Commit graph

37747 commits

Author SHA1 Message Date
Tetsuo Handa
5db17805b6 cgroup: Add missing cpus_read_lock() to cgroup_attach_task_all()
commit 43626dade3 upstream.

syzbot is hitting percpu_rwsem_assert_held(&cpu_hotplug_lock) warning at
cpuset_attach() [1], for commit 4f7e723643 ("cgroup: Fix
threadgroup_rwsem <-> cpus_read_lock() deadlock") missed that
cpuset_attach() is also called from cgroup_attach_task_all().
Add cpus_read_lock() like what cgroup_procs_write_start() does.

Link: https://syzkaller.appspot.com/bug?extid=29d3a3b4d86c8136ad9e [1]
Reported-by: syzbot <syzbot+29d3a3b4d86c8136ad9e@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Fixes: 4f7e723643 ("cgroup: Fix threadgroup_rwsem <-> cpus_read_lock() deadlock")
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-23 14:15:52 +02:00
Yipeng Zou
3c90af5a77 tracing: hold caller_addr to hardirq_{enable,disable}_ip
[ Upstream commit 54c3931957 ]

Currently, The arguments passing to lockdep_hardirqs_{on,off} was fixed
in CALLER_ADDR0.
The function trace_hardirqs_on_caller should have been intended to use
caller_addr to represent the address that caller wants to be traced.

For example, lockdep log in riscv showing the last {enabled,disabled} at
__trace_hardirqs_{on,off} all the time(if called by):
[   57.853175] hardirqs last  enabled at (2519): __trace_hardirqs_on+0xc/0x14
[   57.853848] hardirqs last disabled at (2520): __trace_hardirqs_off+0xc/0x14

After use trace_hardirqs_xx_caller, we can get more effective information:
[   53.781428] hardirqs last  enabled at (2595): restore_all+0xe/0x66
[   53.782185] hardirqs last disabled at (2596): ret_from_exception+0xa/0x10

Link: https://lkml.kernel.org/r/20220901104515.135162-2-zouyipeng@huawei.com

Cc: stable@vger.kernel.org
Fixes: c3bc8fd637 ("tracing: Centralize preemptirq tracepoints and unify their usage")
Signed-off-by: Yipeng Zou <zouyipeng@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-20 12:39:43 +02:00
Nick Desaulniers
f9571a9699 lockdep: Fix -Wunused-parameter for _THIS_IP_
[ Upstream commit 8b023accc8 ]

While looking into a bug related to the compiler's handling of addresses
of labels, I noticed some uses of _THIS_IP_ seemed unused in lockdep.
Drive by cleanup.

-Wunused-parameter:
kernel/locking/lockdep.c:1383:22: warning: unused parameter 'ip'
kernel/locking/lockdep.c:4246:48: warning: unused parameter 'ip'
kernel/locking/lockdep.c:4844:19: warning: unused parameter 'ip'

Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/r/20220314221909.2027027-1-ndesaulniers@google.com
Stable-dep-of: 54c3931957 ("tracing: hold caller_addr to hardirq_{enable,disable}_ip")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-20 12:39:42 +02:00
Chao Gao
4f8d658848 swiotlb: avoid potential left shift overflow
[ Upstream commit 3f0461613e ]

The second operand passed to slot_addr() is declared as int or unsigned int
in all call sites. The left-shift to get the offset of a slot can overflow
if swiotlb size is larger than 4G.

Convert the macro to an inline function and declare the second argument as
phys_addr_t to avoid the potential overflow.

Fixes: 26a7e09478 ("swiotlb: refactor swiotlb_tbl_map_single")
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-15 11:30:07 +02:00
Yishai Hadas
819110054b IB/core: Fix a nested dead lock as part of ODP flow
[ Upstream commit 85eaeb5058 ]

Fix a nested dead lock as part of ODP flow by using mmput_async().

From the below call trace [1] can see that calling mmput() once we have
the umem_odp->umem_mutex locked as required by
ib_umem_odp_map_dma_and_lock() might trigger in the same task the
exit_mmap()->__mmu_notifier_release()->mlx5_ib_invalidate_range() which
may dead lock when trying to lock the same mutex.

Moving to use mmput_async() will solve the problem as the above
exit_mmap() flow will be called in other task and will be executed once
the lock will be available.

[1]
[64843.077665] task:kworker/u133:2  state:D stack:    0 pid:80906 ppid:
2 flags:0x00004000
[64843.077672] Workqueue: mlx5_ib_page_fault mlx5_ib_eqe_pf_action [mlx5_ib]
[64843.077719] Call Trace:
[64843.077722]  <TASK>
[64843.077724]  __schedule+0x23d/0x590
[64843.077729]  schedule+0x4e/0xb0
[64843.077735]  schedule_preempt_disabled+0xe/0x10
[64843.077740]  __mutex_lock.constprop.0+0x263/0x490
[64843.077747]  __mutex_lock_slowpath+0x13/0x20
[64843.077752]  mutex_lock+0x34/0x40
[64843.077758]  mlx5_ib_invalidate_range+0x48/0x270 [mlx5_ib]
[64843.077808]  __mmu_notifier_release+0x1a4/0x200
[64843.077816]  exit_mmap+0x1bc/0x200
[64843.077822]  ? walk_page_range+0x9c/0x120
[64843.077828]  ? __cond_resched+0x1a/0x50
[64843.077833]  ? mutex_lock+0x13/0x40
[64843.077839]  ? uprobe_clear_state+0xac/0x120
[64843.077860]  mmput+0x5f/0x140
[64843.077867]  ib_umem_odp_map_dma_and_lock+0x21b/0x580 [ib_core]
[64843.077931]  pagefault_real_mr+0x9a/0x140 [mlx5_ib]
[64843.077962]  pagefault_mr+0xb4/0x550 [mlx5_ib]
[64843.077992]  pagefault_single_data_segment.constprop.0+0x2ac/0x560
[mlx5_ib]
[64843.078022]  mlx5_ib_eqe_pf_action+0x528/0x780 [mlx5_ib]
[64843.078051]  process_one_work+0x22b/0x3d0
[64843.078059]  worker_thread+0x53/0x410
[64843.078065]  ? process_one_work+0x3d0/0x3d0
[64843.078073]  kthread+0x12a/0x150
[64843.078079]  ? set_kthread_struct+0x50/0x50
[64843.078085]  ret_from_fork+0x22/0x30
[64843.078093]  </TASK>

Fixes: 36f30e486d ("IB/core: Improve ODP to use hmm_range_fault()")
Reviewed-by: Maor Gottlieb <maorg@nvidia.com>
Signed-off-by: Yishai Hadas <yishaih@nvidia.com>
Link: https://lore.kernel.org/r/74d93541ea533ef7daec6f126deb1072500aeb16.1661251841.git.leonro@nvidia.com
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-15 11:30:06 +02:00
Tejun Heo
3bf4bf5406 cgroup: Fix threadgroup_rwsem <-> cpus_read_lock() deadlock
[ Upstream commit 4f7e723643 ]

Bringing up a CPU may involve creating and destroying tasks which requires
read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
cpus_read_lock(). However, cpuset's ->attach(), which may be called with
thredagroup_rwsem write-locked, also wants to disable CPU hotplug and
acquires cpus_read_lock(), leading to a deadlock.

Fix it by guaranteeing that ->attach() is always called with CPU hotplug
disabled and removing cpus_read_lock() call from cpuset_attach().

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-and-tested-by: Imran Khan <imran.f.khan@oracle.com>
Reported-and-tested-by: Xuewen Yan <xuewen.yan@unisoc.com>
Fixes: 05c7b7a92c ("cgroup/cpuset: Fix a race between cpuset_attach() and cpu hotplug")
Cc: stable@vger.kernel.org # v5.17+
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-15 11:30:03 +02:00
Tejun Heo
509e3456d3 cgroup: Elide write-locking threadgroup_rwsem when updating csses on an empty subtree
[ Upstream commit 671c11f061 ]

cgroup_update_dfl_csses() write-lock the threadgroup_rwsem as updating the
csses can trigger process migrations. However, if the subtree doesn't
contain any tasks, there aren't gonna be any cgroup migrations. This
condition can be trivially detected by testing whether
mgctx.preloaded_src_csets is empty. Elide write-locking threadgroup_rwsem if
the subtree is empty.

After this optimization, the usage pattern of creating a cgroup, enabling
the necessary controllers, and then seeding it with CLONE_INTO_CGROUP and
then removing the cgroup after it becomes empty doesn't need to write-lock
threadgroup_rwsem at all.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-15 11:30:03 +02:00
Greg Kroah-Hartman
26e9a1ded8 sched/debug: fix dentry leak in update_sched_domain_debugfs
commit c2e4065965 upstream.

Kuyo reports that the pattern of using debugfs_remove(debugfs_lookup())
leaks a dentry and with a hotplug stress test, the machine eventually
runs out of memory.

Fix this up by using the newly created debugfs_lookup_and_remove() call
instead which properly handles the dentry reference counting logic.

Cc: Major Chen <major.chen@samsung.com>
Cc: stable <stable@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Reported-by: Kuyo Chang <kuyo.chang@mediatek.com>
Tested-by: Kuyo Chang <kuyo.chang@mediatek.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220902123107.109274-2-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-15 11:30:02 +02:00
Christian A. Ehrhardt
8875d60676 kprobes: Prohibit probes in gate area
commit 1efda38d6f upstream.

The system call gate area counts as kernel text but trying
to install a kprobe in this area fails with an Oops later on.
To fix this explicitly disallow the gate area for kprobes.

Found by syzkaller with the following reproducer:
perf_event_open$cgroup(&(0x7f00000001c0)={0x6, 0x80, 0x0, 0x0, 0x0, 0x0, 0x80ffff, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, @perf_config_ext={0x0, 0xffffffffff600000}}, 0xffffffffffffffff, 0x0, 0xffffffffffffffff, 0x0)

Sample report:
BUG: unable to handle page fault for address: fffffbfff3ac6000
PGD 6dfcb067 P4D 6dfcb067 PUD 6df8f067 PMD 6de4d067 PTE 0
Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 0 PID: 21978 Comm: syz-executor.2 Not tainted 6.0.0-rc3-00363-g7726d4c3e60b-dirty #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:__insn_get_emulate_prefix arch/x86/lib/insn.c:91 [inline]
RIP: 0010:insn_get_emulate_prefix arch/x86/lib/insn.c:106 [inline]
RIP: 0010:insn_get_prefixes.part.0+0xa8/0x1110 arch/x86/lib/insn.c:134
Code: 49 be 00 00 00 00 00 fc ff df 48 8b 40 60 48 89 44 24 08 e9 81 00 00 00 e8 e5 4b 39 ff 4c 89 fa 4c 89 f9 48 c1 ea 03 83 e1 07 <42> 0f b6 14 32 38 ca 7f 08 84 d2 0f 85 06 10 00 00 48 89 d8 48 89
RSP: 0018:ffffc900088bf860 EFLAGS: 00010246
RAX: 0000000000040000 RBX: ffffffff9b9bebc0 RCX: 0000000000000000
RDX: 1ffffffff3ac6000 RSI: ffffc90002d82000 RDI: ffffc900088bf9e8
RBP: ffffffff9d630001 R08: 0000000000000000 R09: ffffc900088bf9e8
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000001
R13: ffffffff9d630000 R14: dffffc0000000000 R15: ffffffff9d630000
FS:  00007f63eef63640(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: fffffbfff3ac6000 CR3: 0000000029d90005 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
 <TASK>
 insn_get_prefixes arch/x86/lib/insn.c:131 [inline]
 insn_get_opcode arch/x86/lib/insn.c:272 [inline]
 insn_get_modrm+0x64a/0x7b0 arch/x86/lib/insn.c:343
 insn_get_sib+0x29a/0x330 arch/x86/lib/insn.c:421
 insn_get_displacement+0x350/0x6b0 arch/x86/lib/insn.c:464
 insn_get_immediate arch/x86/lib/insn.c:632 [inline]
 insn_get_length arch/x86/lib/insn.c:707 [inline]
 insn_decode+0x43a/0x490 arch/x86/lib/insn.c:747
 can_probe+0xfc/0x1d0 arch/x86/kernel/kprobes/core.c:282
 arch_prepare_kprobe+0x79/0x1c0 arch/x86/kernel/kprobes/core.c:739
 prepare_kprobe kernel/kprobes.c:1160 [inline]
 register_kprobe kernel/kprobes.c:1641 [inline]
 register_kprobe+0xb6e/0x1690 kernel/kprobes.c:1603
 __register_trace_kprobe kernel/trace/trace_kprobe.c:509 [inline]
 __register_trace_kprobe+0x26a/0x2d0 kernel/trace/trace_kprobe.c:477
 create_local_trace_kprobe+0x1f7/0x350 kernel/trace/trace_kprobe.c:1833
 perf_kprobe_init+0x18c/0x280 kernel/trace/trace_event_perf.c:271
 perf_kprobe_event_init+0xf8/0x1c0 kernel/events/core.c:9888
 perf_try_init_event+0x12d/0x570 kernel/events/core.c:11261
 perf_init_event kernel/events/core.c:11325 [inline]
 perf_event_alloc.part.0+0xf7f/0x36a0 kernel/events/core.c:11619
 perf_event_alloc kernel/events/core.c:12059 [inline]
 __do_sys_perf_event_open+0x4a8/0x2a00 kernel/events/core.c:12157
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f63ef7efaed
Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f63eef63028 EFLAGS: 00000246 ORIG_RAX: 000000000000012a
RAX: ffffffffffffffda RBX: 00007f63ef90ff80 RCX: 00007f63ef7efaed
RDX: 0000000000000000 RSI: ffffffffffffffff RDI: 00000000200001c0
RBP: 00007f63ef86019c R08: 0000000000000000 R09: 0000000000000000
R10: ffffffffffffffff R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000002 R14: 00007f63ef90ff80 R15: 00007f63eef43000
 </TASK>
Modules linked in:
CR2: fffffbfff3ac6000
---[ end trace 0000000000000000 ]---
RIP: 0010:__insn_get_emulate_prefix arch/x86/lib/insn.c:91 [inline]
RIP: 0010:insn_get_emulate_prefix arch/x86/lib/insn.c:106 [inline]
RIP: 0010:insn_get_prefixes.part.0+0xa8/0x1110 arch/x86/lib/insn.c:134
Code: 49 be 00 00 00 00 00 fc ff df 48 8b 40 60 48 89 44 24 08 e9 81 00 00 00 e8 e5 4b 39 ff 4c 89 fa 4c 89 f9 48 c1 ea 03 83 e1 07 <42> 0f b6 14 32 38 ca 7f 08 84 d2 0f 85 06 10 00 00 48 89 d8 48 89
RSP: 0018:ffffc900088bf860 EFLAGS: 00010246
RAX: 0000000000040000 RBX: ffffffff9b9bebc0 RCX: 0000000000000000
RDX: 1ffffffff3ac6000 RSI: ffffc90002d82000 RDI: ffffc900088bf9e8
RBP: ffffffff9d630001 R08: 0000000000000000 R09: ffffc900088bf9e8
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000001
R13: ffffffff9d630000 R14: dffffc0000000000 R15: ffffffff9d630000
FS:  00007f63eef63640(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: fffffbfff3ac6000 CR3: 0000000029d90005 CR4: 0000000000770ef0
PKRU: 55555554
==================================================================

Link: https://lkml.kernel.org/r/20220907200917.654103-1-lk@c--e.de

cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
cc: "David S. Miller" <davem@davemloft.net>
Cc: stable@vger.kernel.org
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Christian A. Ehrhardt <lk@c--e.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-15 11:30:02 +02:00
Masami Hiramatsu (Google)
75082adeb4 tracing: Fix to check event_mutex is held while accessing trigger list
commit cecf8e128e upstream.

Since the check_user_trigger() is called outside of RCU
read lock, this list_for_each_entry_rcu() caused a suspicious
RCU usage warning.

 # echo hist:keys=pid > events/sched/sched_stat_runtime/trigger
 # cat events/sched/sched_stat_runtime/trigger
[   43.167032]
[   43.167418] =============================
[   43.167992] WARNING: suspicious RCU usage
[   43.168567] 5.19.0-rc5-00029-g19ebe4651abf #59 Not tainted
[   43.169283] -----------------------------
[   43.169863] kernel/trace/trace_events_trigger.c:145 RCU-list traversed in non-reader section!!
...

However, this file->triggers list is safe when it is accessed
under event_mutex is held.
To fix this warning, adds a lockdep_is_held check to the
list_for_each_entry_rcu().

