Commit graph

3206 commits

Author SHA1 Message Date
Christoph Hellwig
cb365b9675 block: add a new BLKDEV_ZERO_NOFALLBACK flag
This avoids fallbacks to explicit zeroing in (__)blkdev_issue_zeroout if
the caller doesn't want them.

Also clean up the convoluted check for the return condition that this
new flag is added to.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-08 11:25:38 -06:00
Christoph Hellwig
d928be9f85 block: add a REQ_NOUNMAP flag for REQ_OP_WRITE_ZEROES
If this flag is set logical provisioning capable device should
release space for the zeroed blocks if possible, if it is not set
devices should keep the blocks anchored.

Also remove an out of sync kerneldoc comment for a static function
that would have become even more out of data with this change.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-08 11:25:38 -06:00
Christoph Hellwig
ee472d835c block: add a flags argument to (__)blkdev_issue_zeroout
Turn the existing discard flag into a new BLKDEV_ZERO_UNMAP flag with
similar semantics, but without referring to diѕcard.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-08 11:25:38 -06:00
Christoph Hellwig
c20cfc27a4 block: stop using blkdev_issue_write_same for zeroing
We'll always use the WRITE ZEROES code for zeroing now.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-08 11:25:38 -06:00
Christoph Hellwig
885fa13f65 block: implement splitting of REQ_OP_WRITE_ZEROES bios
Copy and past the REQ_OP_WRITE_SAME code to prepare to implementations
that limit the write zeroes size.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-08 11:25:38 -06:00
Scott Bauer
591c59d18f block: sed-opal: Tone down all the pr_* to debugs
Lets not flood the kernel log with messages unless
the user requests so.

Signed-off-by: Scott Bauer <scott.bauer@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 14:24:16 -06:00
Bart Van Assche
710c785f80 blk-mq: Clarify comments in blk_mq_dispatch_rq_list()
The blk_mq_dispatch_rq_list() implementation got modified several
times but the comments in that function were not updated every
time. Since it is nontrivial what is going on, update the comments
in blk_mq_dispatch_rq_list().

Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 12:45:49 -06:00
Bart Van Assche
705cda97ee blk-mq: Make it safe to use RCU to iterate over blk_mq_tag_set.tag_list
Since the next patch in this series will use RCU to iterate over
tag_list, make this safe. Add lockdep_assert_held() statements
in functions that iterate over tag_list to make clear that using
list_for_each_entry() instead of list_for_each_entry_rcu() is
fine in these functions.

Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 12:45:47 -06:00
Omar Sandoval
d945a365a0 blk-mq: use true instead of 1 for blk_mq_queue_data.last
Trivial cleanup.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 12:45:45 -06:00
Omar Sandoval
807b10417b blk-mq: make driver tag failure path easier to follow
Minor cleanup that makes it easier to figure out what's going on in the
driver tag allocation failure path of blk_mq_dispatch_rq_list().

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 12:45:43 -06:00
Omar Sandoval
ee056f9812 blk-mq-sched: provide hooks for initializing hardware queue data
Schedulers need to be informed when a hardware queue is added or removed
at runtime so they can allocate/free per-hardware queue data. So,
replace the blk_mq_sched_init_hctx_data() helper, which only makes sense
at init time, with .init_hctx() and .exit_hctx() hooks.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 12:45:41 -06:00
Jens Axboe
65f619d253 Merge branch 'for-linus' into for-4.12/block
We've added a considerable amount of fixes for stalls and issues
with the blk-mq scheduling in the 4.11 series since forking
off the for-4.12/block branch. We need to do improvements on
top of that for 4.12, so pull in the previous fixes to make
our lives easier going forward.

Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 12:45:20 -06:00
Bart Van Assche
6d8c6c0f97 blk-mq: Restart a single queue if tag sets are shared
To improve scalability, if hardware queues are shared, restart
a single hardware queue in round-robin fashion. Rename
blk_mq_sched_restart_queues() to reflect the new semantics.
Remove blk_mq_sched_mark_restart_queue() because this function
has no callers. Remove flag QUEUE_FLAG_RESTART because this
patch removes the code that uses this flag.

Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 12:40:09 -06:00
Bart Van Assche
7587a5ae7e blk-mq: Introduce blk_mq_delay_run_hw_queue()
Introduce a function that runs a hardware queue unconditionally
after a delay. Note: there is already a function that stops and
restarts a hardware queue after a delay, namely blk_mq_delay_queue().

This function will be used in the next patch in this series.

Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Long Li <longli@microsoft.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 12:27:06 -06:00
NeilBrown
fbbaf700e7 block: trace completion of all bios.
Currently only dm and md/raid5 bios trigger
trace_block_bio_complete().  Now that we have bio_chain() and
bio_inc_remaining(), it is not possible, in general, for a driver to
know when the bio is really complete.  Only bio_endio() knows that.

So move the trace_block_bio_complete() call to bio_endio().

Now trace_block_bio_complete() pairs with trace_block_bio_queue().
Any bio for which a 'queue' event is traced, will subsequently
generate a 'complete' event.

There are a few cases where completion tracing is not wanted.
1/ If blk_update_request() has already generated a completion
   trace event at the 'request' level, there is no point generating
   one at the bio level too.  In this case the bi_sector and bi_size
   will have changed, so the bio level event would be wrong

2/ If the bio hasn't actually been queued yet, but is being aborted
   early, then a trace event could be confusing.  Some filesystems
   call bio_endio() but do not want tracing.

