).
    * Finish support for the CDAT table (Bob Moore).
    * Fix error code path in acpi_ds_call_control_method() (Rafael
      Wysocki).
    * Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage() (Li
      Zetao).
    * Update the version of the ACPICA code in the kernel (Bob Moore).
 
  - Use ZERO_PAGE(0) instead of empty_zero_page in the ACPI device
    enumeration code (Giulio Benetti).
 
  - Change the return type of the ACPI driver remove callback to void and
    update its users accordingly (Dawei Li).
 
  - Add general support for FFH address space type and implement the low-
    level part of it for ARM64 (Sudeep Holla).
 
  - Fix stale comments in the ACPI tables parsing code and make it print
    more messages related to MADT (Hanjun Guo, Huacai Chen).
 
  - Replace invocations of generic library functions with more kernel-
    specific counterparts in the ACPI sysfs interface (Christophe JAILLET,
    Xu Panda).
 
  - Print full name paths of ACPI power resource objects during
    enumeration (Kane Chen).
 
  - Eliminate a compiler warning regarding a missing function prototype
    in the ACPI power management code (Sudeep Holla).
 
  - Fix and clean up the ACPI processor driver (Rafael Wysocki, Li Zhong,
    Colin Ian King, Sudeep Holla).
 
  - Add quirk for the HP Pavilion Gaming 15-cx0041ur to the ACPI EC
    driver (Mia Kanashi).
 
  - Add some mew ACPI backlight handling quirks and update some existing
    ones (Hans de Goede).
 
  - Make the ACPI backlight driver prefer the native backlight control
    over vendor backlight control when possible (Hans de Goede).
 
  - Drop unsetting ACPI APEI driver data on remove (Uwe Kleine-König).
 
  - Use xchg_release() instead of cmpxchg() for updating new GHES cache
    slots (Ard Biesheuvel).
 
  - Clean up the ACPI APEI code (Sudeep Holla, Christophe JAILLET, Jay Lu).
 
  - Add new I2C device enumeration quirks for Medion Lifetab S10346 and
    Lenovo Yoga Tab 3 Pro (YT3-X90F) (Hans de Goede).
 
  - Make the ACPI battery driver notify user space about adding new
    battery hooks and removing the existing ones (Armin Wolf).
 
  - Modify the pfr_update and pfr_telemetry drivers to use ACPI_FREE()
    for freeing acpi_object structures to help diagnostics (Wang ShaoBo).
 
  - Make the ACPI fan driver use sysfs_emit_at() in its sysfs interface
    code (ye xingchen).
 
  - Fix the _FIF package extraction failure handling in the ACPI fan
    driver (Hanjun Guo).
 
  - Fix the PCC mailbox handling error code path (Huisong Li).
 
  - Avoid using PCC Opregions if there is no platform interrupt allocated
    for this purpose (Huisong Li).
 
  - Use sysfs_emit() instead of scnprintf() in the ACPI PAD driver and
    CPPC library (ye xingchen).
 
  - Fix some kernel-doc issues in the ACPI GSI processing code (Xiongfeng
    Wang).
 
  - Fix name memory leak in pnp_alloc_dev() (Yang Yingliang).
 
  - Do not disable PNP devices on suspend when they cannot be re-enabled
    on resume (Hans de Goede).
 
  - Clean up the ACPI thermal driver a bit (Rafael Wysocki).
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmOXV10SHHJqd0Byand5
 c29ja2kubmV0AAoJEILEb/54YlRxuOwP/2zew6val2Jf7I/Yxf1iQLlRyGmhFnaH
 wpltJvBjlHjAUKnPQ/kLYK9fjuUY5HVgjOE03WpwhFUpmhftYTrSkhoVkJ1Mw9Zl
 RNOAEgCG484ThHiTIVp/dMPxrtfuqpdbamhWX3Q51IfXjGW8Vc/lDxIa3k/JQxyq
 ko8GFPCoebJrSCfuwaAf2+xSQaf6dq4jpL/rlIk+nYMMB9mQmXhNEhc+l97NaCe8
 MyCIGynyNbhGsIlwdHRvTp04EIe8h0Z1+Dyns7g/TrzHj3Aezy7QVZbn8sKdZWa1
 W/Ck9QST5tfpDWyr+hUXxUJjEn4Yy+GXjM2xON0EMx5q+JD9XsOpwWOVwTR7CS5s
 FwEd6I89SC8OZM86AgMtnGxygjpK24R/kGzHjhG15IQCsypc8Rvzoxl0L0YVoon/
 UTkE57GzNWVzu0pY/oXJc2aT7lVqFXMFZ6ft/zHnBRnQmrcIi+xgDO5ni5KxctFN
 TVFwbAMCuwVx6IOcVQCZM2g4aJw426KpUn19fKnXvPwR5UIufBaCzSKWMiYrtdXr
 O5BM8ElYuyKCWGYEE0GSMjZygyDpyY6ENLH7s7P1IEmFyigBzaaGBbKm108JJq4V
 eCWJYTAx8pAptsU/vfuMvEQ1ErfhZ3TTokA5Lv0uPf53VcAnWDb7EAbW6ZGMwFSI
 IaV6cv6ILoqO
 =GVzp
 -----END PGP SIGNATURE-----
mergetag object 6132a490f9
 type commit
 tag irq-core-2022-12-10
 tagger Thomas Gleixner <tglx@linutronix.de> 1670689576 +0100
 
 Updates for the interrupt core and driver subsystem:
 
  - Core:
 
    The bulk is the rework of the MSI subsystem to support per device MSI
    interrupt domains. This solves conceptual problems of the current
    PCI/MSI design which are in the way of providing support for PCI/MSI[-X]
    and the upcoming PCI/IMS mechanism on the same device.
 