Link: https://lkml.kernel.org/r/166226474977.223837.1992182913048377113.stgit@devnote2

Cc: stable@vger.kernel.org
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-15 11:30:02 +02:00
Pu Lehui
222bd95c89 bpf, cgroup: Fix kernel BUG in purge_effective_progs
[ Upstream commit 7d6620f107 ]

Syzkaller reported a triggered kernel BUG as follows:

  ------------[ cut here ]------------
  kernel BUG at kernel/bpf/cgroup.c:925!
  invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
  CPU: 1 PID: 194 Comm: detach Not tainted 5.19.0-14184-g69dac8e431af #8
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
  rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
  RIP: 0010:__cgroup_bpf_detach+0x1f2/0x2a0
  Code: 00 e8 92 60 30 00 84 c0 75 d8 4c 89 e0 31 f6 85 f6 74 19 42 f6 84
  28 48 05 00 00 02 75 0e 48 8b 80 c0 00 00 00 48 85 c0 75 e5 <0f> 0b 48
  8b 0c5
  RSP: 0018:ffffc9000055bdb0 EFLAGS: 00000246
  RAX: 0000000000000000 RBX: ffff888100ec0800 RCX: ffffc900000f1000
  RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff888100ec4578
  RBP: 0000000000000000 R08: ffff888100ec0800 R09: 0000000000000040
  R10: 0000000000000000 R11: 0000000000000000 R12: ffff888100ec4000
  R13: 000000000000000d R14: ffffc90000199000 R15: ffff888100effb00
  FS:  00007f68213d2b80(0000) GS:ffff88813bc80000(0000)
  knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 000055f74a0e5850 CR3: 0000000102836000 CR4: 00000000000006e0
  Call Trace:
   <TASK>
   cgroup_bpf_prog_detach+0xcc/0x100
   __sys_bpf+0x2273/0x2a00
   __x64_sys_bpf+0x17/0x20
   do_syscall_64+0x3b/0x90
   entry_SYSCALL_64_after_hwframe+0x63/0xcd
  RIP: 0033:0x7f68214dbcb9
  Code: 08 44 89 e0 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 48 89 f8 48 89
  f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01
  f0 ff8
  RSP: 002b:00007ffeb487db68 EFLAGS: 00000246 ORIG_RAX: 0000000000000141
  RAX: ffffffffffffffda RBX: 000000000000000b RCX: 00007f68214dbcb9
  RDX: 0000000000000090 RSI: 00007ffeb487db70 RDI: 0000000000000009
  RBP: 0000000000000003 R08: 0000000000000012 R09: 0000000b00000003
  R10: 00007ffeb487db70 R11: 0000000000000246 R12: 00007ffeb487dc20
  R13: 0000000000000004 R14: 0000000000000001 R15: 000055f74a1011b0
   </TASK>
  Modules linked in:
  ---[ end trace 0000000000000000 ]---

Repetition steps:

For the following cgroup tree,

  root
   |
  cg1
   |
  cg2

  1. attach prog2 to cg2, and then attach prog1 to cg1, both bpf progs
     attach type is NONE or OVERRIDE.
  2. write 1 to /proc/thread-self/fail-nth for failslab.
  3. detach prog1 for cg1, and then kernel BUG occur.

Failslab injection will cause kmalloc fail and fall back to
purge_effective_progs. The problem is that cg2 have attached another prog,
so when go through cg2 layer, iteration will add pos to 1, and subsequent
operations will be skipped by the following condition, and cg will meet
NULL in the end.

  `if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))`

The NULL cg means no link or prog match, this is as expected, and it's not
a bug. So here just skip the no match situation.

Fixes: 4c46091ee9 ("bpf: Fix KASAN use-after-free Read in compute_effective_progs")
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220813134030.1972696-1-pulehui@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-08 12:28:01 +02:00
YiFei Zhu
1c518476ce bpf: Restrict bpf_sys_bpf to CAP_PERFMON
[ Upstream commit 14b20b784f ]

The verifier cannot perform sufficient validation of any pointers passed
into bpf_attr and treats them as integers rather than pointers. The helper
will then read from arbitrary pointers passed into it. Restrict the helper
to CAP_PERFMON since the security model in BPF of arbitrary kernel read is
CAP_BPF + CAP_PERFMON.

Fixes: af2ac3e13e ("bpf: Prepare bpf syscall to be used from kernel and user space.")
Signed-off-by: YiFei Zhu <zhuyifei@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220816205517.682470-1-zhuyifei@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-08 12:28:01 +02:00
Kuniyuki Iwashima
55c7a91527 kprobes: don't call disarm_kprobe() for disabled kprobes
commit 9c80e79906 upstream.

The assumption in __disable_kprobe() is wrong, and it could try to disarm
an already disarmed kprobe and fire the WARN_ONCE() below. [0]  We can
easily reproduce this issue.

1. Write 0 to /sys/kernel/debug/kprobes/enabled.

  # echo 0 > /sys/kernel/debug/kprobes/enabled

2. Run execsnoop.  At this time, one kprobe is disabled.

  # /usr/share/bcc/tools/execsnoop &
  [1] 2460
  PCOMM            PID    PPID   RET ARGS

  # cat /sys/kernel/debug/kprobes/list
  ffffffff91345650  r  __x64_sys_execve+0x0    [FTRACE]
  ffffffff91345650  k  __x64_sys_execve+0x0    [DISABLED][FTRACE]

3. Write 1 to /sys/kernel/debug/kprobes/enabled, which changes
   kprobes_all_disarmed to false but does not arm the disabled kprobe.

  # echo 1 > /sys/kernel/debug/kprobes/enabled

  # cat /sys/kernel/debug/kprobes/list
  ffffffff91345650  r  __x64_sys_execve+0x0    [FTRACE]
  ffffffff91345650  k  __x64_sys_execve+0x0    [DISABLED][FTRACE]

4. Kill execsnoop, when __disable_kprobe() calls disarm_kprobe() for the
   disabled kprobe and hits the WARN_ONCE() in __disarm_kprobe_ftrace().

  # fg
  /usr/share/bcc/tools/execsnoop
  ^C

Actually, WARN_ONCE() is fired twice, and __unregister_kprobe_top() misses
some cleanups and leaves the aggregated kprobe in the hash table.  Then,
__unregister_trace_kprobe() initialises tk->rp.kp.list and creates an
infinite loop like this.

  aggregated kprobe.list -> kprobe.list -.
                                     ^    |
                                     '.__.'

In this situation, these commands fall into the infinite loop and result
in RCU stall or soft lockup.

  cat /sys/kernel/debug/kprobes/list : show_kprobe_addr() enters into the
                                       infinite loop with RCU.

  /usr/share/bcc/tools/execsnoop : warn_kprobe_rereg() holds kprobe_mutex,
                                   and __get_valid_kprobe() is stuck in
				   the loop.

To avoid the issue, make sure we don't call disarm_kprobe() for disabled
kprobes.

[0]
Failed to disarm kprobe-ftrace at __x64_sys_execve+0x0/0x40 (error -2)
WARNING: CPU: 6 PID: 2460 at kernel/kprobes.c:1130 __disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129)
Modules linked in: ena
CPU: 6 PID: 2460 Comm: execsnoop Not tainted 5.19.0+ #28
Hardware name: Amazon EC2 c5.2xlarge/, BIOS 1.0 10/16/2017
RIP: 0010:__disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129)
Code: 24 8b 02 eb c1 80 3d c4 83 f2 01 00 75 d4 48 8b 75 00 89 c2 48 c7 c7 90 fa 0f 92 89 04 24 c6 05 ab 83 01 e8 e4 94 f0 ff <0f> 0b 8b 04 24 eb b1 89 c6 48 c7 c7 60 fa 0f 92 89 04 24 e8 cc 94
RSP: 0018:ffff9e6ec154bd98 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffffff930f7b00 RCX: 0000000000000001
RDX: 0000000080000001 RSI: ffffffff921461c5 RDI: 00000000ffffffff
RBP: ffff89c504286da8 R08: 0000000000000000 R09: c0000000fffeffff
R10: 0000000000000000 R11: ffff9e6ec154bc28 R12: ffff89c502394e40
R13: ffff89c502394c00 R14: ffff9e6ec154bc00 R15: 0000000000000000
FS:  00007fe800398740(0000) GS:ffff89c812d80000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000c00057f010 CR3: 0000000103b54006 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
 __disable_kprobe (kernel/kprobes.c:1716)
 disable_kprobe (kernel/kprobes.c:2392)
 __disable_trace_kprobe (kernel/trace/trace_kprobe.c:340)
 disable_trace_kprobe (kernel/trace/trace_kprobe.c:429)
 perf_trace_event_unreg.isra.2 (./include/linux/tracepoint.h:93 kernel/trace/trace_event_perf.c:168)
 perf_kprobe_destroy (kernel/trace/trace_event_perf.c:295)
 _free_event (kernel/events/core.c:4971)
 perf_event_release_kernel (kernel/events/core.c:5176)
 perf_release (kernel/events/core.c:5186)
 __fput (fs/file_table.c:321)
 task_work_run (./include/linux/sched.h:2056 (discriminator 1) kernel/task_work.c:179 (discriminator 1))
 exit_to_user_mode_prepare (./include/linux/resume_user_mode.h:49 kernel/entry/common.c:169 kernel/entry/common.c:201)
 syscall_exit_to_user_mode (./arch/x86/include/asm/jump_label.h:55 ./arch/x86/include/asm/nospec-branch.h:384 ./arch/x86/include/asm/entry-common.h:94 kernel/entry/common.c:133 kernel/entry/common.c:296)
 do_syscall_64 (arch/x86/entry/common.c:87)
 entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
RIP: 0033:0x7fe7ff210654
Code: 15 79 89 20 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb be 0f 1f 00 8b 05 9a cd 20 00 48 63 ff 85 c0 75 11 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 3a f3 c3 48 83 ec 18 48 89 7c 24 08 e8 34 fc
RSP: 002b:00007ffdbd1d3538 EFLAGS: 00000246 ORIG_RAX: 0000000000000003
RAX: 0000000000000000 RBX: 0000000000000008 RCX: 00007fe7ff210654
RDX: 0000000000000000 RSI: 0000000000002401 RDI: 0000000000000008
RBP: 0000000000000000 R08: 94ae31d6fda838a4 R0900007fe8001c9d30
R10: 00007ffdbd1d34b0 R11: 0000000000000246 R12: 00007ffdbd1d3600
R13: 0000000000000000 R14: fffffffffffffffc R15: 00007ffdbd1d3560
</TASK>

Link: https://lkml.kernel.org/r/20220813020509.90805-1-kuniyu@amazon.com
Fixes: 69d54b916d ("kprobes: makes kprobes/enabled works correctly for optimized kprobes.")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reported-by: Ayushman Dutta <ayudutta@amazon.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Kuniyuki Iwashima <kuniyu@amazon.com>
Cc: Kuniyuki Iwashima <kuni1840@gmail.com>
Cc: Ayushman Dutta <ayudutta@amazon.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-05 10:30:12 +02:00
Yang Jihong
e4ae972959 ftrace: Fix NULL pointer dereference in is_ftrace_trampoline when ftrace is dead
commit c3b0f72e80 upstream.

ftrace_startup does not remove ops from ftrace_ops_list when
ftrace_startup_enable fails:

register_ftrace_function
  ftrace_startup
    __register_ftrace_function
      ...
      add_ftrace_ops(&ftrace_ops_list, ops)
      ...
    ...
    ftrace_startup_enable // if ftrace failed to modify, ftrace_disabled is set to 1
    ...
  return 0 // ops is in the ftrace_ops_list.

When ftrace_disabled = 1, unregister_ftrace_function simply returns without doing anything:
unregister_ftrace_function
  ftrace_shutdown
    if (unlikely(ftrace_disabled))
            return -ENODEV;  // return here, __unregister_ftrace_function is not executed,
                             // as a result, ops is still in the ftrace_ops_list
    __unregister_ftrace_function
    ...

If ops is dynamically allocated, it will be free later, in this case,
is_ftrace_trampoline accesses NULL pointer:

is_ftrace_trampoline
  ftrace_ops_trampoline
    do_for_each_ftrace_op(op, ftrace_ops_list) // OOPS! op may be NULL!

Syzkaller reports as follows:
[ 1203.506103] BUG: kernel NULL pointer dereference, address: 000000000000010b
[ 1203.508039] #PF: supervisor read access in kernel mode
[ 1203.508798] #PF: error_code(0x0000) - not-present page
[ 1203.509558] PGD 800000011660b067 P4D 800000011660b067 PUD 130fb8067 PMD 0
[ 1203.510560] Oops: 0000 [#1] SMP KASAN PTI
[ 1203.511189] CPU: 6 PID: 29532 Comm: syz-executor.2 Tainted: G    B   W         5.10.0 #8
[ 1203.512324] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 1203.513895] RIP: 0010:is_ftrace_trampoline+0x26/0xb0
[ 1203.514644] Code: ff eb d3 90 41 55 41 54 49 89 fc 55 53 e8 f2 00 fd ff 48 8b 1d 3b 35 5d 03 e8 e6 00 fd ff 48 8d bb 90 00 00 00 e8 2a 81 26 00 <48> 8b ab 90 00 00 00 48 85 ed 74 1d e8 c9 00 fd ff 48 8d bb 98 00
[ 1203.518838] RSP: 0018:ffffc900012cf960 EFLAGS: 00010246
[ 1203.520092] RAX: 0000000000000000 RBX: 000000000000007b RCX: ffffffff8a331866
[ 1203.521469] RDX: 0000000000000000 RSI: 0000000000000008 RDI: 000000000000010b
[ 1203.522583] RBP: 0000000000000000 R08: 0000000000000000 R09: ffffffff8df18b07
[ 1203.523550] R10: fffffbfff1be3160 R11: 0000000000000001 R12: 0000000000478399
[ 1203.524596] R13: 0000000000000000 R14: ffff888145088000 R15: 0000000000000008
[ 1203.525634] FS:  00007f429f5f4700(0000) GS:ffff8881daf00000(0000) knlGS:0000000000000000
[ 1203.526801] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1203.527626] CR2: 000000000000010b CR3: 0000000170e1e001 CR4: 00000000003706e0
[ 1203.528611] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1203.529605] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400

Therefore, when ftrace_startup_enable fails, we need to rollback registration
process and remove ops from ftrace_ops_list.

Link: https://lkml.kernel.org/r/20220818032659.56209-1-yangjihong1@huawei.com

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-05 10:30:07 +02:00
Daniel Borkmann
4f672112f8 bpf: Don't use tnum_range on array range checking for poke descriptors
commit a657182a5c upstream.

Hsin-Wei reported a KASAN splat triggered by their BPF runtime fuzzer which
is based on a customized syzkaller:

  BUG: KASAN: slab-out-of-bounds in bpf_int_jit_compile+0x1257/0x13f0
  Read of size 8 at addr ffff888004e90b58 by task syz-executor.0/1489
  CPU: 1 PID: 1489 Comm: syz-executor.0 Not tainted 5.19.0 #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
  1.13.0-1ubuntu1.1 04/01/2014
  Call Trace:
   <TASK>
   dump_stack_lvl+0x9c/0xc9
   print_address_description.constprop.0+0x1f/0x1f0
   ? bpf_int_jit_compile+0x1257/0x13f0
   kasan_report.cold+0xeb/0x197
   ? kvmalloc_node+0x170/0x200
   ? bpf_int_jit_compile+0x1257/0x13f0
   bpf_int_jit_compile+0x1257/0x13f0
   ? arch_prepare_bpf_dispatcher+0xd0/0xd0
   ? rcu_read_lock_sched_held+0x43/0x70
   bpf_prog_select_runtime+0x3e8/0x640
   ? bpf_obj_name_cpy+0x149/0x1b0
   bpf_prog_load+0x102f/0x2220
   ? __bpf_prog_put.constprop.0+0x220/0x220
   ? find_held_lock+0x2c/0x110
   ? __might_fault+0xd6/0x180
   ? lock_downgrade+0x6e0/0x6e0
   ? lock_is_held_type+0xa6/0x120
   ? __might_fault+0x147/0x180
   __sys_bpf+0x137b/0x6070
   ? bpf_perf_link_attach+0x530/0x530
   ? new_sync_read+0x600/0x600
   ? __fget_files+0x255/0x450
   ? lock_downgrade+0x6e0/0x6e0
   ? fput+0x30/0x1a0
   ? ksys_write+0x1a8/0x260
   __x64_sys_bpf+0x7a/0xc0
   ? syscall_enter_from_user_mode+0x21/0x70
   do_syscall_64+0x3b/0x90
   entry_SYSCALL_64_after_hwframe+0x63/0xcd
  RIP: 0033:0x7f917c4e2c2d

The problem here is that a range of tnum_range(0, map->max_entries - 1) has
limited ability to represent the concrete tight range with the tnum as the
set of resulting states from value + mask can result in a superset of the
actual intended range, and as such a tnum_in(range, reg->var_off) check may
yield true when it shouldn't, for example tnum_range(0, 2) would result in
00XX -> v = 0000, m = 0011 such that the intended set of {0, 1, 2} is here
represented by a less precise superset of {0, 1, 2, 3}. As the register is
known const scalar, really just use the concrete reg->var_off.value for the
upper index check.

Fixes: d2e4c1e6c2 ("bpf: Constant map key tracking for prog array pokes")
Reported-by: Hsin-Wei Hung <hsinweih@uci.edu>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/984b37f9fdf7ac36831d2137415a4a915744c1b6.1661462653.git.daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-31 17:16:51 +02:00
Randy Dunlap
108fb7e99b kernel/sys_ni: add compat entry for fadvise64_64
commit a8faed3a02 upstream.

When CONFIG_ADVISE_SYSCALLS is not set/enabled and CONFIG_COMPAT is
set/enabled, the riscv compat_syscall_table references
'compat_sys_fadvise64_64', which is not defined:

riscv64-linux-ld: arch/riscv/kernel/compat_syscall_table.o:(.rodata+0x6f8):
undefined reference to `compat_sys_fadvise64_64'

Add 'fadvise64_64' to kernel/sys_ni.c as a conditional COMPAT function so
that when CONFIG_ADVISE_SYSCALLS is not set, there is a fallback function
available.

Link: https://lkml.kernel.org/r/20220807220934.5689-1-rdunlap@infradead.org
Fixes: d3ac21cacc ("mm: Support compiling out madvise and fadvise")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-31 17:16:33 +02:00
Jing-Ting Wu
f49fd5fe23 cgroup: Fix race condition at rebind_subsystems()
commit 763f4fb76e upstream.