3/ The bio_integrity code interposes itself by replacing bi_end_io,
   then restoring it and calling bio_endio() again.  This would produce
   two identical trace events if left like that.

To handle these, we introduce a flag BIO_TRACE_COMPLETION and only
produce the trace event when this is set.
We address point 1 above by clearing the flag in blk_update_request().
We address point 2 above by only setting the flag when
generic_make_request() is called.
We address point 3 above by clearing the flag after generating a
completion event.

When bio_split() is used on a bio, particularly in blk_queue_split(),
there is an extra complication.  A new bio is split off the front, and
may be handle directly without going through generic_make_request().
The old bio, which has been advanced, is passed to
generic_make_request(), so it will trigger a trace event a second
time.
Probably the best result when a split happens is to see a single
'queue' event for the whole bio, then multiple 'complete' events - one
for each component.  To achieve this was can:
- copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split()
- avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set.
This way, the split-off bio won't create a queue event, the original
won't either even if it re-submitted to generic_make_request(),
but both will produce completion events, each for their own range.

So if generic_make_request() is called (which generates a QUEUED
event), then bi_endio() will create a single COMPLETE event for each
range that the bio is split into, unless the driver has explicitly
requested it not to.

Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 09:40:52 -06:00
Omar Sandoval
ebe8bddb6e blk-mq: remap queues when adding/removing hardware queues
blk_mq_update_nr_hw_queues() used to remap hardware queues, which is the
behavior that drivers expect. However, commit 4e68a01142 changed
blk_mq_queue_reinit() to not remap queues for the case of CPU
hotplugging, inadvertently making blk_mq_update_nr_hw_queues() not remap
queues as well. This breaks, for example, NBD's multi-connection mode,
leaving the added hardware queues unused. Fix it by making
blk_mq_update_nr_hw_queues() explicitly remap the queues.

Fixes: 4e68a01142 ("blk-mq: don't redistribute hardware queues on a CPU hotplug event")
Reviewed-by: Keith Busch <keith.busch@intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 08:56:49 -06:00
Omar Sandoval
54d5329d42 blk-mq-sched: fix crash in switch error path
In elevator_switch(), if blk_mq_init_sched() fails, we attempt to fall
back to the original scheduler. However, at this point, we've already
torn down the original scheduler's tags, so this causes a crash. Doing
the fallback like the legacy elevator path is much harder for mq, so fix
it by just falling back to none, instead.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 08:56:48 -06:00
Omar Sandoval
93252632e8 blk-mq-sched: set up scheduler tags when bringing up new queues
If a new hardware queue is added at runtime, we don't allocate scheduler
tags for it, leading to a crash. This hooks up the scheduler framework
to blk_mq_{init,exit}_hctx() to make sure everything gets properly
initialized/freed.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 08:56:46 -06:00
Omar Sandoval
6917ff0b5b blk-mq-sched: refactor scheduler initialization
Preparation cleanup for the next couple of fixes, push
blk_mq_sched_setup() and e->ops.mq.init_sched() into a helper.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 08:56:44 -06:00
Omar Sandoval
81380ca107 blk-mq: use the right hctx when getting a driver tag fails
While dispatching requests, if we fail to get a driver tag, we mark the
hardware queue as waiting for a tag and put the requests on a
hctx->dispatch list to be run later when a driver tag is freed. However,
blk_mq_dispatch_rq_list() may dispatch requests from multiple hardware
queues if using a single-queue scheduler with a multiqueue device. If
blk_mq_get_driver_tag() fails, it doesn't update the hardware queue we
are processing. This means we end up using the hardware queue of the
previous request, which may or may not be the same as that of the
current request. If it isn't, the wrong hardware queue will end up
waiting for a tag, and the requests will be on the wrong dispatch list,
leading to a hang.

The fix is twofold:

1. Make sure we save which hardware queue we were trying to get a
   request for in blk_mq_get_driver_tag() regardless of whether it
   succeeds or not.
2. Make blk_mq_dispatch_rq_list() take a request_queue instead of a
   blk_mq_hw_queue to make it clear that it must handle multiple
   hardware queues, since I've already messed this up on a couple of
   occasions.

This didn't appear in testing with nvme and mq-deadline because nvme has
more driver tags than the default number of scheduler tags. However,
with the blk_mq_update_nr_hw_queues() fix, it showed up with nbd.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 08:56:26 -06:00
Christoph Hellwig
64c7f1d157 block, scsi: move the retries field to struct scsi_request
Instead of bloating the generic struct request with it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-05 12:05:08 -06:00
Bart Van Assche
f2fbc9dd78 blk-mq: Remove blk_mq_queue_data.list
The block layer core sets blk_mq_queue_data.list but no block
drivers read that member. Hence remove it and also the code that
is used to set this member.

Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-05 09:40:15 -06:00
Jan Kara
142bbdfccc cfq: Disable writeback throttling by default
Writeback throttling does not play well with CFQ since that also tries
to throttle async writes. As a result async writeback can get starved in
presence of readers. As an example take a benchmark simulating
postgreSQL database running over a standard rotating SATA drive. There
are 16 processes doing random reads from a huge file (2*machine memory),
1 process doing random writes to the huge file and calling fsync once
per 50000 writes and 1 process doing sequential 8k writes to a
relatively small file wrapping around at the end of the file and calling
fsync every 5 writes. Under this load read latency easily exceeds the
target latency of 75 ms (just because there are so many reads happening
against a relatively slow disk) and thus writeback is throttled to a
point where only 1 write request is allowed at a time. Blktrace data
then looks like:

  8,0    1        0     8.347751764     0  m   N cfq workload slice:40000000
  8,0    1        0     8.347755256     0  m   N cfq293A  / set_active wl_class: 0 wl_type:0
  8,0    1        0     8.347784100     0  m   N cfq293A  / Not idling.  st->count:1
  8,0    1     3814     8.347763916  5839 UT   N [kworker/u9:2] 1
  8,0    0        0     8.347777605     0  m   N cfq293A  / Not idling.  st->count:1
  8,0    1        0     8.347784100     0  m   N cfq293A  / Not idling.  st->count:1
  8,0    3     1596     8.354364057     0  C   R 156109528 + 8 (6906954) [0]
  8,0    3        0     8.354383193     0  m   N cfq6196SN / complete rqnoidle 0
  8,0    3        0     8.354386476     0  m   N cfq schedule dispatch
  8,0    3        0     8.354399397     0  m   N cfq293A  / Not idling.  st->count:1
  8,0    3        0     8.354404705     0  m   N cfq293A  / dispatch_insert
  8,0    3        0     8.354409454     0  m   N cfq293A  / dispatched a request
  8,0    3        0     8.354412527     0  m   N cfq293A  / activate rq, drv=1
  8,0    3     1597     8.354414692     0  D   W 145961400 + 24 (6718452) [swapper/0]
  8,0    3        0     8.354484184     0  m   N cfq293A  / Not idling.  st->count:1
  8,0    3        0     8.354487536     0  m   N cfq293A  / slice expired t=0
  8,0    3        0     8.354498013     0  m   N / served: vt=5888102466265088 min_vt=5888074869387264
  8,0    3        0     8.354502692     0  m   N cfq293A  / sl_used=6737519 disp=1 charge=6737519 iops=0 sect=24
  8,0    3        0     8.354505695     0  m   N cfq293A  / del_from_rr
...
  8,0    0     1810     8.354728768     0  C   W 145961400 + 24 (314076) [0]
  8,0    0        0     8.354746927     0  m   N cfq293A  / complete rqnoidle 0
...
  8,0    1     3829     8.389886102  5839  G   W 145962968 + 24 [kworker/u9:2]
  8,0    1     3830     8.389888127  5839  P   N [kworker/u9:2]
  8,0    1     3831     8.389908102  5839  A   W 145978336 + 24 <- (8,4) 44000
  8,0    1     3832     8.389910477  5839  Q   W 145978336 + 24 [kworker/u9:2]
  8,0    1     3833     8.389914248  5839  I   W 145962968 + 24 (28146) [kworker/u9:2]
  8,0    1        0     8.389919137     0  m   N cfq293A  / insert_request
  8,0    1        0     8.389924305     0  m   N cfq293A  / add_to_rr
  8,0    1     3834     8.389933175  5839 UT   N [kworker/u9:2] 1
...
  8,0    0        0     9.455290997     0  m   N cfq workload slice:40000000
  8,0    0        0     9.455294769     0  m   N cfq293A  / set_active wl_class:0 wl_type:0
  8,0    0        0     9.455303499     0  m   N cfq293A  / fifo=ffff880003166090
  8,0    0        0     9.455306851     0  m   N cfq293A  / dispatch_insert
  8,0    0        0     9.455311251     0  m   N cfq293A  / dispatched a request
  8,0    0        0     9.455314324     0  m   N cfq293A  / activate rq, drv=1
  8,0    0     2043     9.455316210  6204  D   W 145962968 + 24 (1065401962) [pgioperf]
  8,0    0        0     9.455392407     0  m   N cfq293A  / Not idling.  st->count:1
  8,0    0        0     9.455395969     0  m   N cfq293A  / slice expired t=0
  8,0    0        0     9.455404210     0  m   N / served: vt=5888958194597888 min_vt=5888941810597888
  8,0    0        0     9.455410077     0  m   N cfq293A  / sl_used=4000000 disp=1 charge=4000000 iops=0 sect=24
  8,0    0        0     9.455416851     0  m   N cfq293A  / del_from_rr
...
  8,0    0     2045     9.455648515     0  C   W 145962968 + 24 (332305) [0]
  8,0    0        0     9.455668350     0  m   N cfq293A  / complete rqnoidle 0
...
  8,0    1     4371     9.455710115  5839  G   W 145978336 + 24 [kworker/u9:2]
  8,0    1     4372     9.455712350  5839  P   N [kworker/u9:2]
  8,0    1     4373     9.455730159  5839  A   W 145986616 + 24 <- (8,4) 52280
  8,0    1     4374     9.455732674  5839  Q   W 145986616 + 24 [kworker/u9:2]
  8,0    1     4375     9.455737563  5839  I   W 145978336 + 24 (27448) [kworker/u9:2]
  8,0    1        0     9.455742871     0  m   N cfq293A  / insert_request
  8,0    1        0     9.455747550     0  m   N cfq293A  / add_to_rr
  8,0    1     4376     9.455756629  5839 UT   N [kworker/u9:2] 1

So we can see a Q event for a write request, then IO is blocked by
writeback throttling and G and I events for the request happen only once
other writeback IO is completed. Thus CFQ always sees only one write
request. When it sees it, it queues the async queue behind all the read
queues and the async queue gets scheduled after about one second. When
it is scheduled, that one request gets dispatched and async queue is
expired as it has no more requests to submit. Overall we submit about
one write request per second.