    IMS (Interrupt Message Store] is a new specification which allows device
    manufactures to provide implementation defined storage for MSI messages
    contrary to the uniform and specification defined storage mechanisms for
    PCI/MSI and PCI/MSI-X. IMS not only allows to overcome the size limitations
    of the MSI-X table, but also gives the device manufacturer the freedom to
    store the message in arbitrary places, even in host memory which is shared
    with the device.
 
    There have been several attempts to glue this into the current MSI code,
    but after lengthy discussions it turned out that there is a fundamental
    design problem in the current PCI/MSI-X implementation. This needs some
    historical background.
 
    When PCI/MSI[-X] support was added around 2003, interrupt management was
    completely different from what we have today in the actively developed
    architectures. Interrupt management was completely architecture specific
    and while there were attempts to create common infrastructure the
    commonalities were rudimentary and just providing shared data structures and
    interfaces so that drivers could be written in an architecture agnostic
    way.
 
    The initial PCI/MSI[-X] support obviously plugged into this model which
    resulted in some basic shared infrastructure in the PCI core code for
    setting up MSI descriptors, which are a pure software construct for holding
    data relevant for a particular MSI interrupt, but the actual association to
    Linux interrupts was completely architecture specific. This model is still
    supported today to keep museum architectures and notorious stranglers
    alive.
 
    In 2013 Intel tried to add support for hot-pluggable IO/APICs to the kernel,
    which was creating yet another architecture specific mechanism and resulted
    in an unholy mess on top of the existing horrors of x86 interrupt handling.
    The x86 interrupt management code was already an incomprehensible maze of
    indirections between the CPU vector management, interrupt remapping and the
    actual IO/APIC and PCI/MSI[-X] implementation.
 
    At roughly the same time ARM struggled with the ever growing SoC specific
    extensions which were glued on top of the architected GIC interrupt
    controller.
 
    This resulted in a fundamental redesign of interrupt management and
    provided the today prevailing concept of hierarchical interrupt
    domains. This allowed to disentangle the interactions between x86 vector
    domain and interrupt remapping and also allowed ARM to handle the zoo of
    SoC specific interrupt components in a sane way.
 
    The concept of hierarchical interrupt domains aims to encapsulate the
    functionality of particular IP blocks which are involved in interrupt
    delivery so that they become extensible and pluggable. The X86
    encapsulation looks like this:
 
                                             |--- device 1
      [Vector]---[Remapping]---[PCI/MSI]--|...
                                             |--- device N
 
    where the remapping domain is an optional component and in case that it is
    not available the PCI/MSI[-X] domains have the vector domain as their
    parent. This reduced the required interaction between the domains pretty
    much to the initialization phase where it is obviously required to
    establish the proper parent relation ship in the components of the
    hierarchy.
 
    While in most cases the model is strictly representing the chain of IP
    blocks and abstracting them so they can be plugged together to form a
    hierarchy, the design stopped short on PCI/MSI[-X]. Looking at the hardware
    it's clear that the actual PCI/MSI[-X] interrupt controller is not a global
    entity, but strict a per PCI device entity.
 
    Here we took a short cut on the hierarchical model and went for the easy
    solution of providing "global" PCI/MSI domains which was possible because
    the PCI/MSI[-X] handling is uniform across the devices. This also allowed
    to keep the existing PCI/MSI[-X] infrastructure mostly unchanged which in
    turn made it simple to keep the existing architecture specific management
    alive.
 
    A similar problem was created in the ARM world with support for IP block
    specific message storage. Instead of going all the way to stack a IP block
    specific domain on top of the generic MSI domain this ended in a construct
    which provides a "global" platform MSI domain which allows overriding the
    irq_write_msi_msg() callback per allocation.
 
    In course of the lengthy discussions we identified other abuse of the MSI
    infrastructure in wireless drivers, NTB etc. where support for
    implementation specific message storage was just mindlessly glued into the
    existing infrastructure. Some of this just works by chance on particular
    platforms but will fail in hard to diagnose ways when the driver is used
    on platforms where the underlying MSI interrupt management code does not
    expect the creative abuse.
 
    Another shortcoming of today's PCI/MSI-X support is the inability to
    allocate or free individual vectors after the initial enablement of
    MSI-X. This results in an works by chance implementation of VFIO (PCI
    pass-through) where interrupts on the host side are not set up upfront to
    avoid resource exhaustion. They are expanded at run-time when the guest
    actually tries to use them. The way how this is implemented is that the
    host disables MSI-X and then re-enables it with a larger number of
    vectors again. That works by chance because most device drivers set up
    all interrupts before the device actually will utilize them. But that's
    not universally true because some drivers allocate a large enough number
    of vectors but do not utilize them until it's actually required,
    e.g. for acceleration support. But at that point other interrupts of the
    device might be in active use and the MSI-X disable/enable dance can
    just result in losing interrupts and therefore hard to diagnose subtle
    problems.
 