Root cause:
The rebind_subsystems() is no lock held when move css object from A
list to B list,then let B's head be treated as css node at
list_for_each_entry_rcu().

Solution:
Add grace period before invalidating the removed rstat_css_node.

Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Suggested-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Tested-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Link: https://lore.kernel.org/linux-arm-kernel/d8f0bc5e2fb6ed259f9334c83279b4c011283c41.camel@mediatek.com/T/
Acked-by: Mukesh Ojha <quic_mojha@quicinc.com>
Fixes: a7df69b81a ("cgroup: rstat: support cgroup1")
Cc: stable@vger.kernel.org # v5.13+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-31 17:16:33 +02:00
Gaosheng Cui
5c192867ae audit: fix potential double free on error path from fsnotify_add_inode_mark
commit ad982c3be4 upstream.

Audit_alloc_mark() assign pathname to audit_mark->path, on error path
from fsnotify_add_inode_mark(), fsnotify_put_mark will free memory
of audit_mark->path, but the caller of audit_alloc_mark will free
the pathname again, so there will be double free problem.

Fix this by resetting audit_mark->path to NULL pointer on error path
from fsnotify_add_inode_mark().

Cc: stable@vger.kernel.org
Fixes: 7b12932340 ("fsnotify: Add group pointer in fsnotify_init_mark()")
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-31 17:16:33 +02:00
Laurent Dufour
6568e52b28 watchdog: export lockup_detector_reconfigure
[ Upstream commit 7c56a8733d ]

In some circumstances it may be interesting to reconfigure the watchdog
from inside the kernel.

On PowerPC, this may helpful before and after a LPAR migration (LPM) is
initiated, because it implies some latencies, watchdog, and especially NMI
watchdog is expected to be triggered during this operation. Reconfiguring
the watchdog with a factor, would prevent it to happen too frequently
during LPM.

Rename lockup_detector_reconfigure() as __lockup_detector_reconfigure() and
create a new function lockup_detector_reconfigure() calling
__lockup_detector_reconfigure() under the protection of watchdog_mutex.

Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
[mpe: Squash in build fix from Laurent, reported by Sachin]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220713154729.80789-3-ldufour@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-25 11:40:43 +02:00
Steven Rostedt (Google)
1c7e569c0e tracing/eprobes: Fix reading of string fields
commit f04dec9346 upstream.

Currently when an event probe (eprobe) hooks to a string field, it does
not display it as a string, but instead as a number. This makes the field
rather useless. Handle the different kinds of strings, dynamic, static,
relational/dynamic etc.

Now when a string field is used, the ":string" type can be used to display
it:

  echo "e:sw sched/sched_switch comm=$next_comm:string" > dynamic_events

Link: https://lkml.kernel.org/r/20220820134400.959640191@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:40:28 +02:00
Hou Tao
2f56304a0c bpf: Acquire map uref in .init_seq_private for hash map iterator
commit ef1e93d2ee upstream.

bpf_iter_attach_map() acquires a map uref, and the uref may be released
before or in the middle of iterating map elements. For example, the uref
could be released in bpf_iter_detach_map() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().

So acquiring an extra map uref in bpf_iter_init_hash_map() and
releasing it in bpf_iter_fini_hash_map().

Fixes: d6c4503cc2 ("bpf: Implement bpf iterator for hash maps")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:40:03 +02:00
Hou Tao
370805f0e7 bpf: Acquire map uref in .init_seq_private for array map iterator
commit f76fa6b338 upstream.

bpf_iter_attach_map() acquires a map uref, and the uref may be released
before or in the middle of iterating map elements. For example, the uref
could be released in bpf_iter_detach_map() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().

Alternative fix is acquiring an extra bpf_link reference just like
a pinned map iterator does, but it introduces unnecessary dependency
on bpf_link instead of bpf_map.

So choose another fix: acquiring an extra map uref in .init_seq_private
for array map iterator.

Fixes: d3cc2ab546 ("bpf: Implement bpf iterator for array maps")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:40:03 +02:00
Kumar Kartikeya Dwivedi
18a994e066 bpf: Don't reinit map value in prealloc_lru_pop
commit 275c30bcee upstream.

The LRU map that is preallocated may have its elements reused while
another program holds a pointer to it from bpf_map_lookup_elem. Hence,
only check_and_free_fields is appropriate when the element is being
deleted, as it ensures proper synchronization against concurrent access
of the map value. After that, we cannot call check_and_init_map_value
again as it may rewrite bpf_spin_lock, bpf_timer, and kptr fields while
they can be concurrently accessed from a BPF program.

This is safe to do as when the map entry is deleted, concurrent access
is protected against by check_and_free_fields, i.e. an existing timer
would be freed, and any existing kptr will be released by it. The
program can create further timers and kptrs after check_and_free_fields,
but they will eventually be released once the preallocated items are
freed on map destruction, even if the item is never reused again. Hence,
the deleted item sitting in the free list can still have resources
attached to it, and they would never leak.

With spin_lock, we never touch the field at all on delete or update, as
we may end up modifying the state of the lock. Since the verifier
ensures that a bpf_spin_lock call is always paired with bpf_spin_unlock
call, the program will eventually release the lock so that on reuse the
new user of the value can take the lock.

Essentially, for the preallocated case, we must assume that the map
value may always be in use by the program, even when it is sitting in
the freelist, and handle things accordingly, i.e. use proper
synchronization inside check_and_free_fields, and never reinitialize the
special fields when it is reused on update.

Fixes: 68134668c1 ("bpf: Add map side support for bpf timers.")
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/r/20220809213033.24147-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:40:03 +02:00
Steven Rostedt (Google)
2fb8f62ee3 tracing: Have filter accept "common_cpu" to be consistent
commit b2380577d4 upstream.

Make filtering consistent with histograms. As "cpu" can be a field of an
event, allow for "common_cpu" to keep it from being confused with the
"cpu" field of the event.

Link: https://lkml.kernel.org/r/20220820134401.513062765@goodmis.org
Link: https://lore.kernel.org/all/20220820220920.e42fa32b70505b1904f0a0ad@kernel.org/

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 1e3bac71c5 ("tracing/histogram: Rename "cpu" to "common_cpu"")
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:58 +02:00
Steven Rostedt (Google)
dac2b60345 tracing/probes: Have kprobes and uprobes use $COMM too
commit ab8384442e upstream.

Both $comm and $COMM can be used to get current->comm in eprobes and the
filtering and histogram logic. Make kprobes and uprobes consistent in this
regard and allow both $comm and $COMM as well. Currently kprobes and
uprobes only handle $comm, which is inconsistent with the other utilities,
and can be confusing to users.

Link: https://lkml.kernel.org/r/20220820134401.317014913@goodmis.org
Link: https://lore.kernel.org/all/20220820220442.776e1ddaf8836e82edb34d01@kernel.org/

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 533059281e ("tracing: probeevent: Introduce new argument fetching code")
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:58 +02:00
Steven Rostedt (Google)
b489aca082 tracing/eprobes: Have event probes be consistent with kprobes and uprobes
commit 6a832ec3d6 upstream.

Currently, if a symbol "@" is attempted to be used with an event probe
(eprobes), it will cause a NULL pointer dereference crash.

Both kprobes and uprobes can reference data other than the main registers.
Such as immediate address, symbols and the current task name. Have eprobes
do the same thing.

For "comm", if "comm" is used and the event being attached to does not
have the "comm" field, then make it the "$comm" that kprobes has. This is
consistent to the way histograms and filters work.

Link: https://lkml.kernel.org/r/20220820134401.136924220@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:58 +02:00
Steven Rostedt (Google)
a11ce7bfbd tracing/eprobes: Do not hardcode $comm as a string
commit 02333de90e upstream.

The variable $comm is hard coded as a string, which is true for both
kprobes and uprobes, but for event probes (eprobes) it is a field name. In
most cases the "comm" field would be a string, but there's no guarantee of
that fact.

Do not assume that comm is a string. Not to mention, it currently forces
comm fields to fault, as string processing for event probes is currently
broken.

Link: https://lkml.kernel.org/r/20220820134400.756152112@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:57 +02:00
Steven Rostedt (Google)
ba53c21ce9 tracing/eprobes: Do not allow eprobes to use $stack, or % for regs
commit 2673c60ee6 upstream.

While playing with event probes (eprobes), I tried to see what would
happen if I attempted to retrieve the instruction pointer (%rip) knowing
that event probes do not use pt_regs. The result was:

 BUG: kernel NULL pointer dereference, address: 0000000000000024
 #PF: supervisor read access in kernel mode
 #PF: error_code(0x0000) - not-present page
 PGD 0 P4D 0
 Oops: 0000 [#1] PREEMPT SMP PTI
 CPU: 1 PID: 1847 Comm: trace-cmd Not tainted 5.19.0-rc5-test+ #309
 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01
v03.03 07/14/2016
 RIP: 0010:get_event_field.isra.0+0x0/0x50
 Code: ff 48 c7 c7 c0 8f 74 a1 e8 3d 8b f5 ff e8 88 09 f6 ff 4c 89 e7 e8
50 6a 13 00 48 89 ef 5b 5d 41 5c 41 5d e9 42 6a 13 00 66 90 <48> 63 47 24
8b 57 2c 48 01 c6 8b 47 28 83 f8 02 74 0e 83 f8 04 74
 RSP: 0018:ffff916c394bbaf0 EFLAGS: 00010086
 RAX: ffff916c854041d8 RBX: ffff916c8d9fbf50 RCX: ffff916c255d2000
 RDX: 0000000000000000 RSI: ffff916c255d2008 RDI: 0000000000000000
 RBP: 0000000000000000 R08: ffff916c3a2a0c08 R09: ffff916c394bbda8
 R10: 0000000000000000 R11: 0000000000000000 R12: ffff916c854041d8
 R13: ffff916c854041b0 R14: 0000000000000000 R15: 0000000000000000
 FS:  0000000000000000(0000) GS:ffff916c9ea40000(0000)
knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 0000000000000024 CR3: 000000011b60a002 CR4: 00000000001706e0
 Call Trace:
  <TASK>
  get_eprobe_size+0xb4/0x640
  ? __mod_node_page_state+0x72/0xc0
  __eprobe_trace_func+0x59/0x1a0
  ? __mod_lruvec_page_state+0xaa/0x1b0
  ? page_remove_file_rmap+0x14/0x230
  ? page_remove_rmap+0xda/0x170
  event_triggers_call+0x52/0xe0
  trace_event_buffer_commit+0x18f/0x240
  trace_event_raw_event_sched_wakeup_template+0x7a/0xb0
  try_to_wake_up+0x260/0x4c0
  __wake_up_common+0x80/0x180
  __wake_up_common_lock+0x7c/0xc0
  do_notify_parent+0x1c9/0x2a0
  exit_notify+0x1a9/0x220
  do_exit+0x2ba/0x450
  do_group_exit+0x2d/0x90
  __x64_sys_exit_group+0x14/0x20
  do_syscall_64+0x3b/0x90
  entry_SYSCALL_64_after_hwframe+0x46/0xb0

Obviously this is not the desired result.

Move the testing for TPARG_FL_TPOINT which is only used for event probes
to the top of the "$" variable check, as all the other variables are not
used for event probes. Also add a check in the register parsing "%" to
fail if an event probe is used.

Link: https://lkml.kernel.org/r/20220820134400.564426983@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:57 +02:00
Steven Rostedt (Google)
0d7970e870 tracing/perf: Fix double put of trace event when init fails
commit 7249921d94 upstream.

If in perf_trace_event_init(), the perf_trace_event_open() fails, then it
will call perf_trace_event_unreg() which will not only unregister the perf
trace event, but will also call the put() function of the tp_event.

The problem here is that the trace_event_try_get_ref() is called by the
caller of perf_trace_event_init() and if perf_trace_event_init() returns a
failure, it will then call trace_event_put(). But since the
perf_trace_event_unreg() already called the trace_event_put() function, it
triggers a WARN_ON().

 WARNING: CPU: 1 PID: 30309 at kernel/trace/trace_dynevent.c:46 trace_event_dyn_put_ref+0x15/0x20

If perf_trace_event_reg() does not call the trace_event_try_get_ref() then
the perf_trace_event_unreg() should not be calling trace_event_put(). This
breaks symmetry and causes bugs like these.

Pull out the trace_event_put() from perf_trace_event_unreg() and call it
in the locations that perf_trace_event_unreg() is called. This not only
fixes this bug, but also brings back the proper symmetry of the reg/unreg
vs get/put logic.

Link: https://lore.kernel.org/all/cover.1660347763.git.kjlx@templeofstupid.com/
Link: https://lkml.kernel.org/r/20220816192817.43d5e17f@gandalf.local.home

Cc: stable@vger.kernel.org
Fixes: 1d18538e6a ("tracing: Have dynamic events have a ref counter")
Reported-by: Krister Johansen <kjlx@templeofstupid.com>
Reviewed-by: Krister Johansen <kjlx@templeofstupid.com>
Tested-by: Krister Johansen <kjlx@templeofstupid.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:57 +02:00
Masami Hiramatsu
994dea8549 tracing: Add '__rel_loc' using trace event macros
[ Upstream commit 55de2c0b56 ]

Add '__rel_loc' using trace event macros. These macros are usually
not used in the kernel, except for testing purpose.
This also add "rel_" variant of macros for dynamic_array string,
and bitmask.

Link: https://lkml.kernel.org/r/163757342119.510314.816029622439099016.stgit@devnote2

Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:26 +02:00
Chen Zhongjin
d2cbdbe22b locking/csd_lock: Change csdlock_debug from early_param to __setup
[ Upstream commit 9c9b26b0df ]

The csdlock_debug kernel-boot parameter is parsed by the
early_param() function csdlock_debug().  If set, csdlock_debug()
invokes static_branch_enable() to enable csd_lock_wait feature, which
triggers a panic on arm64 for kernels built with CONFIG_SPARSEMEM=y and
CONFIG_SPARSEMEM_VMEMMAP=n.

With CONFIG_SPARSEMEM_VMEMMAP=n, __nr_to_section is called in
static_key_enable() and returns NULL, resulting in a NULL dereference
because mem_section is initialized only later in sparse_init().

This is also a problem for powerpc because early_param() functions
are invoked earlier than jump_label_init(), also resulting in
static_key_enable() failures.  These failures cause the warning "static
key 'xxx' used before call to jump_label_init()".

Thus, early_param is too early for csd_lock_wait to run
static_branch_enable(), so changes it to __setup to fix these.

Fixes: 8d0968cc6b ("locking/csd_lock: Add boot parameter for controlling CSD lock debugging")
Cc: stable@vger.kernel.org
Reported-by: Chen jingwen <chenjingwen6@huawei.com>
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:24 +02:00
Jason A. Donenfeld
96ba981f09 timekeeping: contribute wall clock to rng on time change
[ Upstream commit b8ac29b401 ]

The rng's random_init() function contributes the real time to the rng at
boot time, so that events can at least start in relation to something
particular in the real world. But this clock might not yet be set that
point in boot, so nothing is contributed. In addition, the relation
between minor clock changes from, say, NTP, and the cycle counter is
potentially useful entropic data.

This commit addresses this by mixing in a time stamp on calls to
settimeofday and adjtimex. No entropy is credited in doing so, so it
doesn't make initialization faster, but it is still useful input to
have.

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:24 +02:00
Mel Gorman
748d2e9585 sched/core: Do not requeue task on CPU excluded from cpus_mask
[ Upstream commit 751d4cbc43 ]

The following warning was triggered on a large machine early in boot on
a distribution kernel but the same problem should also affect mainline.

   WARNING: CPU: 439 PID: 10 at ../kernel/workqueue.c:2231 process_one_work+0x4d/0x440
   Call Trace:
    <TASK>
    rescuer_thread+0x1f6/0x360
    kthread+0x156/0x180
    ret_from_fork+0x22/0x30
    </TASK>

Commit c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
optimises ttwu by queueing a task that is descheduling on the wakelist,
but does not check if the task descheduling is still allowed to run on that CPU.

In this warning, the problematic task is a workqueue rescue thread which
checks if the rescue is for a per-cpu workqueue and running on the wrong CPU.
While this is early in boot and it should be possible to create workers,
the rescue thread may still used if the MAYDAY_INITIAL_TIMEOUT is reached
or MAYDAY_INTERVAL and on a sufficiently large machine, the rescue
thread is being used frequently.

Tracing confirmed that the task should have migrated properly using the
stopper thread to handle the migration. However, a parallel wakeup from udev
running on another CPU that does not share CPU cache observes p->on_cpu and
uses task_cpu(p), queues the task on the old CPU and triggers the warning.

Check that the wakee task that is descheduling is still allowed to run
on its current CPU and if not, wait for the descheduling to complete
and select an allowed CPU.

Fixes: c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20220804092119.20137-1-mgorman@techsingularity.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:15 +02:00
Tianchen Ding
dd960a0ddd sched: Remove the limitation of WF_ON_CPU on wakelist if wakee cpu is idle
[ Upstream commit f3dd3f6745 ]

Wakelist can help avoid cache bouncing and offload the overhead of waker
cpu. So far, using wakelist within the same llc only happens on
WF_ON_CPU, and this limitation could be removed to further improve
wakeup performance.

The commit 518cd62341 ("sched: Only queue remote wakeups when
crossing cache boundaries") disabled queuing tasks on wakelist when
the cpus share llc. This is because, at that time, the scheduler must
send IPIs to do ttwu_queue_wakelist. Nowadays, ttwu_queue_wakelist also
supports TIF_POLLING, so this is not a problem now when the wakee cpu is
in idle polling.