Although this scheduling is beneficial for read latency, writes are
heavily starved and this causes large delays all over the system (due to
processes blocking on page lock, transaction starts, etc.). When
writeback throttling is disabled, write throughput is about one fifth of
a read throughput which roughly matches readers/writers ratio and
overall the system stalls are much shorter.

Mixing writeback throttling logic with CFQ throttling logic is always a
recipe for surprises as CFQ assumes it sees the big part of the picture
which is not necessarily true when writeback throttling is blocking
requests. So disable writeback throttling logic by default when CFQ is
used as an IO scheduler.

Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-05 08:15:08 -06:00
Adam Manzanares
85003a446e block: fix inheriting request priority from bio
In 4.10 I introduced a patch that associates the ioc priority with
each request in the block layer. This work was done in the single queue
block layer code. This patch unifies ioc priority to request mapping across
the single/multi queue block layers.

I have tested this patch with the null block device driver with the following
parameters.

null_blk queue_mode=2 irqmode=0 use_per_node_hctx=1 nr_devices=1

I have not seen a performance regression with this patch and I would appreciate
any feedback or additional testing.

I have also verified that io priorities are passed to the device when using
the SQ and MQ path to a SATA HDD that supports io priorities.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com>
Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-04 15:39:47 -06:00
Jens Axboe
bf4907c05e blk-mq: fix schedule-under-preempt for blocking drivers
Commit a4d907b6a3 unified the single and multi queue request handlers,
but in the process, it also screwed up the locking balance and calls
blk_mq_try_issue_directly() with the ctx preempt lock held. This is a
problem for drivers that have set BLK_MQ_F_BLOCKING, since now they
can't reliably sleep.

While in there, protect against similar issues in the future, by adding
a might_sleep() trigger in the BLOCKING path for direct issue or queue
run.

Reported-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Josef Bacik <josef@toxicpanda.com>
Fixes: a4d907b6a3 ("blk-mq: streamline blk_mq_make_request")
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-30 12:30:39 -06:00
Colin Ian King
47d752076a block/sed-opal: fix spelling mistake: "Lifcycle" -> "Lifecycle"
trivial fix to spelling mistake in pr_err error message

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-30 09:22:53 -06:00
Minchan Kim
ac77a0c463 block: do not put mq context in blk_mq_alloc_request_hctx
In blk_mq_alloc_request_hctx, blk_mq_sched_get_request doesn't
get sw context so we don't need to put the context with
blk_mq_put_ctx. Unless, we will see preempt counter underflow.

Cc: Omar Sandoval <osandov@fb.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-30 08:13:23 -06:00
Minchan Kim
3e06eb3dac block: do not put mq context in blk_mq_alloc_request_hctx
In blk_mq_alloc_request_hctx, blk_mq_sched_get_request doesn't
get sw context so we don't need to put the context with
blk_mq_put_ctx. Unless, we will see preempt counter underflow.

Cc: Omar Sandoval <osandov@fb.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-30 08:13:05 -06:00
Jens Axboe
3e8a7069b9 blk-mq: include errors in did_work calculation
Currently we return true in blk_mq_dispatch_rq_list() if we queued IO
successfully, but we really want to return whether or not the we made
progress. Progress includes if we got an error return.  If we don't,
this can lead to a hang in blk_mq_sched_dispatch_requests() when a
driver is draining IO by returning BLK_MQ_QUEUE_ERROR instead of
manually ending the IO in error and return BLK_MQ_QUEUE_OK.

Tested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 13:21:13 -06:00
Josef Bacik
b58e176914 block-mq: don't re-queue if we get a queue error
When try to issue a request directly and we fail we will requeue the
request, but call blk_mq_end_request() as well.  This leads to the
completed request being on a queuelist and getting ended twice, which
causes list corruption in schedulers and other shenanigans.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 13:18:18 -06:00
Tahsin Erdogan
457e490f2b blkcg: allocate struct blkcg_gq outside request queue spinlock
blkg_conf_prep() currently calls blkg_lookup_create() while holding
request queue spinlock. This means allocating memory for struct
blkcg_gq has to be made non-blocking. This causes occasional -ENOMEM
failures in call paths like below:

  pcpu_alloc+0x68f/0x710
  __alloc_percpu_gfp+0xd/0x10
  __percpu_counter_init+0x55/0xc0
  cfq_pd_alloc+0x3b2/0x4e0
  blkg_alloc+0x187/0x230
  blkg_create+0x489/0x670
  blkg_lookup_create+0x9a/0x230
  blkg_conf_prep+0x1fb/0x240
  __cfqg_set_weight_device.isra.105+0x5c/0x180
  cfq_set_weight_on_dfl+0x69/0xc0
  cgroup_file_write+0x39/0x1c0
  kernfs_fop_write+0x13f/0x1d0
  __vfs_write+0x23/0x120
  vfs_write+0xc2/0x1f0
  SyS_write+0x44/0xb0
  entry_SYSCALL_64_fastpath+0x18/0xad

In the code path above, percpu allocator cannot call vmalloc() due to
queue spinlock.