    Last but not least the "global" PCI/MSI-X domain approach prevents to
    utilize PCI/MSI[-X] and PCI/IMS on the same device due to the fact that IMS
    is not longer providing a uniform storage and configuration model.
 
    The solution to this is to implement the missing step and switch from
    global PCI/MSI domains to per device PCI/MSI domains. The resulting
    hierarchy then looks like this:
 
                               |--- [PCI/MSI] device 1
      [Vector]---[Remapping]---|...
                               |--- [PCI/MSI] device N
 
    which in turn allows to provide support for multiple domains per device:
 
                               |--- [PCI/MSI] device 1
                               |--- [PCI/IMS] device 1
      [Vector]---[Remapping]---|...
                               |--- [PCI/MSI] device N
                               |--- [PCI/IMS] device N
 
    This work converts the MSI and PCI/MSI core and the x86 interrupt
    domains to the new model, provides new interfaces for post-enable
    allocation/free of MSI-X interrupts and the base framework for PCI/IMS.
    PCI/IMS has been verified with the work in progress IDXD driver.
 
    There is work in progress to convert ARM over which will replace the
    platform MSI train-wreck. The cleanup of VFIO, NTB and other creative
    "solutions" are in the works as well.
 
  - Drivers:
 
    - Updates for the LoongArch interrupt chip drivers
 
    - Support for MTK CIRQv2
 
    - The usual small fixes and updates all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmOUsygTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoYXiD/40tXKzCzf0qFIqUlZLia1N3RRrwrNC
 DVTixuLtR9MrjwE+jWLQILa85SHInV8syXHSd35SzhsGDxkURFGi+HBgVWmysODf
 br9VSh3Gi+kt7iXtIwAg8WNWviGNmS3kPksxCko54F0YnJhMY5r5bhQVUBQkwFG2
 wES1C9Uzd4pdV2bl24Z+WKL85cSmZ+pHunyKw1n401lBABXnTF9c4f13zC14jd+y
 wDxNrmOxeL3mEH4Pg6VyrDuTOURSf3TjJjeEq3EYqvUo0FyLt9I/cKX0AELcZQX7
 fkRjrQQAvXNj39RJfeSkojDfllEPUHp7XSluhdBu5aIovSamdYGCDnuEoZ+l4MJ+
 CojIErp3Dwj/uSaf5c7C3OaDAqH2CpOFWIcrUebShJE60hVKLEpUwd6W8juplaoT
 gxyXRb1Y+BeJvO8VhMN4i7f3232+sj8wuj+HTRTTbqMhkElnin94tAx8rgwR1sgR
 BiOGMJi4K2Y8s9Rqqp0Dvs01CW4guIYvSR4YY+WDbbi1xgiev89OYs6zZTJCJe4Y
 NUwwpqYSyP1brmtdDdBOZLqegjQm+TwUb6oOaasFem4vT1swgawgLcDnPOx45bk5
 /FWt3EmnZxMz99x9jdDn1+BCqAZsKyEbEY1avvhPVMTwoVIuSX2ceTBMLseGq+jM
 03JfvdxnueM3gw==
 =9erA
 -----END PGP SIGNATURE-----

Merge tags 'acpi-6.2-rc1' and 'irq-core-2022-12-10' into loongarch-next

LoongArch architecture changes for 6.2 depend on the acpi and irqchip
changes to work, so merge them to create a base.
2022-12-13 19:19:41 +08:00
Linus Torvalds
456ed864fd ACPI updates for 6.2-rc1
- Update the ACPICA code in the kernel to the 20221020 upstream
    version and fix a couple of issues in it:
 
    * Make acpi_ex_load_op() match upstream implementation (Rafael
      Wysocki).
    * Add support for loong_arch-specific APICs in MADT (Huacai Chen).
    * Add support for fixed PCIe wake event (Huacai Chen).
    * Add EBDA pointer sanity checks (Vit Kabele).
    * Avoid accessing VGA memory when EBDA < 1KiB (Vit Kabele).
    * Add CCEL table support to both compiler/disassembler (Kuppuswamy
      Sathyanarayanan).
    * Add a couple of new UUIDs to the known UUID list (Bob Moore).
    * Add support for FFH Opregion special context data (Sudeep Holla).
    * Improve warning message for "invalid ACPI name" (Bob Moore).
    * Add support for CXL 3.0 structures (CXIMS & RDPAS) in the CEDT
      table (Alison Schofield).
    * Prepare IORT support for revision E.e (Robin Murphy).
    * Finish support for the CDAT table (Bob Moore).
    * Fix error code path in acpi_ds_call_control_method() (Rafael
      Wysocki).
    * Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage() (Li
      Zetao).
    * Update the version of the ACPICA code in the kernel (Bob Moore).
 
  - Use ZERO_PAGE(0) instead of empty_zero_page in the ACPI device
    enumeration code (Giulio Benetti).
 
  - Change the return type of the ACPI driver remove callback to void and
    update its users accordingly (Dawei Li).
 
  - Add general support for FFH address space type and implement the low-
    level part of it for ARM64 (Sudeep Holla).
 
  - Fix stale comments in the ACPI tables parsing code and make it print
    more messages related to MADT (Hanjun Guo, Huacai Chen).
 
  - Replace invocations of generic library functions with more kernel-
    specific counterparts in the ACPI sysfs interface (Christophe JAILLET,
    Xu Panda).
 