Benefits:
  Queuing the task on idle cpu can help improving performance on waker cpu
  and utilization on wakee cpu, and further improve locality because
  the wakee cpu can handle its own rq. This patch helps improving rt on
  our real java workloads where wakeup happens frequently.

  Consider the normal condition (CPU0 and CPU1 share same llc)
  Before this patch:

         CPU0                                       CPU1

    select_task_rq()                                idle
    rq_lock(CPU1->rq)
    enqueue_task(CPU1->rq)
    notify CPU1 (by sending IPI or CPU1 polling)

                                                    resched()

  After this patch:

         CPU0                                       CPU1

    select_task_rq()                                idle
    add to wakelist of CPU1
    notify CPU1 (by sending IPI or CPU1 polling)

                                                    rq_lock(CPU1->rq)
                                                    enqueue_task(CPU1->rq)
                                                    resched()

  We see CPU0 can finish its work earlier. It only needs to put task to
  wakelist and return.
  While CPU1 is idle, so let itself handle its own runqueue data.

This patch brings no difference about IPI.
  This patch only takes effect when the wakee cpu is:
  1) idle polling
  2) idle not polling

  For 1), there will be no IPI with or without this patch.

  For 2), there will always be an IPI before or after this patch.
  Before this patch: waker cpu will enqueue task and check preempt. Since
  "idle" will be sure to be preempted, waker cpu must send a resched IPI.
  After this patch: waker cpu will put the task to the wakelist of wakee
  cpu, and send an IPI.

Benchmark:
We've tested schbench, unixbench, and hachbench on both x86 and arm64.

On x86 (Intel Xeon Platinum 8269CY):
  schbench -m 2 -t 8

    Latency percentiles (usec)              before        after
        50.0000th:                             8            6
        75.0000th:                            10            7
        90.0000th:                            11            8
        95.0000th:                            12            8
        *99.0000th:                           13           10
        99.5000th:                            15           11
        99.9000th:                            18           14

  Unixbench with full threads (104)
                                            before        after
    Dhrystone 2 using register variables  3011862938    3009935994  -0.06%
    Double-Precision Whetstone              617119.3      617298.5   0.03%
    Execl Throughput                         27667.3       27627.3  -0.14%
    File Copy 1024 bufsize 2000 maxblocks   785871.4      784906.2  -0.12%
    File Copy 256 bufsize 500 maxblocks     210113.6      212635.4   1.20%
    File Copy 4096 bufsize 8000 maxblocks  2328862.2     2320529.1  -0.36%
    Pipe Throughput                      145535622.8   145323033.2  -0.15%
    Pipe-based Context Switching           3221686.4     3583975.4  11.25%
    Process Creation                        101347.1      103345.4   1.97%
    Shell Scripts (1 concurrent)            120193.5      123977.8   3.15%
    Shell Scripts (8 concurrent)             17233.4       17138.4  -0.55%
    System Call Overhead                   5300604.8     5312213.6   0.22%

  hackbench -g 1 -l 100000
                                            before        after
    Time                                     3.246        2.251

On arm64 (Ampere Altra):
  schbench -m 2 -t 8

    Latency percentiles (usec)              before        after
        50.0000th:                            14           10
        75.0000th:                            19           14
        90.0000th:                            22           16
        95.0000th:                            23           16
        *99.0000th:                           24           17
        99.5000th:                            24           17
        99.9000th:                            28           25

  Unixbench with full threads (80)
                                            before        after
    Dhrystone 2 using register variables  3536194249    3537019613   0.02%
    Double-Precision Whetstone              629383.6      629431.6   0.01%
    Execl Throughput                         65920.5       65846.2  -0.11%
    File Copy 1024 bufsize 2000 maxblocks  1063722.8     1064026.8   0.03%
    File Copy 256 bufsize 500 maxblocks     322684.5      318724.5  -1.23%
    File Copy 4096 bufsize 8000 maxblocks  2348285.3     2328804.8  -0.83%
    Pipe Throughput                      133542875.3   131619389.8  -1.44%
    Pipe-based Context Switching           3215356.1     3576945.1  11.25%
    Process Creation                        108520.5      120184.6  10.75%
    Shell Scripts (1 concurrent)            122636.3        121888  -0.61%
    Shell Scripts (8 concurrent)             17462.1       17381.4  -0.46%
    System Call Overhead                   4429998.9     4435006.7   0.11%

  hackbench -g 1 -l 100000
                                            before        after
    Time                                     4.217        2.916

Our patch has improvement on schbench, hackbench
and Pipe-based Context Switching of unixbench
when there exists idle cpus,
and no obvious regression on other tests of unixbench.
This can help improve rt in scenes where wakeup happens frequently.

Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20220608233412.327341-3-dtcccc@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:15 +02:00
Tianchen Ding
f9ab9bcf53 sched: Fix the check of nr_running at queue wakelist
[ Upstream commit 28156108fe ]

The commit 2ebb177175 ("sched/core: Offload wakee task activation if it
the wakee is descheduling") checked rq->nr_running <= 1 to avoid task
stacking when WF_ON_CPU.

Per the ordering of writes to p->on_rq and p->on_cpu, observing p->on_cpu
(WF_ON_CPU) in ttwu_queue_cond() implies !p->on_rq, IOW p has gone through
the deactivate_task() in __schedule(), thus p has been accounted out of
rq->nr_running. As such, the task being the only runnable task on the rq
implies reading rq->nr_running == 0 at that point.

The benchmark result is in [1].

[1] https://lore.kernel.org/all/e34de686-4e85-bde1-9f3c-9bbc86b38627@linux.alibaba.com/

Suggested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20220608233412.327341-2-dtcccc@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:15 +02:00
Waiman Long
147f66d22f sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed
[ Upstream commit b6e8d40d43 ]

With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating
that the cpuset will just use the effective CPUs of its parent. So
cpuset_can_attach() can call task_can_attach() with an empty mask.
This can lead to cpumask_any_and() returns nr_cpu_ids causing the call
to dl_bw_of() to crash due to percpu value access of an out of bound
CPU value. For example:

	[80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0
	  :
	[80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0
	  :
	[80468.207946] Call Trace:
	[80468.208947]  cpuset_can_attach+0xa0/0x140
	[80468.209953]  cgroup_migrate_execute+0x8c/0x490
	[80468.210931]  cgroup_update_dfl_csses+0x254/0x270
	[80468.211898]  cgroup_subtree_control_write+0x322/0x400
	[80468.212854]  kernfs_fop_write_iter+0x11c/0x1b0
	[80468.213777]  new_sync_write+0x11f/0x1b0
	[80468.214689]  vfs_write+0x1eb/0x280
	[80468.215592]  ksys_write+0x5f/0xe0
	[80468.216463]  do_syscall_64+0x5c/0x80
	[80468.224287]  entry_SYSCALL_64_after_hwframe+0x44/0xae

Fix that by using effective_cpus instead. For cgroup v1, effective_cpus
is the same as cpus_allowed. For v2, effective_cpus is the real cpumask
to be used by tasks within the cpuset anyway.

Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to
reflect the change. In addition, a check is added to task_can_attach()
to guard against the possibility that cpumask_any_and() may return a
value >= nr_cpu_ids.

Fixes: 7f51412a41 ("sched/deadline: Fix bandwidth check/update when migrating tasks between exclusive cpusets")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220803015451.2219567-1-longman@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:14 +02:00
Dietmar Eggemann
e51b981663 sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
[ Upstream commit 772b6539fd ]

Both functions are doing almost the same, that is checking if admission
control is still respected.

With exclusive cpusets, dl_task_can_attach() checks if the destination
cpuset (i.e. its root domain) has enough CPU capacity to accommodate the
task.
dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in
case the CPU is hot-plugged out.

dl_task_can_attach() is used to check if a task can be admitted while
dl_cpu_busy() is used to check if a CPU can be hotplugged out.

Make dl_cpu_busy() able to deal with a task and use it instead of
dl_task_can_attach() in task_can_attach().

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:14 +02:00
Chen Zhongjin
a1edb85e60 kprobes: Forbid probing on trampoline and BPF code areas
[ Upstream commit 28f6c37a29 ]

kernel_text_address() treats ftrace_trampoline, kprobe_insn_slot
and bpf_text_address as valid kprobe addresses - which is not ideal.

These text areas are removable and changeable without any notification
to kprobes, and probing on them can trigger unexpected behavior:

  https://lkml.org/lkml/2022/7/26/1148

Considering that jump_label and static_call text are already
forbiden to probe, kernel_text_address() should be replaced with
core_kernel_text() and is_module_text_address() to check other text
areas which are unsafe to kprobe.

[ mingo: Rewrote the changelog. ]

Fixes: 5b485629ba ("kprobes, extable: Identify kprobes trampolines as kernel text area")
Fixes: 74451e66d5 ("bpf: make jited programs visible in traces")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20220801033719.228248-1-chenzhongjin@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:13 +02:00
Robin Murphy
1008e81163 swiotlb: fail map correctly with failed io_tlb_default_mem
[ Upstream commit c51ba246cb ]

In the failure case of trying to use a buffer which we'd previously
failed to allocate, the "!mem" condition is no longer sufficient since
io_tlb_default_mem became static and assigned by default. Update the
condition to work as intended per the rest of that conversion.

Fixes: 463e862ac6 ("swiotlb: Convert io_default_tlb_mem to static allocation")
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:07 +02:00
Chen Zhongjin
f0c151602f profiling: fix shift too large makes kernel panic
[ Upstream commit 0fe6ee8f12 ]

2d186afd04 ("profiling: fix shift-out-of-bounds bugs") limits shift
value by [0, BITS_PER_LONG -1], which means [0, 63].

However, syzbot found that the max shift value should be the bit number of
(_etext - _stext).  If shift is outside of this, the "buffer_bytes" will
be zero and will cause kzalloc(0).  Then the kernel panics due to
dereferencing the returned pointer 16.

This can be easily reproduced by passing a large number like 60 to enable
profiling and then run readprofile.

LOGS:
 BUG: kernel NULL pointer dereference, address: 0000000000000010
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0002) - not-present page
 PGD 6148067 P4D 6148067 PUD 6142067 PMD 0
 PREEMPT SMP
 CPU: 4 PID: 184 Comm: readprofile Not tainted 5.18.0+ #162
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
 RIP: 0010:read_profile+0x104/0x220
 RSP: 0018:ffffc900006fbe80 EFLAGS: 00000202
 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
 RDX: ffff888006150000 RSI: 0000000000000001 RDI: ffffffff82aba4a0
 RBP: 000000000188bb60 R08: 0000000000000010 R09: ffff888006151000
 R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff82aba4a0
 R13: 0000000000000000 R14: ffffc900006fbf08 R15: 0000000000020c30
 FS:  000000000188a8c0(0000) GS:ffff88803ed00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 0000000000000010 CR3: 0000000006144000 CR4: 00000000000006e0
 Call Trace:
  <TASK>
  proc_reg_read+0x56/0x70
  vfs_read+0x9a/0x1b0
  ksys_read+0xa1/0xe0
  ? fpregs_assert_state_consistent+0x1e/0x40
  do_syscall_64+0x3a/0x80
  entry_SYSCALL_64_after_hwframe+0x46/0xb0
 RIP: 0033:0x4d4b4e
 RSP: 002b:00007ffebb668d58 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
 RAX: ffffffffffffffda RBX: 000000000188a8a0 RCX: 00000000004d4b4e
 RDX: 0000000000000400 RSI: 000000000188bb60 RDI: 0000000000000003
 RBP: 0000000000000003 R08: 000000000000006e R09: 0000000000000000
 R10: 0000000000000041 R11: 0000000000000246 R12: 000000000188bb60
 R13: 0000000000000400 R14: 0000000000000000 R15: 000000000188bb60
  </TASK>
 Modules linked in:
 CR2: 0000000000000010
Killed
 ---[ end trace 0000000000000000 ]---

Check prof_len in profile_init() to prevent it be zero.

Link: https://lkml.kernel.org/r/20220531012854.229439-1-chenzhongjin@huawei.com
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:04 +02:00
Jason A. Donenfeld
73ccc2b153 wireguard: ratelimiter: use hrtimer in selftest
[ Upstream commit 151c8e499f ]

Using msleep() is problematic because it's compared against
ratelimiter.c's ktime_get_coarse_boottime_ns(), which means on systems
with slow jiffies (such as UML's forced HZ=100), the result is
inaccurate. So switch to using schedule_hrtimeout().

However, hrtimer gives us access only to the traditional posix timers,
and none of the _COARSE variants. So now, rather than being too
imprecise like jiffies, it's too precise.

One solution would be to give it a large "range" value, but this will
still fire early on a loaded system. A better solution is to align the
timeout to the actual coarse timer, and then round up to the nearest
tick, plus change.

So add the timeout to the current coarse time, and then
schedule_hrtimer() until the absolute computed time.

This should hopefully reduce flakes in CI as well. Note that we keep the
retry loop in case the entire function is running behind, because the
test could still be scheduled out, by either the kernel or by the
hypervisor's kernel, in which case restarting the test and hoping to not
be scheduled out still helps.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:37 +02:00
Alexei Starovoitov
c9a8a448e5 bpf: Fix subprog names in stack traces.
[ Upstream commit 9c7c48d6a1 ]

The commit 7337224fc1 ("bpf: Improve the info.func_info and info.func_info_rec_size behavior")
accidently made bpf_prog_ksym_set_name() conservative for bpf subprograms.
Fixed it so instead of "bpf_prog_tag_F" the stack traces print "bpf_prog_tag_full_subprog_name".

Fixes: 7337224fc1 ("bpf: Improve the info.func_info and info.func_info_rec_size behavior")
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220714211637.17150-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:30 +02:00
Frederic Weisbecker
621595f771 rcutorture: Fix ksoftirqd boosting timing and iteration
[ Upstream commit 3002153a91 ]

The RCU priority boosting can fail in two situations:

1) If (nr_cpus= > maxcpus=), which means if the total number of CPUs
is higher than those brought online at boot, then torture_onoff() may
later bring up CPUs that weren't online on boot. Now since rcutorture
initialization only boosts the ksoftirqds of the CPUs that have been
set online on boot, the CPUs later set online by torture_onoff won't
benefit from the boost, making RCU priority boosting fail.

2) The ksoftirqd kthreads are boosted after the creation of
rcu_torture_boost() kthreads, which opens a window large enough for these
rcu_torture_boost() kthreads to wait (despite running at FIFO priority)
for ksoftirqds that are still running at SCHED_NORMAL priority.

The issues can trigger for example with:

	./kvm.sh --configs TREE01 --kconfig "CONFIG_RCU_BOOST=y"

	[   34.968561] rcu-torture: !!!
	[   34.968627] ------------[ cut here ]------------
	[   35.014054] WARNING: CPU: 4 PID: 114 at kernel/rcu/rcutorture.c:1979 rcu_torture_stats_print+0x5ad/0x610
	[   35.052043] Modules linked in:
	[   35.069138] CPU: 4 PID: 114 Comm: rcu_torture_sta Not tainted 5.18.0-rc1 #1
	[   35.096424] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-0-g155821a-rebuilt.opensuse.org 04/01/2014
	[   35.154570] RIP: 0010:rcu_torture_stats_print+0x5ad/0x610
	[   35.198527] Code: 63 1b 02 00 74 02 0f 0b 48 83 3d 35 63 1b 02 00 74 02 0f 0b 48 83 3d 21 63 1b 02 00 74 02 0f 0b 48 83 3d 0d 63 1b 02 00 74 02 <0f> 0b 83 eb 01 0f 8e ba fc ff ff 0f 0b e9 b3 fc ff f82
	[   37.251049] RSP: 0000:ffffa92a0050bdf8 EFLAGS: 00010202
	[   37.277320] rcu: De-offloading 8
	[   37.290367] RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001
	[   37.290387] RDX: 0000000000000000 RSI: 00000000ffffbfff RDI: 00000000ffffffff
	[   37.290398] RBP: 000000000000007b R08: 0000000000000000 R09: c0000000ffffbfff
	[   37.290407] R10: 000000000000002a R11: ffffa92a0050bc18 R12: ffffa92a0050be20
	[   37.290417] R13: ffffa92a0050be78 R14: 0000000000000000 R15: 000000000001bea0
	[   37.290427] FS:  0000000000000000(0000) GS:ffff96045eb00000(0000) knlGS:0000000000000000
	[   37.290448] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
	[   37.290460] CR2: 0000000000000000 CR3: 000000001dc0c000 CR4: 00000000000006e0
	[   37.290470] Call Trace:
	[   37.295049]  <TASK>
	[   37.295065]  ? preempt_count_add+0x63/0x90
	[   37.295095]  ? _raw_spin_lock_irqsave+0x12/0x40
	[   37.295125]  ? rcu_torture_stats_print+0x610/0x610
	[   37.295143]  rcu_torture_stats+0x29/0x70
	[   37.295160]  kthread+0xe3/0x110
	[   37.295176]  ? kthread_complete_and_exit+0x20/0x20
	[   37.295193]  ret_from_fork+0x22/0x30
	[   37.295218]  </TASK>

Fix this with boosting the ksoftirqds kthreads from the boosting
hotplug callback itself and before the boosting kthreads are created.

Fixes: ea6d962e80 ("rcutorture: Judge RCU priority boosting on grace periods, not callbacks")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:23 +02:00
Paul E. McKenney
489b93ac63 rcutorture: Don't cpuhp_remove_state() if cpuhp_setup_state() failed
[ Upstream commit fd13fe16db ]

Currently, in CONFIG_RCU_BOOST kernels, if the rcu_torture_init()
function's call to cpuhp_setup_state() fails, rcu_torture_cleanup()
gamely passes nonsense to cpuhp_remove_state().  This results in
strange and misleading splats.  This commit therefore ensures that if
the rcu_torture_init() function's call to cpuhp_setup_state() fails,
rcu_torture_cleanup() avoids invoking cpuhp_remove_state().