A failure in this call path gives grief to tools which are trying to
configure io weights. We see occasional failures happen shortly after
reboots even when system is not under any memory pressure. Machines
with a lot of cpus are more vulnerable to this condition.

Do struct blkcg_gq allocations outside the queue spinlock to allow
blocking during memory allocations.

Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tahsin Erdogan <tahsin@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 11:27:19 -06:00
Jens Axboe
d708f0d502 Revert "blkcg: allocate struct blkcg_gq outside request queue spinlock"
I inadvertently applied the v5 version of this patch, whereas
the agreed upon version was v5. Revert this one so we can apply
the right one.

This reverts commit 7fc6b87a9f.
2017-03-29 11:25:48 -06:00
Jens Axboe
48b99c9d65 blk-mq: fix a typo and a spelling mistake
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 11:10:34 -06:00
Sagi Grimberg
018c259bbf blk-mq-pci: Fix two spelling mistakes
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 11:09:51 -06:00
Omar Sandoval
02ba8893ac block: fix leak of q->rq_wb
CONFIG_DEBUG_TEST_DRIVER_REMOVE found a possible leak of q->rq_wb when a
request queue is reregistered. This has been a problem since wbt was
introduced, but the WARN_ON(!list_empty(&stats->callbacks)) in the
blk-stat rework exposed it. Fix it by cleaning up wbt when we unregister
the queue.

Fixes: 87760e5eef ("block: hook up writeback throttling")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 08:09:08 -06:00
Omar Sandoval
0c9539a431 blk-mq: fix leak of q->stats
blk_alloc_queue_node() already allocates q->stats, so
blk_mq_init_allocated_queue() is overwriting it with a new allocation.

Fixes: a83b576c9c ("block: fix stacked driver stats init and free")
Reviewed-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 08:09:08 -06:00
Omar Sandoval
334335d2f7 block: warn if sharing request queue across gendisks
Now that the remaining drivers have been converted to one request queue
per gendisk, let's warn if a request queue gets registered more than
once. This will catch future drivers which might do it inadvertently or
any old drivers that I may have missed.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 08:09:08 -06:00
Ming Lei
d3cfb2a0ac block: block new I/O just after queue is set as dying
Before commit 780db2071a(blk-mq: decouble blk-mq freezing
from generic bypassing), the dying flag is checked before
entering queue, and Tejun converts the checking into .mq_freeze_depth,
and assumes the counter is increased just after dying flag
is set. Unfortunately we doesn't do that in blk_set_queue_dying().

This patch calls blk_freeze_queue_start() in blk_set_queue_dying(),
so that we can block new I/O coming once the queue is set as dying.

Given blk_set_queue_dying() is always called in remove path
of block device, and queue will be cleaned up later, we don't
need to worry about undoing the counter.

Cc: Tejun Heo <tj@kernel.org>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 08:03:42 -06:00
Ming Lei
1671d522cd block: rename blk_mq_freeze_queue_start()
As the .q_usage_counter is used by both legacy and
mq path, we need to block new I/O if queue becomes
dead in blk_queue_enter().

So rename it and we can use this function in both
paths.

Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 08:03:42 -06:00
Ming Lei
5ed61d3f08 block: add a read barrier in blk_queue_enter()
Without the barrier, reading DEAD flag of .q_usage_counter
and reading .mq_freeze_depth may be reordered, then the
following wait_event_interruptible() may never return.

Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 08:03:42 -06:00
Ming Lei
d9d149a396 blk-mq: comment on races related with timeout handler
This patch adds comment on two races related with
timeout handler:

- requeue from queue busy vs. timeout
- rq free & reallocation vs. timeout

Both the races themselves and current solution aren't
explicit enough, so add comments on them.

Cc: Bart Van Assche <bart.vanassche@sandisk.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 08:03:42 -06:00
Ming Lei
a4ef8e566f blk-mq: don't complete un-started request in timeout handler
When iterating busy requests in timeout handler,
if the STARTED flag of one request isn't set, that means
the request is being processed in block layer or driver, and
isn't submitted to hardware yet.

In current implementation of blk_mq_check_expired(),
if the request queue becomes dying, un-started requests are
handled as being completed/freed immediately. This way is
wrong, and can cause rq corruption or double allocation[1][2],
when doing I/O and removing&resetting NVMe device at the sametime.

This patch fixes several issues reported by Yi Zhang.