  - Print full name paths of ACPI power resource objects during
    enumeration (Kane Chen).
 
  - Eliminate a compiler warning regarding a missing function prototype
    in the ACPI power management code (Sudeep Holla).
 
  - Fix and clean up the ACPI processor driver (Rafael Wysocki, Li Zhong,
    Colin Ian King, Sudeep Holla).
 
  - Add quirk for the HP Pavilion Gaming 15-cx0041ur to the ACPI EC
    driver (Mia Kanashi).
 
  - Add some mew ACPI backlight handling quirks and update some existing
    ones (Hans de Goede).
 
  - Make the ACPI backlight driver prefer the native backlight control
    over vendor backlight control when possible (Hans de Goede).
 
  - Drop unsetting ACPI APEI driver data on remove (Uwe Kleine-König).
 
  - Use xchg_release() instead of cmpxchg() for updating new GHES cache
    slots (Ard Biesheuvel).
 
  - Clean up the ACPI APEI code (Sudeep Holla, Christophe JAILLET, Jay Lu).
 
  - Add new I2C device enumeration quirks for Medion Lifetab S10346 and
    Lenovo Yoga Tab 3 Pro (YT3-X90F) (Hans de Goede).
 
  - Make the ACPI battery driver notify user space about adding new
    battery hooks and removing the existing ones (Armin Wolf).
 
  - Modify the pfr_update and pfr_telemetry drivers to use ACPI_FREE()
    for freeing acpi_object structures to help diagnostics (Wang ShaoBo).
 
  - Make the ACPI fan driver use sysfs_emit_at() in its sysfs interface
    code (ye xingchen).
 
  - Fix the _FIF package extraction failure handling in the ACPI fan
    driver (Hanjun Guo).
 
  - Fix the PCC mailbox handling error code path (Huisong Li).
 
  - Avoid using PCC Opregions if there is no platform interrupt allocated
    for this purpose (Huisong Li).
 
  - Use sysfs_emit() instead of scnprintf() in the ACPI PAD driver and
    CPPC library (ye xingchen).
 
  - Fix some kernel-doc issues in the ACPI GSI processing code (Xiongfeng
    Wang).
 
  - Fix name memory leak in pnp_alloc_dev() (Yang Yingliang).
 
  - Do not disable PNP devices on suspend when they cannot be re-enabled
    on resume (Hans de Goede).
 
  - Clean up the ACPI thermal driver a bit (Rafael Wysocki).
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmOXV10SHHJqd0Byand5
 c29ja2kubmV0AAoJEILEb/54YlRxuOwP/2zew6val2Jf7I/Yxf1iQLlRyGmhFnaH
 wpltJvBjlHjAUKnPQ/kLYK9fjuUY5HVgjOE03WpwhFUpmhftYTrSkhoVkJ1Mw9Zl
 RNOAEgCG484ThHiTIVp/dMPxrtfuqpdbamhWX3Q51IfXjGW8Vc/lDxIa3k/JQxyq
 ko8GFPCoebJrSCfuwaAf2+xSQaf6dq4jpL/rlIk+nYMMB9mQmXhNEhc+l97NaCe8
 MyCIGynyNbhGsIlwdHRvTp04EIe8h0Z1+Dyns7g/TrzHj3Aezy7QVZbn8sKdZWa1
 W/Ck9QST5tfpDWyr+hUXxUJjEn4Yy+GXjM2xON0EMx5q+JD9XsOpwWOVwTR7CS5s
 FwEd6I89SC8OZM86AgMtnGxygjpK24R/kGzHjhG15IQCsypc8Rvzoxl0L0YVoon/
 UTkE57GzNWVzu0pY/oXJc2aT7lVqFXMFZ6ft/zHnBRnQmrcIi+xgDO5ni5KxctFN
 TVFwbAMCuwVx6IOcVQCZM2g4aJw426KpUn19fKnXvPwR5UIufBaCzSKWMiYrtdXr
 O5BM8ElYuyKCWGYEE0GSMjZygyDpyY6ENLH7s7P1IEmFyigBzaaGBbKm108JJq4V
 eCWJYTAx8pAptsU/vfuMvEQ1ErfhZ3TTokA5Lv0uPf53VcAnWDb7EAbW6ZGMwFSI
 IaV6cv6ILoqO
 =GVzp
 -----END PGP SIGNATURE-----

Merge tag 'acpi-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull ACPI and PNP updates from Rafael Wysocki:
 "These include new code (for instance, support for the FFH address
  space type and support for new firmware data structures in ACPICA),
  some new quirks (mostly related to backlight handling and I2C
  enumeration), a number of fixes and a fair amount of cleanups all
  over.