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:22 +02:00
Paul E. McKenney
5a6ff3e32a rcutorture: Warn on individual rcu_torture_init() error conditions
[ Upstream commit efeff6b39b ]

When running rcutorture as a module, any rcu_torture_init() issues will be
reflected in the error code from modprobe or insmod, as the case may be.
However, these error codes are not available when running rcutorture
built-in, for example, when using the kvm.sh script.  This commit
therefore adds WARN_ON_ONCE() to allow distinguishing rcu_torture_init()
errors when running rcutorture built-in.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:22 +02:00
Nicolas Saenz Julienne
b3d3069a6f nohz/full, sched/rt: Fix missed tick-reenabling bug in dequeue_task_rt()
[ Upstream commit 5c66d1b9b3 ]

dequeue_task_rt() only decrements 'rt_rq->rt_nr_running' after having
called sched_update_tick_dependency() preventing it from re-enabling the
tick on systems that no longer have pending SCHED_RT tasks but have
multiple runnable SCHED_OTHER tasks:

  dequeue_task_rt()
    dequeue_rt_entity()
      dequeue_rt_stack()
        dequeue_top_rt_rq()
	  sub_nr_running()	// decrements rq->nr_running
	    sched_update_tick_dependency()
	      sched_can_stop_tick()	// checks rq->rt.rt_nr_running,
	      ...
        __dequeue_rt_entity()
          dec_rt_tasks()	// decrements rq->rt.rt_nr_running
	  ...

Every other scheduler class performs the operation in the opposite
order, and sched_update_tick_dependency() expects the values to be
updated as such. So avoid the misbehaviour by inverting the order in
which the above operations are performed in the RT scheduler.

Fixes: 76d92ac305 ("sched: Migrate sched to use new tick dependency mask model")
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220628092259.330171-1-nsaenzju@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:14 +02:00
Xu Qiang
9d2a0422de irqdomain: Report irq number for NOMAP domains
[ Upstream commit 6f194c99f4 ]

When using a NOMAP domain, __irq_resolve_mapping() doesn't store
the Linux IRQ number at the address optionally provided by the caller.
While this isn't a huge deal (the returned value is guaranteed
to the hwirq that was passed as a parameter), let's honour the letter
of the API by writing the expected value.

Fixes: d22558dd0a (“irqdomain: Introduce irq_resolve_mapping()”)
Signed-off-by: Xu Qiang <xuqiang36@huawei.com>
[maz: commit message]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220719063641.56541-2-xuqiang36@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:14 +02:00
Bart Van Assche
b4439abfd7 blktrace: Trace remapped requests correctly
[ Upstream commit 22c80aac88 ]

Trace the remapped operation and its flags instead of only the data
direction of remapped operations. This issue was detected by analyzing
the warnings reported by sparse related to the new blk_opf_t type.

Reviewed-by: Jun'ichi Nomura <junichi.nomura@nec.com>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: Mike Christie <michael.christie@oracle.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Chaitanya Kulkarni <kch@nvidia.com>
Fixes: 1b9a9ab78b ("blktrace: use op accessors")
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20220714180729.1065367-11-bvanassche@acm.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:13 +02:00
Peter Zijlstra
e0067e6d54 locking/lockdep: Fix lockdep_init_map_*() confusion
[ Upstream commit eae6d58d67 ]

Commit dfd5e3f5fe ("locking/lockdep: Mark local_lock_t") added yet
another lockdep_init_map_*() variant, but forgot to update all the
existing users of the most complicated version.

This could lead to a loss of lock_type and hence an incorrect report.
Given the relative rarity of both local_lock and these annotations,
this is unlikely to happen in practise, still, best fix things.

Fixes: dfd5e3f5fe ("locking/lockdep: Mark local_lock_t")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YqyEDtoan20K0CVD@worktop.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:08 +02:00
Tetsuo Handa
2f0e18e0db PM: hibernate: defer device probing when resuming from hibernation
[ Upstream commit 8386c414e2 ]

syzbot is reporting hung task at misc_open() [1], for there is a race
window of AB-BA deadlock which involves probe_count variable. Currently
wait_for_device_probe() from snapshot_open() from misc_open() can sleep
forever with misc_mtx held if probe_count cannot become 0.

When a device is probed by hub_event() work function, probe_count is
incremented before the probe function starts, and probe_count is
decremented after the probe function completed.

There are three cases that can prevent probe_count from dropping to 0.

  (a) A device being probed stopped responding (i.e. broken/malicious
      hardware).

  (b) A process emulating a USB device using /dev/raw-gadget interface
      stopped responding for some reason.

  (c) New device probe requests keeps coming in before existing device
      probe requests complete.

The phenomenon syzbot is reporting is (b). A process which is holding
system_transition_mutex and misc_mtx is waiting for probe_count to become
0 inside wait_for_device_probe(), but the probe function which is called
 from hub_event() work function is waiting for the processes which are
blocked at mutex_lock(&misc_mtx) to respond via /dev/raw-gadget interface.

This patch mitigates (b) by deferring wait_for_device_probe() from
snapshot_open() to snapshot_write() and snapshot_ioctl(). Please note that
the possibility of (b) remains as long as any thread which is emulating a
USB device via /dev/raw-gadget interface can be blocked by uninterruptible
blocking operations (e.g. mutex_lock()).

Please also note that (a) and (c) are not addressed. Regarding (c), we
should change the code to wait for only one device which contains the
image for resuming from hibernation. I don't know how to address (a), for
use of timeout for wait_for_device_probe() might result in loss of user
data in the image. Maybe we should require the userland to wait for the
image device before opening /dev/snapshot interface.

Link: https://syzkaller.appspot.com/bug?extid=358c9ab4c93da7b7238c [1]
Reported-by: syzbot <syzbot+358c9ab4c93da7b7238c@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Tested-by: syzbot <syzbot+358c9ab4c93da7b7238c@syzkaller.appspotmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:04 +02:00
John Keeping
f066e01582 sched/core: Always flush pending blk_plug
[ Upstream commit 401e4963bf ]

With CONFIG_PREEMPT_RT, it is possible to hit a deadlock between two
normal priority tasks (SCHED_OTHER, nice level zero):

	INFO: task kworker/u8:0:8 blocked for more than 491 seconds.
	      Not tainted 5.15.49-rt46 #1
	"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
	task:kworker/u8:0    state:D stack:    0 pid:    8 ppid:     2 flags:0x00000000
	Workqueue: writeback wb_workfn (flush-7:0)
	[<c08a3a10>] (__schedule) from [<c08a3d84>] (schedule+0xdc/0x134)
	[<c08a3d84>] (schedule) from [<c08a65a0>] (rt_mutex_slowlock_block.constprop.0+0xb8/0x174)
	[<c08a65a0>] (rt_mutex_slowlock_block.constprop.0) from [<c08a6708>]
	+(rt_mutex_slowlock.constprop.0+0xac/0x174)
	[<c08a6708>] (rt_mutex_slowlock.constprop.0) from [<c0374d60>] (fat_write_inode+0x34/0x54)
	[<c0374d60>] (fat_write_inode) from [<c0297304>] (__writeback_single_inode+0x354/0x3ec)
	[<c0297304>] (__writeback_single_inode) from [<c0297998>] (writeback_sb_inodes+0x250/0x45c)
	[<c0297998>] (writeback_sb_inodes) from [<c0297c20>] (__writeback_inodes_wb+0x7c/0xb8)
	[<c0297c20>] (__writeback_inodes_wb) from [<c0297f24>] (wb_writeback+0x2c8/0x2e4)
	[<c0297f24>] (wb_writeback) from [<c0298c40>] (wb_workfn+0x1a4/0x3e4)
	[<c0298c40>] (wb_workfn) from [<c0138ab8>] (process_one_work+0x1fc/0x32c)
	[<c0138ab8>] (process_one_work) from [<c0139120>] (worker_thread+0x22c/0x2d8)
	[<c0139120>] (worker_thread) from [<c013e6e0>] (kthread+0x16c/0x178)
	[<c013e6e0>] (kthread) from [<c01000fc>] (ret_from_fork+0x14/0x38)
	Exception stack(0xc10e3fb0 to 0xc10e3ff8)
	3fa0:                                     00000000 00000000 00000000 00000000
	3fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
	3fe0: 00000000 00000000 00000000 00000000 00000013 00000000

	INFO: task tar:2083 blocked for more than 491 seconds.
	      Not tainted 5.15.49-rt46 #1
	"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
	task:tar             state:D stack:    0 pid: 2083 ppid:  2082 flags:0x00000000
	[<c08a3a10>] (__schedule) from [<c08a3d84>] (schedule+0xdc/0x134)
	[<c08a3d84>] (schedule) from [<c08a41b0>] (io_schedule+0x14/0x24)
	[<c08a41b0>] (io_schedule) from [<c08a455c>] (bit_wait_io+0xc/0x30)
	[<c08a455c>] (bit_wait_io) from [<c08a441c>] (__wait_on_bit_lock+0x54/0xa8)
	[<c08a441c>] (__wait_on_bit_lock) from [<c08a44f4>] (out_of_line_wait_on_bit_lock+0x84/0xb0)
	[<c08a44f4>] (out_of_line_wait_on_bit_lock) from [<c0371fb0>] (fat_mirror_bhs+0xa0/0x144)
	[<c0371fb0>] (fat_mirror_bhs) from [<c0372a68>] (fat_alloc_clusters+0x138/0x2a4)
	[<c0372a68>] (fat_alloc_clusters) from [<c0370b14>] (fat_alloc_new_dir+0x34/0x250)
	[<c0370b14>] (fat_alloc_new_dir) from [<c03787c0>] (vfat_mkdir+0x58/0x148)
	[<c03787c0>] (vfat_mkdir) from [<c0277b60>] (vfs_mkdir+0x68/0x98)
	[<c0277b60>] (vfs_mkdir) from [<c027b484>] (do_mkdirat+0xb0/0xec)
	[<c027b484>] (do_mkdirat) from [<c0100060>] (ret_fast_syscall+0x0/0x1c)
	Exception stack(0xc2e1bfa8 to 0xc2e1bff0)
	bfa0:                   01ee42f0 01ee4208 01ee42f0 000041ed 00000000 00004000
	bfc0: 01ee42f0 01ee4208 00000000 00000027 01ee4302 00000004 000dcb00 01ee4190
	bfe0: 000dc368 bed11924 0006d4b0 b6ebddfc

Here the kworker is waiting on msdos_sb_info::s_lock which is held by
tar which is in turn waiting for a buffer which is locked waiting to be
flushed, but this operation is plugged in the kworker.

The lock is a normal struct mutex, so tsk_is_pi_blocked() will always
return false on !RT and thus the behaviour changes for RT.

It seems that the intent here is to skip blk_flush_plug() in the case
where a non-preemptible lock (such as a spinlock) has been converted to
a rtmutex on RT, which is the case covered by the SM_RTLOCK_WAIT
schedule flag.  But sched_submit_work() is only called from schedule()
which is never called in this scenario, so the check can simply be
deleted.

Looking at the history of the -rt patchset, in fact this change was
present from v5.9.1-rt20 until being dropped in v5.13-rt1 as it was part
of a larger patch [1] most of which was replaced by commit b4bfa3fcfe
("sched/core: Rework the __schedule() preempt argument").

As described in [1]:

   The schedule process must distinguish between blocking on a regular
   sleeping lock (rwsem and mutex) and a RT-only sleeping lock (spinlock
   and rwlock):
   - rwsem and mutex must flush block requests (blk_schedule_flush_plug())
     even if blocked on a lock. This can not deadlock because this also
     happens for non-RT.
     There should be a warning if the scheduling point is within a RCU read
     section.

   - spinlock and rwlock must not flush block requests. This will deadlock
     if the callback attempts to acquire a lock which is already acquired.
     Similarly to being preempted, there should be no warning if the
     scheduling point is within a RCU read section.

and with the tsk_is_pi_blocked() in the scheduler path, we hit the first
issue.

[1] https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git/tree/patches/0022-locking-rtmutex-Use-custom-scheduling-function-for-s.patch?h=linux-5.10.y-rt-patches

Signed-off-by: John Keeping <john@metanate.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20220708162702.1758865-1-john@metanate.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:01 +02:00
Samuel Holland
f116c621dd genirq: GENERIC_IRQ_IPI depends on SMP
[ Upstream commit 0f5209fee9 ]

The generic IPI code depends on the IRQ affinity mask being allocated
and initialized. This will not be the case if SMP is disabled. Fix up
the remaining driver that selected GENERIC_IRQ_IPI in a non-SMP config.

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Samuel Holland <samuel@sholland.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220701200056.46555-3-samuel@sholland.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:01 +02:00
Antonio Borneo
f9842ec683 genirq: Don't return error on missing optional irq_request_resources()
[ Upstream commit 95001b7564 ]

Function irq_chip::irq_request_resources() is reported as optional
in the declaration of struct irq_chip.
If the parent irq_chip does not implement it, we should ignore it
and return.

Don't return error if the functions is missing.

Signed-off-by: Antonio Borneo <antonio.borneo@foss.st.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220512160544.13561-1-antonio.borneo@foss.st.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:00 +02:00
Chen Yu
079651c6cf sched/fair: Introduce SIS_UTIL to search idle CPU based on sum of util_avg
[ Upstream commit 70fb5ccf2e ]

[Problem Statement]
select_idle_cpu() might spend too much time searching for an idle CPU,
when the system is overloaded.

The following histogram is the time spent in select_idle_cpu(),
when running 224 instances of netperf on a system with 112 CPUs
per LLC domain:

@usecs:
[0]                  533 |                                                    |
[1]                 5495 |                                                    |
[2, 4)             12008 |                                                    |
[4, 8)            239252 |                                                    |
[8, 16)          4041924 |@@@@@@@@@@@@@@                                      |
[16, 32)        12357398 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@         |
[32, 64)        14820255 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[64, 128)       13047682 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       |
[128, 256)       8235013 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@                        |
[256, 512)       4507667 |@@@@@@@@@@@@@@@                                     |
[512, 1K)        2600472 |@@@@@@@@@                                           |
[1K, 2K)          927912 |@@@                                                 |
[2K, 4K)          218720 |                                                    |
[4K, 8K)           98161 |                                                    |
[8K, 16K)          37722 |                                                    |
[16K, 32K)          6715 |                                                    |
[32K, 64K)           477 |                                                    |
[64K, 128K)            7 |                                                    |

netperf latency usecs:
=======
case            	load    	    Lat_99th	    std%
TCP_RR          	thread-224	      257.39	(  0.21)

The time spent in select_idle_cpu() is visible to netperf and might have a negative
impact.

[Symptom analysis]
The patch [1] from Mel Gorman has been applied to track the efficiency
of select_idle_sibling. Copy the indicators here:

SIS Search Efficiency(se_eff%):
        A ratio expressed as a percentage of runqueues scanned versus
        idle CPUs found. A 100% efficiency indicates that the target,
        prev or recent CPU of a task was idle at wakeup. The lower the
        efficiency, the more runqueues were scanned before an idle CPU
        was found.

SIS Domain Search Efficiency(dom_eff%):
        Similar, except only for the slower SIS
	patch.

SIS Fast Success Rate(fast_rate%):
        Percentage of SIS that used target, prev or
	recent CPUs.

SIS Success rate(success_rate%):
        Percentage of scans that found an idle CPU.

The test is based on Aubrey's schedtests tool, including netperf, hackbench,
schbench and tbench.