[1]. oops log 1
[  581.789754] ------------[ cut here ]------------
[  581.789758] kernel BUG at block/blk-mq.c:374!
[  581.789760] invalid opcode: 0000 [#1] SMP
[  581.789761] Modules linked in: vfat fat ipmi_ssif intel_rapl sb_edac
edac_core x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm nvme
irqbypass crct10dif_pclmul nvme_core crc32_pclmul ghash_clmulni_intel
intel_cstate ipmi_si mei_me ipmi_devintf intel_uncore sg ipmi_msghandler
intel_rapl_perf iTCO_wdt mei iTCO_vendor_support mxm_wmi lpc_ich dcdbas shpchp
pcspkr acpi_power_meter wmi nfsd auth_rpcgss nfs_acl lockd dm_multipath grace
sunrpc ip_tables xfs libcrc32c sd_mod mgag200 i2c_algo_bit drm_kms_helper
syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm ahci libahci
crc32c_intel tg3 libata megaraid_sas i2c_core ptp fjes pps_core dm_mirror
dm_region_hash dm_log dm_mod
[  581.789796] CPU: 1 PID: 1617 Comm: kworker/1:1H Not tainted 4.10.0.bz1420297+ #4
[  581.789797] Hardware name: Dell Inc. PowerEdge R730xd/072T6D, BIOS 2.2.5 09/06/2016
[  581.789804] Workqueue: kblockd blk_mq_timeout_work
[  581.789806] task: ffff8804721c8000 task.stack: ffffc90006ee4000
[  581.789809] RIP: 0010:blk_mq_end_request+0x58/0x70
[  581.789810] RSP: 0018:ffffc90006ee7d50 EFLAGS: 00010202
[  581.789811] RAX: 0000000000000001 RBX: ffff8802e4195340 RCX: ffff88028e2f4b88
[  581.789812] RDX: 0000000000001000 RSI: 0000000000001000 RDI: 0000000000000000
[  581.789813] RBP: ffffc90006ee7d60 R08: 0000000000000003 R09: ffff88028e2f4b00
[  581.789814] R10: 0000000000001000 R11: 0000000000000001 R12: 00000000fffffffb
[  581.789815] R13: ffff88042abe5780 R14: 000000000000002d R15: ffff88046fbdff80
[  581.789817] FS:  0000000000000000(0000) GS:ffff88047fc00000(0000) knlGS:0000000000000000
[  581.789818] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  581.789819] CR2: 00007f64f403a008 CR3: 000000014d078000 CR4: 00000000001406e0
[  581.789820] Call Trace:
[  581.789825]  blk_mq_check_expired+0x76/0x80
[  581.789828]  bt_iter+0x45/0x50
[  581.789830]  blk_mq_queue_tag_busy_iter+0xdd/0x1f0
[  581.789832]  ? blk_mq_rq_timed_out+0x70/0x70
[  581.789833]  ? blk_mq_rq_timed_out+0x70/0x70
[  581.789840]  ? __switch_to+0x140/0x450
[  581.789841]  blk_mq_timeout_work+0x88/0x170
[  581.789845]  process_one_work+0x165/0x410
[  581.789847]  worker_thread+0x137/0x4c0
[  581.789851]  kthread+0x101/0x140
[  581.789853]  ? rescuer_thread+0x3b0/0x3b0
[  581.789855]  ? kthread_park+0x90/0x90
[  581.789860]  ret_from_fork+0x2c/0x40
[  581.789861] Code: 48 85 c0 74 0d 44 89 e6 48 89 df ff d0 5b 41 5c 5d c3 48
8b bb 70 01 00 00 48 85 ff 75 0f 48 89 df e8 7d f0 ff ff 5b 41 5c 5d c3 <0f>
0b e8 71 f0 ff ff 90 eb e9 0f 1f 40 00 66 2e 0f 1f 84 00 00
[  581.789882] RIP: blk_mq_end_request+0x58/0x70 RSP: ffffc90006ee7d50
[  581.789889] ---[ end trace bcaf03d9a14a0a70 ]---