  Specifics:

   - Update the ACPICA code in the kernel to the 20221020 upstream
     version and fix a couple of issues in it:
      - Make acpi_ex_load_op() match upstream implementation (Rafael
        Wysocki)
      - Add support for loong_arch-specific APICs in MADT (Huacai Chen)
      - Add support for fixed PCIe wake event (Huacai Chen)
      - Add EBDA pointer sanity checks (Vit Kabele)
      - Avoid accessing VGA memory when EBDA < 1KiB (Vit Kabele)
      - Add CCEL table support to both compiler/disassembler (Kuppuswamy
        Sathyanarayanan)
      - Add a couple of new UUIDs to the known UUID list (Bob Moore)
      - Add support for FFH Opregion special context data (Sudeep
        Holla)
      - Improve warning message for "invalid ACPI name" (Bob Moore)
      - Add support for CXL 3.0 structures (CXIMS & RDPAS) in the CEDT
        table (Alison Schofield)
      - Prepare IORT support for revision E.e (Robin Murphy)
      - Finish support for the CDAT table (Bob Moore)
      - Fix error code path in acpi_ds_call_control_method() (Rafael
        Wysocki)
      - Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage() (Li
        Zetao)
      - Update the version of the ACPICA code in the kernel (Bob Moore)

   - Use ZERO_PAGE(0) instead of empty_zero_page in the ACPI device
     enumeration code (Giulio Benetti)

   - Change the return type of the ACPI driver remove callback to void
     and update its users accordingly (Dawei Li)

   - Add general support for FFH address space type and implement the
     low- level part of it for ARM64 (Sudeep Holla)

   - Fix stale comments in the ACPI tables parsing code and make it
     print more messages related to MADT (Hanjun Guo, Huacai Chen)

   - Replace invocations of generic library functions with more kernel-
     specific counterparts in the ACPI sysfs interface (Christophe
     JAILLET, Xu Panda)

   - Print full name paths of ACPI power resource objects during
     enumeration (Kane Chen)

   - Eliminate a compiler warning regarding a missing function prototype
     in the ACPI power management code (Sudeep Holla)

   - Fix and clean up the ACPI processor driver (Rafael Wysocki, Li
     Zhong, Colin Ian King, Sudeep Holla)

   - Add quirk for the HP Pavilion Gaming 15-cx0041ur to the ACPI EC
     driver (Mia Kanashi)

   - Add some mew ACPI backlight handling quirks and update some
     existing ones (Hans de Goede)

   - Make the ACPI backlight driver prefer the native backlight control
     over vendor backlight control when possible (Hans de Goede)

   - Drop unsetting ACPI APEI driver data on remove (Uwe Kleine-König)

   - Use xchg_release() instead of cmpxchg() for updating new GHES cache
     slots (Ard Biesheuvel)

   - Clean up the ACPI APEI code (Sudeep Holla, Christophe JAILLET, Jay
     Lu)

   - Add new I2C device enumeration quirks for Medion Lifetab S10346 and
     Lenovo Yoga Tab 3 Pro (YT3-X90F) (Hans de Goede)

   - Make the ACPI battery driver notify user space about adding new
     battery hooks and removing the existing ones (Armin Wolf)

   - Modify the pfr_update and pfr_telemetry drivers to use ACPI_FREE()
     for freeing acpi_object structures to help diagnostics (Wang
     ShaoBo)

   - Make the ACPI fan driver use sysfs_emit_at() in its sysfs interface
     code (ye xingchen)

   - Fix the _FIF package extraction failure handling in the ACPI fan
     driver (Hanjun Guo)

   - Fix the PCC mailbox handling error code path (Huisong Li)

   - Avoid using PCC Opregions if there is no platform interrupt
     allocated for this purpose (Huisong Li)

   - Use sysfs_emit() instead of scnprintf() in the ACPI PAD driver and
     CPPC library (ye xingchen)

   - Fix some kernel-doc issues in the ACPI GSI processing code
     (Xiongfeng Wang)

   - Fix name memory leak in pnp_alloc_dev() (Yang Yingliang)

   - Do not disable PNP devices on suspend when they cannot be
     re-enabled on resume (Hans de Goede)

   - Clean up the ACPI thermal driver a bit (Rafael Wysocki)"

* tag 'acpi-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (67 commits)
  ACPI: x86: Add skip i2c clients quirk for Medion Lifetab S10346
  ACPI: APEI: EINJ: Refactor available_error_type_show()
  ACPI: APEI: EINJ: Fix formatting errors
  ACPI: processor: perflib: Adjust acpi_processor_notify_smm() return value
  ACPI: processor: perflib: Rearrange acpi_processor_notify_smm()
  ACPI: processor: perflib: Rearrange unregistration routine
  ACPI: processor: perflib: Drop redundant parentheses
  ACPI: processor: perflib: Adjust white space
  ACPI: processor: idle: Drop unnecessary statements and parens
  ACPI: thermal: Adjust critical.flags.valid check
  ACPI: fan: Convert to use sysfs_emit_at() API
  ACPICA: Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage()
  ACPI: battery: Call power_supply_changed() when adding hooks
  ACPI: use sysfs_emit() instead of scnprintf()
  ACPI: x86: Add skip i2c clients quirk for Lenovo Yoga Tab 3 Pro (YT3-X90F)
  ACPI: APEI: Remove a useless include
  PNP: Do not disable devices on suspend when they cannot be re-enabled on resume
  ACPI: processor: Silence missing prototype warnings
  ACPI: processor_idle: Silence missing prototype warnings
  ACPI: PM: Silence missing prototype warning
  ...
2022-12-12 13:38:17 -08:00
Linus Torvalds
9d33edb20f Updates for the interrupt core and driver subsystem:
- Core:
 
    The bulk is the rework of the MSI subsystem to support per device MSI
    interrupt domains. This solves conceptual problems of the current
    PCI/MSI design which are in the way of providing support for PCI/MSI[-X]
    and the upcoming PCI/IMS mechanism on the same device.
 