Test on vanilla kernel:
schedstat_parse.py -f netperf_vanilla.log
case	        load	    se_eff%	    dom_eff%	  fast_rate%	success_rate%
TCP_RR	   28 threads	     99.978	      18.535	      99.995	     100.000
TCP_RR	   56 threads	     99.397	       5.671	      99.964	     100.000
TCP_RR	   84 threads	     21.721	       6.818	      73.632	     100.000
TCP_RR	  112 threads	     12.500	       5.533	      59.000	     100.000
TCP_RR	  140 threads	      8.524	       4.535	      49.020	     100.000
TCP_RR	  168 threads	      6.438	       3.945	      40.309	      99.999
TCP_RR	  196 threads	      5.397	       3.718	      32.320	      99.982
TCP_RR	  224 threads	      4.874	       3.661	      25.775	      99.767
UDP_RR	   28 threads	     99.988	      17.704	      99.997	     100.000
UDP_RR	   56 threads	     99.528	       5.977	      99.970	     100.000
UDP_RR	   84 threads	     24.219	       6.992	      76.479	     100.000
UDP_RR	  112 threads	     13.907	       5.706	      62.538	     100.000
UDP_RR	  140 threads	      9.408	       4.699	      52.519	     100.000
UDP_RR	  168 threads	      7.095	       4.077	      44.352	     100.000
UDP_RR	  196 threads	      5.757	       3.775	      35.764	      99.991
UDP_RR	  224 threads	      5.124	       3.704	      28.748	      99.860

schedstat_parse.py -f schbench_vanilla.log
(each group has 28 tasks)
case	        load	    se_eff%	    dom_eff%	  fast_rate%	success_rate%
normal	   1   mthread	     99.152	       6.400	      99.941	     100.000
normal	   2   mthreads	     97.844	       4.003	      99.908	     100.000
normal	   3   mthreads	     96.395	       2.118	      99.917	      99.998
normal	   4   mthreads	     55.288	       1.451	      98.615	      99.804
normal	   5   mthreads	      7.004	       1.870	      45.597	      61.036
normal	   6   mthreads	      3.354	       1.346	      20.777	      34.230
normal	   7   mthreads	      2.183	       1.028	      11.257	      21.055
normal	   8   mthreads	      1.653	       0.825	       7.849	      15.549

schedstat_parse.py -f hackbench_vanilla.log
(each group has 28 tasks)
case			load	        se_eff%	    dom_eff%	  fast_rate%	success_rate%
process-pipe	     1 group	         99.991	       7.692	      99.999	     100.000
process-pipe	    2 groups	         99.934	       4.615	      99.997	     100.000
process-pipe	    3 groups	         99.597	       3.198	      99.987	     100.000
process-pipe	    4 groups	         98.378	       2.464	      99.958	     100.000
process-pipe	    5 groups	         27.474	       3.653	      89.811	      99.800
process-pipe	    6 groups	         20.201	       4.098	      82.763	      99.570
process-pipe	    7 groups	         16.423	       4.156	      77.398	      99.316
process-pipe	    8 groups	         13.165	       3.920	      72.232	      98.828
process-sockets	     1 group	         99.977	       5.882	      99.999	     100.000
process-sockets	    2 groups	         99.927	       5.505	      99.996	     100.000
process-sockets	    3 groups	         99.397	       3.250	      99.980	     100.000
process-sockets	    4 groups	         79.680	       4.258	      98.864	      99.998
process-sockets	    5 groups	          7.673	       2.503	      63.659	      92.115
process-sockets	    6 groups	          4.642	       1.584	      58.946	      88.048
process-sockets	    7 groups	          3.493	       1.379	      49.816	      81.164
process-sockets	    8 groups	          3.015	       1.407	      40.845	      75.500
threads-pipe	     1 group	         99.997	       0.000	     100.000	     100.000
threads-pipe	    2 groups	         99.894	       2.932	      99.997	     100.000
threads-pipe	    3 groups	         99.611	       4.117	      99.983	     100.000
threads-pipe	    4 groups	         97.703	       2.624	      99.937	     100.000
threads-pipe	    5 groups	         22.919	       3.623	      87.150	      99.764
threads-pipe	    6 groups	         18.016	       4.038	      80.491	      99.557
threads-pipe	    7 groups	         14.663	       3.991	      75.239	      99.247
threads-pipe	    8 groups	         12.242	       3.808	      70.651	      98.644
threads-sockets	     1 group	         99.990	       6.667	      99.999	     100.000
threads-sockets	    2 groups	         99.940	       5.114	      99.997	     100.000
threads-sockets	    3 groups	         99.469	       4.115	      99.977	     100.000
threads-sockets	    4 groups	         87.528	       4.038	      99.400	     100.000
threads-sockets	    5 groups	          6.942	       2.398	      59.244	      88.337
threads-sockets	    6 groups	          4.359	       1.954	      49.448	      87.860
threads-sockets	    7 groups	          2.845	       1.345	      41.198	      77.102
threads-sockets	    8 groups	          2.871	       1.404	      38.512	      74.312

schedstat_parse.py -f tbench_vanilla.log
case			load	      se_eff%	    dom_eff%	  fast_rate%	success_rate%
loopback	  28 threads	       99.976	      18.369	      99.995	     100.000
loopback	  56 threads	       99.222	       7.799	      99.934	     100.000
loopback	  84 threads	       19.723	       6.819	      70.215	     100.000
loopback	 112 threads	       11.283	       5.371	      55.371	      99.999
loopback	 140 threads	        0.000	       0.000	       0.000	       0.000
loopback	 168 threads	        0.000	       0.000	       0.000	       0.000
loopback	 196 threads	        0.000	       0.000	       0.000	       0.000
loopback	 224 threads	        0.000	       0.000	       0.000	       0.000

According to the test above, if the system becomes busy, the
SIS Search Efficiency(se_eff%) drops significantly. Although some
benchmarks would finally find an idle CPU(success_rate% = 100%), it is
doubtful whether it is worth it to search the whole LLC domain.

[Proposal]
It would be ideal to have a crystal ball to answer this question:
How many CPUs must a wakeup path walk down, before it can find an idle
CPU? Many potential metrics could be used to predict the number.
One candidate is the sum of util_avg in this LLC domain. The benefit
of choosing util_avg is that it is a metric of accumulated historic
activity, which seems to be smoother than instantaneous metrics
(such as rq->nr_running). Besides, choosing the sum of util_avg
would help predict the load of the LLC domain more precisely, because
SIS_PROP uses one CPU's idle time to estimate the total LLC domain idle
time.

In summary, the lower the util_avg is, the more select_idle_cpu()
should scan for idle CPU, and vice versa. When the sum of util_avg
in this LLC domain hits 85% or above, the scan stops. The reason to
choose 85% as the threshold is that this is the imbalance_pct(117)
when a LLC sched group is overloaded.

Introduce the quadratic function:

y = SCHED_CAPACITY_SCALE - p * x^2
and y'= y / SCHED_CAPACITY_SCALE

x is the ratio of sum_util compared to the CPU capacity:
x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
y' is the ratio of CPUs to be scanned in the LLC domain,
and the number of CPUs to scan is calculated by:

nr_scan = llc_weight * y'

Choosing quadratic function is because:
[1] Compared to the linear function, it scans more aggressively when the
    sum_util is low.
[2] Compared to the exponential function, it is easier to calculate.
[3] It seems that there is no accurate mapping between the sum of util_avg
    and the number of CPUs to be scanned. Use heuristic scan for now.

For a platform with 112 CPUs per LLC, the number of CPUs to scan is:
sum_util%   0    5   15   25  35  45  55   65   75   85   86 ...
scan_nr   112  111  108  102  93  81  65   47   25    1    0 ...

For a platform with 16 CPUs per LLC, the number of CPUs to scan is:
sum_util%   0    5   15   25  35  45  55   65   75   85   86 ...
scan_nr    16   15   15   14  13  11   9    6    3    0    0 ...

Furthermore, to minimize the overhead of calculating the metrics in
select_idle_cpu(), borrow the statistics from periodic load balance.
As mentioned by Abel, on a platform with 112 CPUs per LLC, the
sum_util calculated by periodic load balance after 112 ms would
decay to about 0.5 * 0.5 * 0.5 * 0.7 = 8.75%, thus bringing a delay
in reflecting the latest utilization. But it is a trade-off.
Checking the util_avg in newidle load balance would be more frequent,
but it brings overhead - multiple CPUs write/read the per-LLC shared
variable and introduces cache contention. Tim also mentioned that,
it is allowed to be non-optimal in terms of scheduling for the
short-term variations, but if there is a long-term trend in the load
behavior, the scheduler can adjust for that.

When SIS_UTIL is enabled, the select_idle_cpu() uses the nr_scan
calculated by SIS_UTIL instead of the one from SIS_PROP. As Peter and
Mel suggested, SIS_UTIL should be enabled by default.

This patch is based on the util_avg, which is very sensitive to the
CPU frequency invariance. There is an issue that, when the max frequency
has been clamp, the util_avg would decay insanely fast when
the CPU is idle. Commit addca28512 ("cpufreq: intel_pstate: Handle no_turbo
in frequency invariance") could be used to mitigate this symptom, by adjusting
the arch_max_freq_ratio when turbo is disabled. But this issue is still
not thoroughly fixed, because the current code is unaware of the user-specified
max CPU frequency.

[Test result]

netperf and tbench were launched with 25% 50% 75% 100% 125% 150%
175% 200% of CPU number respectively. Hackbench and schbench were launched
by 1, 2 ,4, 8 groups. Each test lasts for 100 seconds and repeats 3 times.

The following is the benchmark result comparison between
baseline:vanilla v5.19-rc1 and compare:patched kernel. Positive compare%
indicates better performance.

Each netperf test is a:
netperf -4 -H 127.0.1 -t TCP/UDP_RR -c -C -l 100
netperf.throughput
=======
case            	load    	baseline(std%)	compare%( std%)
TCP_RR          	28 threads	 1.00 (  0.34)	 -0.16 (  0.40)
TCP_RR          	56 threads	 1.00 (  0.19)	 -0.02 (  0.20)
TCP_RR          	84 threads	 1.00 (  0.39)	 -0.47 (  0.40)
TCP_RR          	112 threads	 1.00 (  0.21)	 -0.66 (  0.22)
TCP_RR          	140 threads	 1.00 (  0.19)	 -0.69 (  0.19)
TCP_RR          	168 threads	 1.00 (  0.18)	 -0.48 (  0.18)
TCP_RR          	196 threads	 1.00 (  0.16)	+194.70 ( 16.43)
TCP_RR          	224 threads	 1.00 (  0.16)	+197.30 (  7.85)
UDP_RR          	28 threads	 1.00 (  0.37)	 +0.35 (  0.33)
UDP_RR          	56 threads	 1.00 ( 11.18)	 -0.32 (  0.21)
UDP_RR          	84 threads	 1.00 (  1.46)	 -0.98 (  0.32)
UDP_RR          	112 threads	 1.00 ( 28.85)	 -2.48 ( 19.61)
UDP_RR          	140 threads	 1.00 (  0.70)	 -0.71 ( 14.04)
UDP_RR          	168 threads	 1.00 ( 14.33)	 -0.26 ( 11.16)
UDP_RR          	196 threads	 1.00 ( 12.92)	+186.92 ( 20.93)
UDP_RR          	224 threads	 1.00 ( 11.74)	+196.79 ( 18.62)

Take the 224 threads as an example, the SIS search metrics changes are
illustrated below:

    vanilla                    patched
   4544492          +237.5%   15338634        sched_debug.cpu.sis_domain_search.avg
     38539        +39686.8%   15333634        sched_debug.cpu.sis_failed.avg
  128300000          -87.9%   15551326        sched_debug.cpu.sis_scanned.avg
   5842896          +162.7%   15347978        sched_debug.cpu.sis_search.avg

There is -87.9% less CPU scans after patched, which indicates lower overhead.
Besides, with this patch applied, there is -13% less rq lock contention
in perf-profile.calltrace.cycles-pp._raw_spin_lock.raw_spin_rq_lock_nested
.try_to_wake_up.default_wake_function.woken_wake_function.
This might help explain the performance improvement - Because this patch allows
the waking task to remain on the previous CPU, rather than grabbing other CPUs'
lock.

Each hackbench test is a:
hackbench -g $job --process/threads --pipe/sockets -l 1000000 -s 100
hackbench.throughput
=========
case            	load    	baseline(std%)	compare%( std%)
process-pipe    	1 group 	 1.00 (  1.29)	 +0.57 (  0.47)
process-pipe    	2 groups 	 1.00 (  0.27)	 +0.77 (  0.81)
process-pipe    	4 groups 	 1.00 (  0.26)	 +1.17 (  0.02)
process-pipe    	8 groups 	 1.00 (  0.15)	 -4.79 (  0.02)
process-sockets 	1 group 	 1.00 (  0.63)	 -0.92 (  0.13)
process-sockets 	2 groups 	 1.00 (  0.03)	 -0.83 (  0.14)
process-sockets 	4 groups 	 1.00 (  0.40)	 +5.20 (  0.26)
process-sockets 	8 groups 	 1.00 (  0.04)	 +3.52 (  0.03)
threads-pipe    	1 group 	 1.00 (  1.28)	 +0.07 (  0.14)
threads-pipe    	2 groups 	 1.00 (  0.22)	 -0.49 (  0.74)
threads-pipe    	4 groups 	 1.00 (  0.05)	 +1.88 (  0.13)
threads-pipe    	8 groups 	 1.00 (  0.09)	 -4.90 (  0.06)
threads-sockets 	1 group 	 1.00 (  0.25)	 -0.70 (  0.53)
threads-sockets 	2 groups 	 1.00 (  0.10)	 -0.63 (  0.26)
threads-sockets 	4 groups 	 1.00 (  0.19)	+11.92 (  0.24)
threads-sockets 	8 groups 	 1.00 (  0.08)	 +4.31 (  0.11)

Each tbench test is a:
tbench -t 100 $job 127.0.0.1
tbench.throughput
======
case            	load    	baseline(std%)	compare%( std%)
loopback        	28 threads	 1.00 (  0.06)	 -0.14 (  0.09)
loopback        	56 threads	 1.00 (  0.03)	 -0.04 (  0.17)
loopback        	84 threads	 1.00 (  0.05)	 +0.36 (  0.13)
loopback        	112 threads	 1.00 (  0.03)	 +0.51 (  0.03)
loopback        	140 threads	 1.00 (  0.02)	 -1.67 (  0.19)
loopback        	168 threads	 1.00 (  0.38)	 +1.27 (  0.27)
loopback        	196 threads	 1.00 (  0.11)	 +1.34 (  0.17)
loopback        	224 threads	 1.00 (  0.11)	 +1.67 (  0.22)

Each schbench test is a:
schbench -m $job -t 28 -r 100 -s 30000 -c 30000
schbench.latency_90%_us
========
case            	load    	baseline(std%)	compare%( std%)
normal          	1 mthread	 1.00 ( 31.22)	 -7.36 ( 20.25)*
normal          	2 mthreads	 1.00 (  2.45)	 -0.48 (  1.79)
normal          	4 mthreads	 1.00 (  1.69)	 +0.45 (  0.64)
normal          	8 mthreads	 1.00 (  5.47)	 +9.81 ( 14.28)

*Consider the Standard Deviation, this -7.36% regression might not be valid.

Also, a OLTP workload with a commercial RDBMS has been tested, and there
is no significant change.

There were concerns that unbalanced tasks among CPUs would cause problems.
For example, suppose the LLC domain is composed of 8 CPUs, and 7 tasks are
bound to CPU0~CPU6, while CPU7 is idle:

          CPU0    CPU1    CPU2    CPU3    CPU4    CPU5    CPU6    CPU7
util_avg  1024    1024    1024    1024    1024    1024    1024    0

Since the util_avg ratio is 87.5%( = 7/8 ), which is higher than 85%,
select_idle_cpu() will not scan, thus CPU7 is undetected during scan.
But according to Mel, it is unlikely the CPU7 will be idle all the time
because CPU7 could pull some tasks via CPU_NEWLY_IDLE.

lkp(kernel test robot) has reported a regression on stress-ng.sock on a
very busy system. According to the sched_debug statistics, it might be caused
by SIS_UTIL terminates the scan and chooses a previous CPU earlier, and this
might introduce more context switch, especially involuntary preemption, which
impacts a busy stress-ng. This regression has shown that, not all benchmarks
in every scenario benefit from idle CPU scan limit, and it needs further
investigation.

Besides, there is slight regression in hackbench's 16 groups case when the
LLC domain has 16 CPUs. Prateek mentioned that we should scan aggressively
in an LLC domain with 16 CPUs. Because the cost to search for an idle one
among 16 CPUs is negligible. The current patch aims to propose a generic
solution and only considers the util_avg. Something like the below could
be applied on top of the current patch to fulfill the requirement:

	if (llc_weight <= 16)
		nr_scan = nr_scan * 32 / llc_weight;

For LLC domain with 16 CPUs, the nr_scan will be expanded to 2 times large.
The smaller the CPU number this LLC domain has, the larger nr_scan will be
expanded. This needs further investigation.

There is also ongoing work[2] from Abel to filter out the busy CPUs during
wakeup, to further speed up the idle CPU scan. And it could be a following-up
optimization on top of this change.

Suggested-by: Tim Chen <tim.c.chen@intel.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Tested-by: Mohini Narkhede <mohini.narkhede@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20220612163428.849378-1-yu.c.chen@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:00 +02:00
Tadeusz Struk
1f8ca9c40e bpf: Fix KASAN use-after-free Read in compute_effective_progs
commit 4c46091ee9 upstream.

Syzbot found a Use After Free bug in compute_effective_progs().
The reproducer creates a number of BPF links, and causes a fault
injected alloc to fail, while calling bpf_link_detach on them.
Link detach triggers the link to be freed by bpf_link_free(),
which calls __cgroup_bpf_detach() and update_effective_progs().
If the memory allocation in this function fails, the function restores
the pointer to the bpf_cgroup_link on the cgroup list, but the memory
gets freed just after it returns. After this, every subsequent call to
update_effective_progs() causes this already deallocated pointer to be
dereferenced in prog_list_length(), and triggers KASAN UAF error.

To fix this issue don't preserve the pointer to the prog or link in the
list, but remove it and replace it with a dummy prog without shrinking
the table. The subsequent call to __cgroup_bpf_detach() or
__cgroup_bpf_detach() will correct it.

Fixes: af6eea5743 ("bpf: Implement bpf_link-based cgroup BPF program attachment")
Reported-by: <syzbot+f264bffdfbd5614f3bb2@syzkaller.appspotmail.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://syzkaller.appspot.com/bug?id=8ebf179a95c2a2670f7cf1ba62429ec044369db4
Link: https://lore.kernel.org/bpf/20220517180420.87954-1-tadeusz.struk@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-17 14:22:54 +02:00
Waiman Long
d10e819d13 locking/rwsem: Allow slowpath writer to ignore handoff bit if not set by first waiter
commit 6eebd5fb20 upstream.

With commit d257cc8cb8 ("locking/rwsem: Make handoff bit handling more
consistent"), the writer that sets the handoff bit can be interrupted
out without clearing the bit if the wait queue isn't empty. This disables
reader and writer optimistic lock spinning and stealing.

Now if a non-first writer in the queue is somehow woken up or a new
waiter enters the slowpath, it can't acquire the lock.  This is not the
case before commit d257cc8cb8 as the writer that set the handoff bit
will clear it when exiting out via the out_nolock path. This is less
efficient as the busy rwsem stays in an unlock state for a longer time.

