Commit graph

2 commits

Author SHA1 Message Date
Kirill A. Shutemov
c8d78c1823 mm: replace remap_file_pages() syscall with emulation
remap_file_pages(2) was invented to be able efficiently map parts of
huge file into limited 32-bit virtual address space such as in database
workloads.

Nonlinear mappings are pain to support and it seems there's no
legitimate use-cases nowadays since 64-bit systems are widely available.

Let's drop it and get rid of all these special-cased code.

The patch replaces the syscall with emulation which creates new VMA on
each remap_file_pages(), unless they it can be merged with an adjacent
one.

I didn't find *any* real code that uses remap_file_pages(2) to test
emulation impact on.  I've checked Debian code search and source of all
packages in ALT Linux.  No real users: libc wrappers, mentions in
strace, gdb, valgrind and this kind of stuff.

There are few basic tests in LTP for the syscall.  They work just fine
with emulation.

To test performance impact, I've written small test case which
demonstrate pretty much worst case scenario: map 4G shmfs file, write to
begin of every page pgoff of the page, remap pages in reverse order,
read every page.

The test creates 1 million of VMAs if emulation is in use, so I had to
set vm.max_map_count to 1100000 to avoid -ENOMEM.

Before:		23.3 ( +-  4.31% ) seconds
After:		43.9 ( +-  0.85% ) seconds
Slowdown:	1.88x

I believe we can live with that.

Test case:

        #define _GNU_SOURCE
        #include <assert.h>
        #include <stdlib.h>
        #include <stdio.h>
        #include <sys/mman.h>

        #define MB	(1024UL * 1024)
        #define SIZE	(4096 * MB)

        int main(int argc, char **argv)
        {
                unsigned long *p;
                long i, pass;

                for (pass = 0; pass < 10; pass++) {
                        p = mmap(NULL, SIZE, PROT_READ|PROT_WRITE,
                                        MAP_SHARED | MAP_ANONYMOUS, -1, 0);
                        if (p == MAP_FAILED) {
                                perror("mmap");
                                return -1;
                        }

                        for (i = 0; i < SIZE / 4096; i++)
                                p[i * 4096 / sizeof(*p)] = i;

                        for (i = 0; i < SIZE / 4096; i++) {
                                if (remap_file_pages(p + i * 4096 / sizeof(*p), 4096,
                                                0, (SIZE - 4096 * (i + 1)) >> 12, 0)) {
                                        perror("remap_file_pages");
                                        return -1;
                                }
                        }

                        for (i = SIZE / 4096 - 1; i >= 0; i--)
                                assert(p[i * 4096 / sizeof(*p)] == SIZE / 4096 - i - 1);

                        munmap(p, SIZE);
                }

                return 0;
        }

[akpm@linux-foundation.org: fix spello]
[sasha.levin@oracle.com: initialize populate before usage]
[sasha.levin@oracle.com: grab file ref to prevent race while mmaping]
Signed-off-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Armin Rigo <arigo@tunes.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:30 -08:00
Kirill A. Shutemov
33041a0d76 mm: mark remap_file_pages() syscall as deprecated
The remap_file_pages() system call is used to create a nonlinear
mapping, that is, a mapping in which the pages of the file are mapped
into a nonsequential order in memory.  The advantage of using
remap_file_pages() over using repeated calls to mmap(2) is that the
former approach does not require the kernel to create additional VMA
(Virtual Memory Area) data structures.

Supporting of nonlinear mapping requires significant amount of
non-trivial code in kernel virtual memory subsystem including hot paths.
Also to get nonlinear mapping work kernel need a way to distinguish
normal page table entries from entries with file offset (pte_file).
Kernel reserves flag in PTE for this purpose.  PTE flags are scarce
resource especially on some CPU architectures.  It would be nice to free
up the flag for other usage.

Fortunately, there are not many users of remap_file_pages() in the wild.
It's only known that one enterprise RDBMS implementation uses the
syscall on 32-bit systems to map files bigger than can linearly fit into
32-bit virtual address space.  This use-case is not critical anymore
since 64-bit systems are widely available.

The plan is to deprecate the syscall and replace it with an emulation.
The emulation will create new VMAs instead of nonlinear mappings.  It's
going to work slower for rare users of remap_file_pages() but ABI is
preserved.

One side effect of emulation (apart from performance) is that user can
hit vm.max_map_count limit more easily due to additional VMAs.  See
comment for DEFAULT_MAX_MAP_COUNT for more details on the limit.

[akpm@linux-foundation.org: fix spello]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Armin Rigo <arigo@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-06 16:08:17 -07:00