    IMS (Interrupt Message Store] is a new specification which allows device
    manufactures to provide implementation defined storage for MSI messages
    contrary to the uniform and specification defined storage mechanisms for
    PCI/MSI and PCI/MSI-X. IMS not only allows to overcome the size limitations
    of the MSI-X table, but also gives the device manufacturer the freedom to
    store the message in arbitrary places, even in host memory which is shared
    with the device.
 
    There have been several attempts to glue this into the current MSI code,
    but after lengthy discussions it turned out that there is a fundamental
    design problem in the current PCI/MSI-X implementation. This needs some
    historical background.
 
    When PCI/MSI[-X] support was added around 2003, interrupt management was
    completely different from what we have today in the actively developed
    architectures. Interrupt management was completely architecture specific
    and while there were attempts to create common infrastructure the
    commonalities were rudimentary and just providing shared data structures and
    interfaces so that drivers could be written in an architecture agnostic
    way.
 
    The initial PCI/MSI[-X] support obviously plugged into this model which
    resulted in some basic shared infrastructure in the PCI core code for
    setting up MSI descriptors, which are a pure software construct for holding
    data relevant for a particular MSI interrupt, but the actual association to
    Linux interrupts was completely architecture specific. This model is still
    supported today to keep museum architectures and notorious stranglers
    alive.
 
    In 2013 Intel tried to add support for hot-pluggable IO/APICs to the kernel,
    which was creating yet another architecture specific mechanism and resulted
    in an unholy mess on top of the existing horrors of x86 interrupt handling.
    The x86 interrupt management code was already an incomprehensible maze of
    indirections between the CPU vector management, interrupt remapping and the
    actual IO/APIC and PCI/MSI[-X] implementation.
 
    At roughly the same time ARM struggled with the ever growing SoC specific
    extensions which were glued on top of the architected GIC interrupt
    controller.
 
    This resulted in a fundamental redesign of interrupt management and
    provided the today prevailing concept of hierarchical interrupt
    domains. This allowed to disentangle the interactions between x86 vector
    domain and interrupt remapping and also allowed ARM to handle the zoo of
    SoC specific interrupt components in a sane way.
 
    The concept of hierarchical interrupt domains aims to encapsulate the
    functionality of particular IP blocks which are involved in interrupt
    delivery so that they become extensible and pluggable. The X86
    encapsulation looks like this:
 
                                             |--- device 1
      [Vector]---[Remapping]---[PCI/MSI]--|...
                                             |--- device N
 
    where the remapping domain is an optional component and in case that it is
    not available the PCI/MSI[-X] domains have the vector domain as their
    parent. This reduced the required interaction between the domains pretty
    much to the initialization phase where it is obviously required to
    establish the proper parent relation ship in the components of the
    hierarchy.
 
    While in most cases the model is strictly representing the chain of IP
    blocks and abstracting them so they can be plugged together to form a
    hierarchy, the design stopped short on PCI/MSI[-X]. Looking at the hardware
    it's clear that the actual PCI/MSI[-X] interrupt controller is not a global
    entity, but strict a per PCI device entity.
 
    Here we took a short cut on the hierarchical model and went for the easy
    solution of providing "global" PCI/MSI domains which was possible because
    the PCI/MSI[-X] handling is uniform across the devices. This also allowed
    to keep the existing PCI/MSI[-X] infrastructure mostly unchanged which in
    turn made it simple to keep the existing architecture specific management
    alive.
 
    A similar problem was created in the ARM world with support for IP block
    specific message storage. Instead of going all the way to stack a IP block
    specific domain on top of the generic MSI domain this ended in a construct
    which provides a "global" platform MSI domain which allows overriding the
    irq_write_msi_msg() callback per allocation.
 
    In course of the lengthy discussions we identified other abuse of the MSI
    infrastructure in wireless drivers, NTB etc. where support for
    implementation specific message storage was just mindlessly glued into the
    existing infrastructure. Some of this just works by chance on particular
    platforms but will fail in hard to diagnose ways when the driver is used
    on platforms where the underlying MSI interrupt management code does not
    expect the creative abuse.
 
    Another shortcoming of today's PCI/MSI-X support is the inability to
    allocate or free individual vectors after the initial enablement of
    MSI-X. This results in an works by chance implementation of VFIO (PCI
    pass-through) where interrupts on the host side are not set up upfront to
    avoid resource exhaustion. They are expanded at run-time when the guest
    actually tries to use them. The way how this is implemented is that the
    host disables MSI-X and then re-enables it with a larger number of
    vectors again. That works by chance because most device drivers set up
    all interrupts before the device actually will utilize them. But that's
    not universally true because some drivers allocate a large enough number
    of vectors but do not utilize them until it's actually required,
    e.g. for acceleration support. But at that point other interrupts of the
    device might be in active use and the MSI-X disable/enable dance can
    just result in losing interrupts and therefore hard to diagnose subtle
    problems.
 
    Last but not least the "global" PCI/MSI-X domain approach prevents to
    utilize PCI/MSI[-X] and PCI/IMS on the same device due to the fact that IMS
    is not longer providing a uniform storage and configuration model.
 