In some cases, this new behavior may cause lockups as shown in [1] and
[2].

This patch allows a non-first writer to ignore the handoff bit if it
is not originally set or initiated by the first waiter. This patch is
shown to be effective in fixing the lockup problem reported in [1].

[1] https://lore.kernel.org/lkml/20220617134325.GC30825@techsingularity.net/
[2] https://lore.kernel.org/lkml/3f02975c-1a9d-be20-32cf-f1d8e3dfafcc@oracle.com/

Fixes: d257cc8cb8 ("locking/rwsem: Make handoff bit handling more consistent")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: John Donnelly <john.p.donnelly@oracle.com>
Tested-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/r/20220622200419.778799-1-longman@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:03:56 +02:00
Linus Torvalds
c9c01dd389 watch_queue: Fix missing locking in add_watch_to_object()
commit e64ab2dbd8 upstream.

If a watch is being added to a queue, it needs to guard against
interference from addition of a new watch, manual removal of a watch and
removal of a watch due to some other queue being destroyed.

KEYCTL_WATCH_KEY guards against this for the same {key,queue} pair by
holding the key->sem writelocked and by holding refs on both the key and
the queue - but that doesn't prevent interaction from other {key,queue}
pairs.

While add_watch_to_object() does take the spinlock on the event queue,
it doesn't take the lock on the source's watch list.  The assumption was
that the caller would prevent that (say by taking key->sem) - but that
doesn't prevent interference from the destruction of another queue.

Fix this by locking the watcher list in add_watch_to_object().

Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: syzbot+03d7b43290037d1f87ca@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
cc: keyrings@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:03:43 +02:00
David Howells
093610f216 watch_queue: Fix missing rcu annotation
commit e0339f036e upstream.

Since __post_watch_notification() walks wlist->watchers with only the
RCU read lock held, we need to use RCU methods to add to the list (we
already use RCU methods to remove from the list).

Fix add_watch_to_object() to use hlist_add_head_rcu() instead of
hlist_add_head() for that list.

Fixes: c73be61ced ("pipe: Add general notification queue support")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:03:43 +02:00
Linus Torvalds
d026ed6eda watch-queue: remove spurious double semicolon
commit 44e29e64cf upstream.

Sedat Dilek noticed that I had an extraneous semicolon at the end of a
line in the previous patch.

It's harmless, but unintentional, and while compilers just treat it as
an extra empty statement, for all I know some other tooling might warn
about it. So clean it up before other people notice too ;)

Fixes: 353f7988dd ("watchqueue: make sure to serialize 'wqueue->defunct' properly")
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-29 17:25:32 +02:00
Linus Torvalds
ba3a8af8a2 watchqueue: make sure to serialize 'wqueue->defunct' properly
commit 353f7988dd upstream.

When the pipe is closed, we mark the associated watchqueue defunct by
calling watch_queue_clear().  However, while that is protected by the
watchqueue lock, new watchqueue entries aren't actually added under that
lock at all: they use the pipe->rd_wait.lock instead, and looking up
that pipe happens without any locking.

The watchqueue code uses the RCU read-side section to make sure that the
wqueue entry itself hasn't disappeared, but that does not protect the
pipe_info in any way.

So make sure to actually hold the wqueue lock when posting watch events,
properly serializing against the pipe being torn down.

Reported-by: Noam Rathaus <noamr@ssd-disclosure.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-29 17:25:31 +02:00
Wonhyuk Yang
d8413b16fe tracing: Fix return value of trace_pid_write()
[ Upstream commit b27f266f74 ]

Setting set_event_pid with trailing whitespace lead to endless write
system calls like below.

    $ strace echo "123 " > /sys/kernel/debug/tracing/set_event_pid
    execve("/usr/bin/echo", ["echo", "123 "], ...) = 0
    ...
    write(1, "123 \n", 5)                   = 4
    write(1, "\n", 1)                       = 0
    write(1, "\n", 1)                       = 0
    write(1, "\n", 1)                       = 0
    write(1, "\n", 1)                       = 0
    write(1, "\n", 1)                       = 0
    ....

This is because, the result of trace_get_user's are not returned when it
read at least one pid. To fix it, update read variable even if
parser->idx == 0.

The result of applied patch is below.

    $ strace echo "123 " > /sys/kernel/debug/tracing/set_event_pid
    execve("/usr/bin/echo", ["echo", "123 "], ...) = 0
    ...
    write(1, "123 \n", 5)                   = 5
    close(1)                                = 0

Link: https://lkml.kernel.org/r/20220503050546.288911-1-vvghjk1234@gmail.com

Cc: Ingo Molnar <mingo@redhat.com>
Cc: Baik Song An <bsahn@etri.re.kr>
Cc: Hong Yeon Kim <kimhy@etri.re.kr>
Cc: Taeung Song <taeung@reallinux.co.kr>
Cc: linuxgeek@linuxgeek.io
Cc: stable@vger.kernel.org
Fixes: 4909010788 ("tracing: Add set_event_pid directory for future use")
Signed-off-by: Wonhyuk Yang <vvghjk1234@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29 17:25:29 +02:00
Steven Rostedt (VMware)
d977706172 tracing: Place trace_pid_list logic into abstract functions
[ Upstream commit 6954e41526 ]

Instead of having the logic that does trace_pid_list open coded, wrap it in
abstract functions. This will allow a rewrite of the logic that implements
the trace_pid_list without affecting the users.

Note, this causes a change in behavior. Every time a pid is written into
the set_*_pid file, it creates a new list and uses RCU to update it. If
pid_max is lowered, but there was a pid currently in the list that was
higher than pid_max, those pids will now be removed on updating the list.
The old behavior kept that from happening.

The rewrite of the pid_list logic will no longer depend on pid_max,
and will return the old behavior.

Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29 17:25:29 +02:00
Steven Rostedt (Google)
6107b01416 tracing: Have event format check not flag %p* on __get_dynamic_array()
[ Upstream commit 499f12168a ]

The print fmt check against trace events to make sure that the format does
not use pointers that may be freed from the time of the trace to the time
the event is read, gives a false positive on %pISpc when reading data that
was saved in __get_dynamic_array() when it is perfectly fine to do so, as
the data being read is on the ring buffer.

Link: https://lore.kernel.org/all/20220407144524.2a592ed6@canb.auug.org.au/

Cc: stable@vger.kernel.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29 17:25:29 +02:00
Juri Lelli
46d5575df8 sched/deadline: Fix BUG_ON condition for deboosted tasks
commit ddfc710395 upstream.

Tasks the are being deboosted from SCHED_DEADLINE might enter
enqueue_task_dl() one last time and hit an erroneous BUG_ON condition:
since they are not boosted anymore, the if (is_dl_boosted()) branch is
not taken, but the else if (!dl_prio) is and inside this one we
BUG_ON(!is_dl_boosted), which is of course false (BUG_ON triggered)
otherwise we had entered the if branch above. Long story short, the
current condition doesn't make sense and always leads to triggering of a
BUG.

Fix this by only checking enqueue flags, properly: ENQUEUE_REPLENISH has
to be present, but additional flags are not a problem.

Fixes: 64be6f1f5f ("sched/deadline: Don't replenish from a !SCHED_DEADLINE entity")
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220714151908.533052-1-juri.lelli@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-29 17:25:24 +02:00
Eric Dumazet
bc1fb3c53a bpf: Make sure mac_header was set before using it
commit 0326195f52 upstream.

Classic BPF has a way to load bytes starting from the mac header.

Some skbs do not have a mac header, and skb_mac_header()
in this case is returning a pointer that 65535 bytes after
skb->head.

Existing range check in bpf_internal_load_pointer_neg_helper()
was properly kicking and no illegal access was happening.

New sanity check in skb_mac_header() is firing, so we need
to avoid it.

WARNING: CPU: 1 PID: 28990 at include/linux/skbuff.h:2785 skb_mac_header include/linux/skbuff.h:2785 [inline]
WARNING: CPU: 1 PID: 28990 at include/linux/skbuff.h:2785 bpf_internal_load_pointer_neg_helper+0x1b1/0x1c0 kernel/bpf/core.c:74
Modules linked in:
CPU: 1 PID: 28990 Comm: syz-executor.0 Not tainted 5.19.0-rc4-syzkaller-00865-g4874fb9484be #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/29/2022
RIP: 0010:skb_mac_header include/linux/skbuff.h:2785 [inline]
RIP: 0010:bpf_internal_load_pointer_neg_helper+0x1b1/0x1c0 kernel/bpf/core.c:74
Code: ff ff 45 31 f6 e9 5a ff ff ff e8 aa 27 40 00 e9 3b ff ff ff e8 90 27 40 00 e9 df fe ff ff e8 86 27 40 00 eb 9e e8 2f 2c f3 ff <0f> 0b eb b1 e8 96 27 40 00 e9 79 fe ff ff 90 41 57 41 56 41 55 41
RSP: 0018:ffffc9000309f668 EFLAGS: 00010216
RAX: 0000000000000118 RBX: ffffffffffeff00c RCX: ffffc9000e417000
RDX: 0000000000040000 RSI: ffffffff81873f21 RDI: 0000000000000003
RBP: ffff8880842878c0 R08: 0000000000000003 R09: 000000000000ffff
R10: 000000000000ffff R11: 0000000000000001 R12: 0000000000000004
R13: ffff88803ac56c00 R14: 000000000000ffff R15: dffffc0000000000
FS: 00007f5c88a16700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fdaa9f6c058 CR3: 000000003a82c000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
____bpf_skb_load_helper_32 net/core/filter.c:276 [inline]
bpf_skb_load_helper_32+0x191/0x220 net/core/filter.c:264

Fixes: f9aefd6b2a ("net: warn if mac header was not set")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220707123900.945305-1-edumazet@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-29 17:25:24 +02:00
Xiaoming Ni
9cb4959493 sysctl: move some boundary constants from sysctl.c to sysctl_vals
[ Upstream commit 78e36f3b0d ]

sysctl has helpers which let us specify boundary values for a min or max
int value.  Since these are used for a boundary check only they don't
change, so move these variables to sysctl_vals to avoid adding duplicate
variables.  This will help with our cleanup of kernel/sysctl.c.

[akpm@linux-foundation.org: update it for "mm/pagealloc: sysctl: change watermark_scale_factor max limit to 30%"]
[mcgrof@kernel.org: major rebase]

Link: https://lkml.kernel.org/r/20211123202347.818157-3-mcgrof@kernel.org
Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Qing Wang <wangqing@vivo.com>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Stephen Kitt <steve@sk2.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Antti Palosaari <crope@iki.fi>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Clemens Ladisch <clemens@ladisch.de>
Cc: David Airlie <airlied@linux.ie>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Julia Lawall <julia.lawall@inria.fr>
Cc: Lukas Middendorf <kernel@tuxforce.de>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Phillip Potter <phil@philpotter.co.uk>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Douglas Gilbert <dgilbert@interlog.com>
Cc: James E.J. Bottomley <jejb@linux.ibm.com>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Martin K. Petersen <martin.petersen@oracle.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29 17:25:11 +02:00
Suren Baghdasaryan
e2b6c5f7ee mm/pagealloc: sysctl: change watermark_scale_factor max limit to 30%
[ Upstream commit 39c65a94cd ]

For embedded systems with low total memory, having to run applications
with relatively large memory requirements, 10% max limitation for
watermark_scale_factor poses an issue of triggering direct reclaim every
time such application is started.  This results in slow application
startup times and bad end-user experience.

By increasing watermark_scale_factor max limit we allow vendors more
flexibility to choose the right level of kswapd aggressiveness for their
device and workload requirements.

Link: https://lkml.kernel.org/r/20211124193604.2758863-1-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Lukas Middendorf <kernel@tuxforce.de>
Cc: Antti Palosaari <crope@iki.fi>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Zhang Yi <yi.zhang@huawei.com>
Cc: Fengfei Xi <xi.fengfei@h3c.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29 17:25:11 +02:00
Peter Zijlstra
da3c256e2d perf/core: Fix data race between perf_event_set_output() and perf_mmap_close()
[ Upstream commit 68e3c69803 ]

Yang Jihing reported a race between perf_event_set_output() and
perf_mmap_close():

	CPU1					CPU2

	perf_mmap_close(e2)
	  if (atomic_dec_and_test(&e2->rb->mmap_count)) // 1 - > 0
	    detach_rest = true

						ioctl(e1, IOC_SET_OUTPUT, e2)
						  perf_event_set_output(e1, e2)

	  ...
	  list_for_each_entry_rcu(e, &e2->rb->event_list, rb_entry)
	    ring_buffer_attach(e, NULL);
	    // e1 isn't yet added and
	    // therefore not detached

						    ring_buffer_attach(e1, e2->rb)
						      list_add_rcu(&e1->rb_entry,
								   &e2->rb->event_list)

After this; e1 is attached to an unmapped rb and a subsequent
perf_mmap() will loop forever more:

	again:
		mutex_lock(&e->mmap_mutex);
		if (event->rb) {
			...
			if (!atomic_inc_not_zero(&e->rb->mmap_count)) {
				...
				mutex_unlock(&e->mmap_mutex);
				goto again;
			}
		}

The loop in perf_mmap_close() holds e2->mmap_mutex, while the attach
in perf_event_set_output() holds e1->mmap_mutex. As such there is no
serialization to avoid this race.

Change perf_event_set_output() to take both e1->mmap_mutex and
e2->mmap_mutex to alleviate that problem. Additionally, have the loop
in perf_mmap() detach the rb directly, this avoids having to wait for
the concurrent perf_mmap_close() to get around to doing it to make
progress.

Fixes: 9bb5d40cd9 ("perf: Fix mmap() accounting hole")
Reported-by: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Yang Jihong <yangjihong1@huawei.com>
Link: https://lkml.kernel.org/r/YsQ3jm2GR38SW7uD@worktop.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29 17:25:11 +02:00
Linus Torvalds
ec0c62a23c signal handling: don't use BUG_ON() for debugging
[ Upstream commit a382f8fee4 ]

These are indeed "should not happen" situations, but it turns out recent
changes made the 'task_is_stopped_or_trace()' case trigger (fix for that
exists, is pending more testing), and the BUG_ON() makes it
unnecessarily hard to actually debug for no good reason.

It's been that way for a long time, but let's make it clear: BUG_ON() is
not good for debugging, and should never be used in situations where you
could just say "this shouldn't happen, but we can continue".

Use WARN_ON_ONCE() instead to make sure it gets logged, and then just
continue running.  Instead of making the system basically unusuable
because you crashed the machine while potentially holding some very core
locks (eg this function is commonly called while holding 'tasklist_lock'
for writing).

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:42 +02:00
Muchun Song
a06248fa62 mm: sysctl: fix missing numa_stat when !CONFIG_HUGETLB_PAGE
[ Upstream commit 43b5240ca6 ]

"numa_stat" should not be included in the scope of CONFIG_HUGETLB_PAGE, if
CONFIG_HUGETLB_PAGE is not configured even if CONFIG_NUMA is configured,
"numa_stat" is missed form /proc. Move it out of CONFIG_HUGETLB_PAGE to
fix it.

Fixes: 4518085e12 ("mm, sysctl: make NUMA stats configurable")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:32 +02:00
Coiby Xu
2340428c90 ima: force signature verification when CONFIG_KEXEC_SIG is configured
[ Upstream commit af16df54b8 ]

Currently, an unsigned kernel could be kexec'ed when IMA arch specific
policy is configured unless lockdown is enabled. Enforce kernel
signature verification check in the kexec_file_load syscall when IMA
arch specific policy is configured.

Fixes: 99d5cadfde ("kexec_file: split KEXEC_VERIFY_SIG into KEXEC_SIG and KEXEC_SIG_FORCE")
Reported-and-suggested-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Coiby Xu <coxu@redhat.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:29 +02:00
Kuniyuki Iwashima
a716a3846c sysctl: Fix data-races in proc_dointvec_ms_jiffies().
[ Upstream commit 7d1025e559 ]

A sysctl variable is accessed concurrently, and there is always a chance
of data-race.  So, all readers and writers need some basic protection to
avoid load/store-tearing.

This patch changes proc_dointvec_ms_jiffies() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side.  For now,
proc_dointvec_ms_jiffies() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:26 +02:00
Kuniyuki Iwashima
e58b02e445 sysctl: Fix data-races in proc_dou8vec_minmax().
[ Upstream commit 7dee5d7747 ]

A sysctl variable is accessed concurrently, and there is always a chance
of data-race.  So, all readers and writers need some basic protection to
avoid load/store-tearing.

This patch changes proc_dou8vec_minmax() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side.  For now,
proc_dou8vec_minmax() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.

Fixes: cb94441306 ("sysctl: add proc_dou8vec_minmax()")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:26 +02:00
Douglas Anderson
af515a6339 tracing: Fix sleeping while atomic in kdb ftdump
[ Upstream commit 495fcec864 ]

If you drop into kdb and type "ftdump" you'll get a sleeping while
atomic warning from memory allocation in trace_find_next_entry().

This appears to have been caused by commit ff895103a8 ("tracing:
Save off entry when peeking at next entry"), which added the
allocation in that path. The problematic commit was already fixed by
commit 8e99cf91b9 ("tracing: Do not allocate buffer in
trace_find_next_entry() in atomic") but that fix missed the kdb case.

The fix here is easy: just move the assignment of the static buffer to
the place where it should have been to begin with:
trace_init_global_iter(). That function is called in two places, once
is right before the assignment of the static buffer added by the
previous fix and once is in kdb.

Note that it appears that there's a second static buffer that we need
to assign that was added in commit efbbdaa22b ("tracing: Show real
address for trace event arguments"), so we'll move that too.