[2]. oops log2
[ 6984.857362] BUG: unable to handle kernel NULL pointer dereference at 0000000000000010
[ 6984.857372] IP: nvme_queue_rq+0x6e6/0x8cd [nvme]
[ 6984.857373] PGD 0
[ 6984.857374]
[ 6984.857376] Oops: 0000 [#1] SMP
[ 6984.857379] Modules linked in: ipmi_ssif vfat fat intel_rapl sb_edac
edac_core x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm
irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel ipmi_si iTCO_wdt
iTCO_vendor_support mxm_wmi ipmi_devintf intel_cstate sg dcdbas intel_uncore
mei_me intel_rapl_perf mei pcspkr lpc_ich ipmi_msghandler shpchp
acpi_power_meter wmi nfsd auth_rpcgss dm_multipath nfs_acl lockd grace sunrpc
ip_tables xfs libcrc32c sd_mod mgag200 i2c_algo_bit drm_kms_helper syscopyarea
sysfillrect crc32c_intel sysimgblt fb_sys_fops ttm nvme drm nvme_core ahci
libahci i2c_core tg3 libata ptp megaraid_sas pps_core fjes dm_mirror
dm_region_hash dm_log dm_mod
[ 6984.857416] CPU: 7 PID: 1635 Comm: kworker/7:1H Not tainted
4.10.0-2.el7.bz1420297.x86_64 #1
[ 6984.857417] Hardware name: Dell Inc. PowerEdge R730xd/072T6D, BIOS 2.2.5 09/06/2016
[ 6984.857427] Workqueue: kblockd blk_mq_run_work_fn
[ 6984.857429] task: ffff880476e3da00 task.stack: ffffc90002e90000
[ 6984.857432] RIP: 0010:nvme_queue_rq+0x6e6/0x8cd [nvme]
[ 6984.857433] RSP: 0018:ffffc90002e93c50 EFLAGS: 00010246
[ 6984.857434] RAX: 0000000000000000 RBX: ffff880275646600 RCX: 0000000000001000
[ 6984.857435] RDX: 0000000000000fff RSI: 00000002fba2a000 RDI: ffff8804734e6950
[ 6984.857436] RBP: ffffc90002e93d30 R08: 0000000000002000 R09: 0000000000001000
[ 6984.857437] R10: 0000000000001000 R11: 0000000000000000 R12: ffff8804741d8000
[ 6984.857438] R13: 0000000000000040 R14: ffff880475649f80 R15: ffff8804734e6780
[ 6984.857439] FS:  0000000000000000(0000) GS:ffff88047fcc0000(0000) knlGS:0000000000000000
[ 6984.857440] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 6984.857442] CR2: 0000000000000010 CR3: 0000000001c09000 CR4: 00000000001406e0
[ 6984.857443] Call Trace:
[ 6984.857451]  ? mempool_free+0x2b/0x80
[ 6984.857455]  ? bio_free+0x4e/0x60
[ 6984.857459]  blk_mq_dispatch_rq_list+0xf5/0x230
[ 6984.857462]  blk_mq_process_rq_list+0x133/0x170
[ 6984.857465]  __blk_mq_run_hw_queue+0x8c/0xa0
[ 6984.857467]  blk_mq_run_work_fn+0x12/0x20
[ 6984.857473]  process_one_work+0x165/0x410
[ 6984.857475]  worker_thread+0x137/0x4c0
[ 6984.857478]  kthread+0x101/0x140
[ 6984.857480]  ? rescuer_thread+0x3b0/0x3b0
[ 6984.857481]  ? kthread_park+0x90/0x90
[ 6984.857489]  ret_from_fork+0x2c/0x40
[ 6984.857490] Code: 8b bd 70 ff ff ff 89 95 50 ff ff ff 89 8d 58 ff ff ff 44
89 95 60 ff ff ff e8 b7 dd 12 e1 8b 95 50 ff ff ff 48 89 85 68 ff ff ff <4c>
8b 48 10 44 8b 58 18 8b 8d 58 ff ff ff 44 8b 95 60 ff ff ff
[ 6984.857511] RIP: nvme_queue_rq+0x6e6/0x8cd [nvme] RSP: ffffc90002e93c50
[ 6984.857512] CR2: 0000000000000010
[ 6984.895359] ---[ end trace 2d7ceb528432bf83 ]---

Cc: stable@vger.kernel.org
Reported-by: Yi Zhang <yizhan@redhat.com>
Tested-by: Yi Zhang <yizhan@redhat.com>
Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-29 08:03:38 -06:00
Tahsin Erdogan
7fc6b87a9f blkcg: allocate struct blkcg_gq outside request queue spinlock
blkg_conf_prep() currently calls blkg_lookup_create() while holding
request queue spinlock. This means allocating memory for struct
blkcg_gq has to be made non-blocking. This causes occasional -ENOMEM
failures in call paths like below:

  pcpu_alloc+0x68f/0x710
  __alloc_percpu_gfp+0xd/0x10
  __percpu_counter_init+0x55/0xc0
  cfq_pd_alloc+0x3b2/0x4e0
  blkg_alloc+0x187/0x230
  blkg_create+0x489/0x670
  blkg_lookup_create+0x9a/0x230
  blkg_conf_prep+0x1fb/0x240
  __cfqg_set_weight_device.isra.105+0x5c/0x180
  cfq_set_weight_on_dfl+0x69/0xc0
  cgroup_file_write+0x39/0x1c0
  kernfs_fop_write+0x13f/0x1d0
  __vfs_write+0x23/0x120
  vfs_write+0xc2/0x1f0
  SyS_write+0x44/0xb0
  entry_SYSCALL_64_fastpath+0x18/0xad

In the code path above, percpu allocator cannot call vmalloc() due to
queue spinlock.

A failure in this call path gives grief to tools which are trying to
configure io weights. We see occasional failures happen shortly after
reboots even when system is not under any memory pressure. Machines
with a lot of cpus are more vulnerable to this condition.

Update blkg_create() function to temporarily drop the rcu and queue
locks when it is allowed by gfp mask.

Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tahsin Erdogan <tahsin@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 15:59:04 -06:00
Shaohua Li
53696b8d21 blk-throttle: add latency target support
One hard problem adding .low limit is to detect idle cgroup. If one
cgroup doesn't dispatch enough IO against its low limit, we must have a
mechanism to determine if other cgroups dispatch more IO. We added the
think time detection mechanism before, but it doesn't work for all
workloads. Here we add a latency based approach.

We already have mechanism to calculate latency threshold for each IO
size. For every IO dispatched from a cgorup, we compare its latency
against its threshold and record the info. If most IO latency is below
threshold (in the code I use 75%), the cgroup could be treated idle and
other cgroups can dispatch more IO.

Currently this latency target check is only for SSD as we can't
calcualte the latency target for hard disk. And this is only for cgroup
leaf node so far.

Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 08:02:20 -06:00
Shaohua Li
b9147dd1ba blk-throttle: add a mechanism to estimate IO latency
User configures latency target, but the latency threshold for each
request size isn't fixed. For a SSD, the IO latency highly depends on
request size. To calculate latency threshold, we sample some data, eg,
average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency
threshold of each request size will be the sample latency (I'll call it
base latency) plus latency target. For example, the base latency for
request size 4k is 80us and user configures latency target 60us. The 4k
latency threshold will be 80 + 60 = 140us.

To sample data, we calculate the order base 2 of rounded up IO sectors.
If the IO size is bigger than 1M, it will be accounted as 1M. Since the
calculation does round up, the base latency will be slightly smaller
than actual value. Also if there isn't any IO dispatched for a specific
IO size, we will use the base latency of smaller IO size for this IO
size.

But we shouldn't sample data at any time. The base latency is supposed
to be latency where disk isn't congested, because we use latency
threshold to schedule IOs between cgroups. If disk is congested, the
latency is higher, using it for scheduling is meaningless. Hence we only
do the sampling when block throttling is in the LOW limit, with
assumption disk isn't congested in such state. If the assumption isn't
true, eg, low limit is too high, calculated latency threshold will be
higher.

Hard disk is completely different. Latency depends on spindle seek
instead of request size. Currently this feature is SSD only, we probably
can use a fixed threshold like 4ms for hard disk though.

Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 08:02:20 -06:00
Shaohua Li
88eeca495b block: track request size in blk_issue_stat
Currently there is no way to know the request size when the request is
finished. Next patch will need this info. We could add extra field to
record the size, but blk_issue_stat has enough space to record it, so
this patch just overloads blk_issue_stat. With this, we will have 49bits
to track time, which still is very long time.

Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 08:02:20 -06:00
Shaohua Li
ec80991d6f blk-throttle: add interface for per-cgroup target latency
Here we introduce per-cgroup latency target. The target determines how a
cgroup can afford latency increasement. We will use the target latency
to calculate a threshold and use it to schedule IO for cgroups. If a
cgroup's bandwidth is below its low limit but its average latency is
below the threshold, other cgroups can safely dispatch more IO even
their bandwidth is higher than their low limits. On the other hand, if
the first cgroup's latency is higher than the threshold, other cgroups
are throttled to their low limits. So the target latency determines how
we efficiently utilize free disk resource without sacifice of worload's
IO latency.

For example, assume 4k IO average latency is 50us when disk isn't
congested. A cgroup sets the target latency to 30us. Then the cgroup can
accept 50+30=80us IO latency. If the cgroupt's average IO latency is
90us and its bandwidth is below low limit, other cgroups are throttled
to their low limit. If the cgroup's average IO latency is 60us, other
cgroups are allowed to dispatch more IO. When other cgroups dispatch
more IO, the first cgroup's IO latency will increase. If it increases to
81us, we then throttle other cgroups.

User will configure the interface in this way:
echo "8:16 rbps=2097152 wbps=max latency=100 idle=200" > io.low

latency is in microsecond unit

By default, latency target is 0, which means to guarantee IO latency.

Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 08:02:20 -06:00
Shaohua Li
fa6fb5aab8 blk-throttle: ignore idle cgroup limit
Last patch introduces a way to detect idle cgroup. We use it to make
upgrade/downgrade decision. And the new algorithm can detect completely
idle cgroup too, so we can delete the corresponding code.

Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 08:02:20 -06:00
Shaohua Li
ada75b6e5b blk-throttle: add interface to configure idle time threshold
Add interface to configure the threshold. The io.low interface will
like:
echo "8:16 rbps=2097152 wbps=max idle=2000" > io.low

idle is in microsecond unit.

Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 08:02:20 -06:00
Shaohua Li
9e234eeafb blk-throttle: add a simple idle detection
A cgroup gets assigned a low limit, but the cgroup could never dispatch
enough IO to cross the low limit. In such case, the queue state machine
will remain in LIMIT_LOW state and all other cgroups will be throttled
according to low limit. This is unfair for other cgroups. We should
treat the cgroup idle and upgrade the state machine to lower state.

We also have a downgrade logic. If the state machine upgrades because of
cgroup idle (real idle), the state machine will downgrade soon as the
cgroup is below its low limit. This isn't what we want. A more
complicated case is cgroup isn't idle when queue is in LIMIT_LOW. But
when queue gets upgraded to lower state, other cgroups could dispatch
more IO and this cgroup can't dispatch enough IO, so the cgroup is below
its low limit and looks like idle (fake idle). In this case, the queue
should downgrade soon. The key to determine if we should do downgrade is
to detect if cgroup is truely idle.

Unfortunately it's very hard to determine if a cgroup is real idle. This
patch uses the 'think time check' idea from CFQ for the purpose. Please
note, the idea doesn't work for all workloads. For example, a workload
with io depth 8 has disk utilization 100%, hence think time is 0, eg,
not idle. But the workload can run higher bandwidth with io depth 16.
Compared to io depth 16, the io depth 8 workload is idle. We use the
idea to roughly determine if a cgroup is idle.

We treat a cgroup idle if its think time is above a threshold (by
default 1ms for SSD and 100ms for HD). The idea is think time above the
threshold will start to harm performance. HD is much slower so a longer
think time is ok.

The patch (and the latter patches) uses 'unsigned long' to track time.
We convert 'ns' to 'us' with 'ns >> 10'. This is fast but loses
precision, should not a big deal.

Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-28 08:02:20 -06:00