    The solution to this is to implement the missing step and switch from
    global PCI/MSI domains to per device PCI/MSI domains. The resulting
    hierarchy then looks like this:
 
                               |--- [PCI/MSI] device 1
      [Vector]---[Remapping]---|...
                               |--- [PCI/MSI] device N
 
    which in turn allows to provide support for multiple domains per device:
 
                               |--- [PCI/MSI] device 1
                               |--- [PCI/IMS] device 1
      [Vector]---[Remapping]---|...
                               |--- [PCI/MSI] device N
                               |--- [PCI/IMS] device N
 
    This work converts the MSI and PCI/MSI core and the x86 interrupt
    domains to the new model, provides new interfaces for post-enable
    allocation/free of MSI-X interrupts and the base framework for PCI/IMS.
    PCI/IMS has been verified with the work in progress IDXD driver.
 
    There is work in progress to convert ARM over which will replace the
    platform MSI train-wreck. The cleanup of VFIO, NTB and other creative
    "solutions" are in the works as well.
 
  - Drivers:
 
    - Updates for the LoongArch interrupt chip drivers
 
    - Support for MTK CIRQv2
 
    - The usual small fixes and updates all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmOUsygTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoYXiD/40tXKzCzf0qFIqUlZLia1N3RRrwrNC
 DVTixuLtR9MrjwE+jWLQILa85SHInV8syXHSd35SzhsGDxkURFGi+HBgVWmysODf
 br9VSh3Gi+kt7iXtIwAg8WNWviGNmS3kPksxCko54F0YnJhMY5r5bhQVUBQkwFG2
 wES1C9Uzd4pdV2bl24Z+WKL85cSmZ+pHunyKw1n401lBABXnTF9c4f13zC14jd+y
 wDxNrmOxeL3mEH4Pg6VyrDuTOURSf3TjJjeEq3EYqvUo0FyLt9I/cKX0AELcZQX7
 fkRjrQQAvXNj39RJfeSkojDfllEPUHp7XSluhdBu5aIovSamdYGCDnuEoZ+l4MJ+
 CojIErp3Dwj/uSaf5c7C3OaDAqH2CpOFWIcrUebShJE60hVKLEpUwd6W8juplaoT
 gxyXRb1Y+BeJvO8VhMN4i7f3232+sj8wuj+HTRTTbqMhkElnin94tAx8rgwR1sgR
 BiOGMJi4K2Y8s9Rqqp0Dvs01CW4guIYvSR4YY+WDbbi1xgiev89OYs6zZTJCJe4Y
 NUwwpqYSyP1brmtdDdBOZLqegjQm+TwUb6oOaasFem4vT1swgawgLcDnPOx45bk5
 /FWt3EmnZxMz99x9jdDn1+BCqAZsKyEbEY1avvhPVMTwoVIuSX2ceTBMLseGq+jM
 03JfvdxnueM3gw==
 =9erA
 -----END PGP SIGNATURE-----

Merge tag 'irq-core-2022-12-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull irq updates from Thomas Gleixner:
 "Updates for the interrupt core and driver subsystem:

  The bulk is the rework of the MSI subsystem to support per device MSI
  interrupt domains. This solves conceptual problems of the current
  PCI/MSI design which are in the way of providing support for
  PCI/MSI[-X] and the upcoming PCI/IMS mechanism on the same device.

  IMS (Interrupt Message Store] is a new specification which allows
  device manufactures to provide implementation defined storage for MSI
  messages (as opposed to PCI/MSI and PCI/MSI-X that has a specified
  message store which is uniform accross all devices). The PCI/MSI[-X]
  uniformity allowed us to get away with "global" PCI/MSI domains.

  IMS not only allows to overcome the size limitations of the MSI-X
  table, but also gives the device manufacturer the freedom to store the
  message in arbitrary places, even in host memory which is shared with
  the device.

  There have been several attempts to glue this into the current MSI
  code, but after lengthy discussions it turned out that there is a
  fundamental design problem in the current PCI/MSI-X implementation.
  This needs some historical background.

  When PCI/MSI[-X] support was added around 2003, interrupt management
  was completely different from what we have today in the actively
  developed architectures. Interrupt management was completely
  architecture specific and while there were attempts to create common
  infrastructure the commonalities were rudimentary and just providing
  shared data structures and interfaces so that drivers could be written
  in an architecture agnostic way.

  The initial PCI/MSI[-X] support obviously plugged into this model
  which resulted in some basic shared infrastructure in the PCI core
  code for setting up MSI descriptors, which are a pure software
  construct for holding data relevant for a particular MSI interrupt,
  but the actual association to Linux interrupts was completely
  architecture specific. This model is still supported today to keep
  museum architectures and notorious stragglers alive.

  In 2013 Intel tried to add support for hot-pluggable IO/APICs to the
  kernel, which was creating yet another architecture specific mechanism
  and resulted in an unholy mess on top of the existing horrors of x86
  interrupt handling. The x86 interrupt management code was already an
  incomprehensible maze of indirections between the CPU vector
  management, interrupt remapping and the actual IO/APIC and PCI/MSI[-X]
  implementation.

  At roughly the same time ARM struggled with the ever growing SoC
  specific extensions which were glued on top of the architected GIC
  interrupt controller.

  This resulted in a fundamental redesign of interrupt management and
  provided the today prevailing concept of hierarchical interrupt
  domains. This allowed to disentangle the interactions between x86
  vector domain and interrupt remapping and also allowed ARM to handle
  the zoo of SoC specific interrupt components in a sane way.

  The concept of hierarchical interrupt domains aims to encapsulate the
  functionality of particular IP blocks which are involved in interrupt
  delivery so that they become extensible and pluggable. The X86
  encapsulation looks like this:

                                            |--- device 1
     [Vector]---[Remapping]---[PCI/MSI]--|...
                                            |--- device N

  where the remapping domain is an optional component and in case that
  it is not available the PCI/MSI[-X] domains have the vector domain as
  their parent. This reduced the required interaction between the
  domains pretty much to the initialization phase where it is obviously
  required to establish the proper parent relation ship in the
  components of the hierarchy.

  While in most cases the model is strictly representing the chain of IP
  blocks and abstracting them so they can be plugged together to form a
  hierarchy, the design stopped short on PCI/MSI[-X]. Looking at the
  hardware it's clear that the actual PCI/MSI[-X] interrupt controller
  is not a global entity, but strict a per PCI device entity.

  Here we took a short cut on the hierarchical model and went for the
  easy solution of providing "global" PCI/MSI domains which was possible
  because the PCI/MSI[-X] handling is uniform across the devices. This
  also allowed to keep the existing PCI/MSI[-X] infrastructure mostly
  unchanged which in turn made it simple to keep the existing
  architecture specific management alive.

  A similar problem was created in the ARM world with support for IP
  block specific message storage. Instead of going all the way to stack
  a IP block specific domain on top of the generic MSI domain this ended
  in a construct which provides a "global" platform MSI domain which
  allows overriding the irq_write_msi_msg() callback per allocation.

  In course of the lengthy discussions we identified other abuse of the
  MSI infrastructure in wireless drivers, NTB etc. where support for
  implementation specific message storage was just mindlessly glued into
  the existing infrastructure. Some of this just works by chance on
  particular platforms but will fail in hard to diagnose ways when the
  driver is used on platforms where the underlying MSI interrupt
  management code does not expect the creative abuse.

  Another shortcoming of today's PCI/MSI-X support is the inability to
  allocate or free individual vectors after the initial enablement of
  MSI-X. This results in an works by chance implementation of VFIO (PCI
  pass-through) where interrupts on the host side are not set up upfront
  to avoid resource exhaustion. They are expanded at run-time when the
  guest actually tries to use them. The way how this is implemented is
  that the host disables MSI-X and then re-enables it with a larger
  number of vectors again. That works by chance because most device
  drivers set up all interrupts before the device actually will utilize
  them. But that's not universally true because some drivers allocate a
  large enough number of vectors but do not utilize them until it's
  actually required, e.g. for acceleration support. But at that point
  other interrupts of the device might be in active use and the MSI-X
  disable/enable dance can just result in losing interrupts and
  therefore hard to diagnose subtle problems.

  Last but not least the "global" PCI/MSI-X domain approach prevents to
  utilize PCI/MSI[-X] and PCI/IMS on the same device due to the fact
  that IMS is not longer providing a uniform storage and configuration
  model.

  The solution to this is to implement the missing step and switch from
  global PCI/MSI domains to per device PCI/MSI domains. The resulting
  hierarchy then looks like this:

                              |--- [PCI/MSI] device 1
     [Vector]---[Remapping]---|...
                              |--- [PCI/MSI] device N

  which in turn allows to provide support for multiple domains per
  device:

                              |--- [PCI/MSI] device 1
                              |--- [PCI/IMS] device 1
     [Vector]---[Remapping]---|...
                              |--- [PCI/MSI] device N
                              |--- [PCI/IMS] device N

  This work converts the MSI and PCI/MSI core and the x86 interrupt
  domains to the new model, provides new interfaces for post-enable
  allocation/free of MSI-X interrupts and the base framework for
  PCI/IMS. PCI/IMS has been verified with the work in progress IDXD
  driver.

  There is work in progress to convert ARM over which will replace the
  platform MSI train-wreck. The cleanup of VFIO, NTB and other creative
  "solutions" are in the works as well.

  Drivers:

   - Updates for the LoongArch interrupt chip drivers

   - Support for MTK CIRQv2

   - The usual small fixes and updates all over the place"

* tag 'irq-core-2022-12-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (134 commits)
  irqchip/ti-sci-inta: Fix kernel doc
  irqchip/gic-v2m: Mark a few functions __init
  irqchip/gic-v2m: Include arm-gic-common.h
  irqchip/irq-mvebu-icu: Fix works by chance pointer assignment
  iommu/amd: Enable PCI/IMS
  iommu/vt-d: Enable PCI/IMS
  x86/apic/msi: Enable PCI/IMS
  PCI/MSI: Provide pci_ims_alloc/free_irq()
  PCI/MSI: Provide IMS (Interrupt Message Store) support
  genirq/msi: Provide constants for PCI/IMS support
  x86/apic/msi: Enable MSI_FLAG_PCI_MSIX_ALLOC_DYN
  PCI/MSI: Provide post-enable dynamic allocation interfaces for MSI-X
  PCI/MSI: Provide prepare_desc() MSI domain op
  PCI/MSI: Split MSI-X descriptor setup
  genirq/msi: Provide MSI_FLAG_MSIX_ALLOC_DYN
  genirq/msi: Provide msi_domain_alloc_irq_at()
  genirq/msi: Provide msi_domain_ops:: Prepare_desc()
  genirq/msi: Provide msi_desc:: Msi_data
  genirq/msi: Provide struct msi_map
  x86/apic/msi: Remove arch_create_remap_msi_irq_domain()
  ...
2022-12-12 11:21:29 -08:00