Link: https://lkml.kernel.org/r/20220708170919.1.I75844e5038d9425add2ad853a608cb44bb39df40@changeid

Fixes: ff895103a8 ("tracing: Save off entry when peeking at next entry")
Fixes: efbbdaa22b ("tracing: Show real address for trace event arguments")
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:24 +02:00
Kuniyuki Iwashima
67623d290d sysctl: Fix data races in proc_dointvec_jiffies().
[ Upstream commit e877820877 ]

A sysctl variable is accessed concurrently, and there is always a chance
of data-race.  So, all readers and writers need some basic protection to
avoid load/store-tearing.

This patch changes proc_dointvec_jiffies() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side.  For now,
proc_dointvec_jiffies() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:20 +02:00
Kuniyuki Iwashima
dcdf3c3c58 sysctl: Fix data races in proc_doulongvec_minmax().
[ Upstream commit c31bcc8fb8 ]

A sysctl variable is accessed concurrently, and there is always a chance
of data-race.  So, all readers and writers need some basic protection to
avoid load/store-tearing.

This patch changes proc_doulongvec_minmax() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side.  For now,
proc_doulongvec_minmax() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:20 +02:00
Kuniyuki Iwashima
40e0477a73 sysctl: Fix data races in proc_douintvec_minmax().
[ Upstream commit 2d3b559df3 ]

A sysctl variable is accessed concurrently, and there is always a chance
of data-race.  So, all readers and writers need some basic protection to
avoid load/store-tearing.

This patch changes proc_douintvec_minmax() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side.  For now,
proc_douintvec_minmax() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.

Fixes: 61d9b56a89 ("sysctl: add unsigned int range support")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:20 +02:00
Kuniyuki Iwashima
32d7f8da82 sysctl: Fix data races in proc_dointvec_minmax().
[ Upstream commit f613d86d01 ]

A sysctl variable is accessed concurrently, and there is always a chance
of data-race.  So, all readers and writers need some basic protection to
avoid load/store-tearing.

This patch changes proc_dointvec_minmax() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side.  For now,
proc_dointvec_minmax() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:20 +02:00
Kuniyuki Iwashima
d335db59f7 sysctl: Fix data races in proc_douintvec().
[ Upstream commit 4762b532ec ]

A sysctl variable is accessed concurrently, and there is always a chance
of data-race.  So, all readers and writers need some basic protection to
avoid load/store-tearing.

This patch changes proc_douintvec() to use READ_ONCE() and WRITE_ONCE()
internally to fix data-races on the sysctl side.  For now, proc_douintvec()
itself is tolerant to a data-race, but we still need to add annotations on
the other subsystem's side.

Fixes: e7d316a02f ("sysctl: handle error writing UINT_MAX to u32 fields")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:20 +02:00
Kuniyuki Iwashima
279bf2a909 sysctl: Fix data races in proc_dointvec().
[ Upstream commit 1f1be04b4d ]

A sysctl variable is accessed concurrently, and there is always a chance
of data-race.  So, all readers and writers need some basic protection to
avoid load/store-tearing.

This patch changes proc_dointvec() to use READ_ONCE() and WRITE_ONCE()
internally to fix data-races on the sysctl side.  For now, proc_dointvec()
itself is tolerant to a data-race, but we still need to add annotations on
the other subsystem's side.

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21 21:24:19 +02:00
Tejun Heo
54aee4e5ce cgroup: Use separate src/dst nodes when preloading css_sets for migration
commit 07fd5b6cdf upstream.

Each cset (css_set) is pinned by its tasks. When we're moving tasks around
across csets for a migration, we need to hold the source and destination
csets to ensure that they don't go away while we're moving tasks about. This
is done by linking cset->mg_preload_node on either the
mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the
same cset->mg_preload_node for both the src and dst lists was deemed okay as
a cset can't be both the source and destination at the same time.

Unfortunately, this overloading becomes problematic when multiple tasks are
involved in a migration and some of them are identity noop migrations while
others are actually moving across cgroups. For example, this can happen with
the following sequence on cgroup1:

 #1> mkdir -p /sys/fs/cgroup/misc/a/b
 #2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs
 #3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS &
 #4> PID=$!
 #5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks
 #6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs

the process including the group leader back into a. In this final migration,
non-leader threads would be doing identity migration while the group leader
is doing an actual one.

After #3, let's say the whole process was in cset A, and that after #4, the
leader moves to cset B. Then, during #6, the following happens:

 1. cgroup_migrate_add_src() is called on B for the leader.

 2. cgroup_migrate_add_src() is called on A for the other threads.

 3. cgroup_migrate_prepare_dst() is called. It scans the src list.

 4. It notices that B wants to migrate to A, so it tries to A to the dst
    list but realizes that its ->mg_preload_node is already busy.

 5. and then it notices A wants to migrate to A as it's an identity
    migration, it culls it by list_del_init()'ing its ->mg_preload_node and
    putting references accordingly.

 6. The rest of migration takes place with B on the src list but nothing on
    the dst list.

This means that A isn't held while migration is in progress. If all tasks
leave A before the migration finishes and the incoming task pins it, the
cset will be destroyed leading to use-after-free.

This is caused by overloading cset->mg_preload_node for both src and dst
preload lists. We wanted to exclude the cset from the src list but ended up
inadvertently excluding it from the dst list too.

This patch fixes the issue by separating out cset->mg_preload_node into
->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst
preloadings don't interfere with each other.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reported-by: shisiyuan <shisiyuan19870131@gmail.com>
Link: http://lkml.kernel.org/r/1654187688-27411-1-git-send-email-shisiyuan@xiaomi.com
Link: https://www.spinics.net/lists/cgroups/msg33313.html
Fixes: f817de9851 ("cgroup: prepare migration path for unified hierarchy")
Cc: stable@vger.kernel.org # v3.16+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-21 21:24:13 +02:00
Zheng Yejian
22eeff5567 tracing/histograms: Fix memory leak problem
commit 7edc3945bd upstream.

This reverts commit 46bbe5c671.

As commit 46bbe5c671 ("tracing: fix double free") said, the
"double free" problem reported by clang static analyzer is:
  > In parse_var_defs() if there is a problem allocating
  > var_defs.expr, the earlier var_defs.name is freed.
  > This free is duplicated by free_var_defs() which frees
  > the rest of the list.

However, if there is a problem allocating N-th var_defs.expr:
  + in parse_var_defs(), the freed 'earlier var_defs.name' is
    actually the N-th var_defs.name;
  + then in free_var_defs(), the names from 0th to (N-1)-th are freed;

                        IF ALLOCATING PROBLEM HAPPENED HERE!!! -+
                                                                 \
                                                                  |
          0th           1th                 (N-1)-th      N-th    V
          +-------------+-------------+-----+-------------+-----------
var_defs: | name | expr | name | expr | ... | name | expr | name | ///
          +-------------+-------------+-----+-------------+-----------

These two frees don't act on same name, so there was no "double free"
problem before. Conversely, after that commit, we get a "memory leak"
problem because the above "N-th var_defs.name" is not freed.

If enable CONFIG_DEBUG_KMEMLEAK and inject a fault at where the N-th
var_defs.expr allocated, then execute on shell like:
  $ echo 'hist:key=call_site:val=$v1,$v2:v1=bytes_req,v2=bytes_alloc' > \
/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

Then kmemleak reports:
  unreferenced object 0xffff8fb100ef3518 (size 8):
    comm "bash", pid 196, jiffies 4295681690 (age 28.538s)
    hex dump (first 8 bytes):
      76 31 00 00 b1 8f ff ff                          v1......
    backtrace:
      [<0000000038fe4895>] kstrdup+0x2d/0x60
      [<00000000c99c049a>] event_hist_trigger_parse+0x206f/0x20e0
      [<00000000ae70d2cc>] trigger_process_regex+0xc0/0x110
      [<0000000066737a4c>] event_trigger_write+0x75/0xd0
      [<000000007341e40c>] vfs_write+0xbb/0x2a0
      [<0000000087fde4c2>] ksys_write+0x59/0xd0
      [<00000000581e9cdf>] do_syscall_64+0x3a/0x80
      [<00000000cf3b065c>] entry_SYSCALL_64_after_hwframe+0x46/0xb0

Link: https://lkml.kernel.org/r/20220711014731.69520-1-zhengyejian1@huawei.com

Cc: stable@vger.kernel.org
Fixes: 46bbe5c671 ("tracing: fix double free")
Reported-by: Hulk Robot <hulkci@huawei.com>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-21 21:24:11 +02:00
Oleg Nesterov
b856e5738b fix race between exit_itimers() and /proc/pid/timers
commit d5b36a4dbd upstream.

As Chris explains, the comment above exit_itimers() is not correct,
we can race with proc_timers_seq_ops. Change exit_itimers() to clear
signal->posix_timers with ->siglock held.

Cc: <stable@vger.kernel.org>
Reported-by: chris@accessvector.net
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-21 21:24:11 +02:00
Alexey Dobriyan
09cb666361 module: fix [e_shstrndx].sh_size=0 OOB access
[ Upstream commit 391e982bfa ]

It is trivial to craft a module to trigger OOB access in this line:

	if (info->secstrings[strhdr->sh_size - 1] != '\0') {

BUG: unable to handle page fault for address: ffffc90000aa0fff
PGD 100000067 P4D 100000067 PUD 100066067 PMD 10436f067 PTE 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 7 PID: 1215 Comm: insmod Not tainted 5.18.0-rc5-00007-g9bf578647087-dirty #10
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-4.fc34 04/01/2014
RIP: 0010:load_module+0x19b/0x2391

Fixes: ec2a29593c ("module: harden ELF info handling")
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
[rebased patch onto modules-next]
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-12 16:35:09 +02:00
Shuah Khan
e9f331bb5d module: change to print useful messages from elf_validity_check()
[ Upstream commit 7fd982f394 ]

elf_validity_check() checks ELF headers for errors and ELF Spec.
compliance and if any of them fail it returns -ENOEXEC from all of
these error paths. Almost all of them don't print any messages.

When elf_validity_check() returns an error, load_module() prints an
error message without error code. It is hard to determine why the
module ELF structure is invalid, even if load_module() prints the
error code which is -ENOEXEC in all of these cases.

Change to print useful error messages from elf_validity_check() to
clearly say what went wrong and why the ELF validity checks failed.

Remove the load_module() error message which is no longer needed.
This patch includes changes to fix build warns on 32-bit platforms:

warning: format '%llu' expects argument of type 'long long unsigned int',
but argument 3 has type 'Elf32_Off' {aka 'unsigned int'}
Reported-by: kernel test robot <lkp@intel.com>

Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-12 16:35:08 +02:00
Martin KaFai Lau
d53c8fe9ee bpf: Stop caching subprog index in the bpf_pseudo_func insn
commit 3990ed4c42 upstream.

This patch is to fix an out-of-bound access issue when jit-ing the
bpf_pseudo_func insn (i.e. ld_imm64 with src_reg == BPF_PSEUDO_FUNC)

In jit_subprog(), it currently reuses the subprog index cached in
insn[1].imm.  This subprog index is an index into a few array related
to subprogs.  For example, in jit_subprog(), it is an index to the newly
allocated 'struct bpf_prog **func' array.

The subprog index was cached in insn[1].imm after add_subprog().  However,
this could become outdated (and too big in this case) if some subprogs
are completely removed during dead code elimination (in
adjust_subprog_starts_after_remove).  The cached index in insn[1].imm
is not updated accordingly and causing out-of-bound issue in the later
jit_subprog().

Unlike bpf_pseudo_'func' insn, the current bpf_pseudo_'call' insn
is handling the DCE properly by calling find_subprog(insn->imm) to
figure out the index instead of caching the subprog index.
The existing bpf_adj_branches() will adjust the insn->imm
whenever insn is added or removed.

Instead of having two ways handling subprog index,
this patch is to make bpf_pseudo_func works more like
bpf_pseudo_call.

First change is to stop caching the subprog index result
in insn[1].imm after add_subprog().  The verification
process will use find_subprog(insn->imm) to figure
out the subprog index.

Second change is in bpf_adj_branches() and have it to
adjust the insn->imm for the bpf_pseudo_func insn also
whenever insn is added or removed.

Third change is in jit_subprog().  Like the bpf_pseudo_call handling,
bpf_pseudo_func temporarily stores the find_subprog() result
in insn->off.  It is fine because the prog's insn has been finalized
at this point.  insn->off will be reset back to 0 later to avoid
confusing the userspace prog dump tool.

Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211106014014.651018-1-kafai@fb.com
Cc: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-12 16:34:54 +02:00
Daniel Borkmann
a7de8d436d bpf: Fix insufficient bounds propagation from adjust_scalar_min_max_vals
commit 3844d153a4 upstream.

Kuee reported a corner case where the tnum becomes constant after the call
to __reg_bound_offset(), but the register's bounds are not, that is, its
min bounds are still not equal to the register's max bounds.

This in turn allows to leak pointers through turning a pointer register as
is into an unknown scalar via adjust_ptr_min_max_vals().

Before:

  func#0 @0
  0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
  0: (b7) r0 = 1                        ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
  1: (b7) r3 = 0                        ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
  2: (87) r3 = -r3                      ; R3_w=scalar()
  3: (87) r3 = -r3                      ; R3_w=scalar()
  4: (47) r3 |= 32767                   ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
  5: (75) if r3 s>= 0x0 goto pc+1       ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
  6: (95) exit

  from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
  7: (d5) if r3 s<= 0x8000 goto pc+1    ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
  8: (95) exit

  from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
  9: (07) r3 += -32767                  ; R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0))  <--- [*]
  10: (95) exit

What can be seen here is that R3=scalar(umin=32767,umax=32768,var_off=(0x7fff;
0x8000)) after the operation R3 += -32767 results in a 'malformed' constant, that
is, R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)). Intersecting with var_off has
not been done at that point via __update_reg_bounds(), which would have improved
the umax to be equal to umin.

Refactor the tnum <> min/max bounds information flow into a reg_bounds_sync()
helper and use it consistently everywhere. After the fix, bounds have been
corrected to R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) and thus the register
is regarded as a 'proper' constant scalar of 0.

After:

  func#0 @0
  0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
  0: (b7) r0 = 1                        ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
  1: (b7) r3 = 0                        ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
  2: (87) r3 = -r3                      ; R3_w=scalar()
  3: (87) r3 = -r3                      ; R3_w=scalar()
  4: (47) r3 |= 32767                   ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
  5: (75) if r3 s>= 0x0 goto pc+1       ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
  6: (95) exit

  from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
  7: (d5) if r3 s<= 0x8000 goto pc+1    ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
  8: (95) exit

  from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
  9: (07) r3 += -32767                  ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))  <--- [*]
  10: (95) exit

Fixes: b03c9f9fdc ("bpf/verifier: track signed and unsigned min/max values")
Reported-by: Kuee K1r0a <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20220701124727.11153-2-daniel@iogearbox.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-12 16:34:49 +02:00
Daniel Borkmann
a703cbdd79 bpf: Fix incorrect verifier simulation around jmp32's jeq/jne
commit a12ca6277e upstream.

Kuee reported a quirk in the jmp32's jeq/jne simulation, namely that the
register value does not match expectations for the fall-through path. For
example:

Before fix:

  0: R1=ctx(off=0,imm=0) R10=fp0
  0: (b7) r2 = 0                        ; R2_w=P0
  1: (b7) r6 = 563                      ; R6_w=P563
  2: (87) r2 = -r2                      ; R2_w=Pscalar()
  3: (87) r2 = -r2                      ; R2_w=Pscalar()
  4: (4c) w2 |= w6                      ; R2_w=Pscalar(umin=563,umax=4294967295,var_off=(0x233; 0xfffffdcc),s32_min=-2147483085) R6_w=P563
  5: (56) if w2 != 0x8 goto pc+1        ; R2_w=P571  <--- [*]
  6: (95) exit
  R0 !read_ok

After fix:

  0: R1=ctx(off=0,imm=0) R10=fp0
  0: (b7) r2 = 0                        ; R2_w=P0
  1: (b7) r6 = 563                      ; R6_w=P563
  2: (87) r2 = -r2                      ; R2_w=Pscalar()
  3: (87) r2 = -r2                      ; R2_w=Pscalar()
  4: (4c) w2 |= w6                      ; R2_w=Pscalar(umin=563,umax=4294967295,var_off=(0x233; 0xfffffdcc),s32_min=-2147483085) R6_w=P563
  5: (56) if w2 != 0x8 goto pc+1        ; R2_w=P8  <--- [*]
  6: (95) exit
  R0 !read_ok

As can be seen on line 5 for the branch fall-through path in R2 [*] is that
given condition w2 != 0x8 is false, verifier should conclude that r2 = 8 as
upper 32 bit are known to be zero. However, verifier incorrectly concludes
that r2 = 571 which is far off.

The problem is it only marks false{true}_reg as known in the switch for JE/NE
case, but at the end of the function, it uses {false,true}_{64,32}off to
update {false,true}_reg->var_off and they still hold the prior value of
{false,true}_reg->var_off before it got marked as known. The subsequent
__reg_combine_32_into_64() then propagates this old var_off and derives new
bounds. The information between min/max bounds on {false,true}_reg from
setting the register to known const combined with the {false,true}_reg->var_off
based on the old information then derives wrong register data.

Fix it by detangling the BPF_JEQ/BPF_JNE cases and updating relevant
{false,true}_{64,32}off tnums along with the register marking to known
constant.

Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Kuee K1r0a <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20220701124727.11153-1-daniel@iogearbox.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-12 16:34:49 +02:00
Masahiro Yamada
f4a80ec8c5 tick/nohz: unexport __init-annotated tick_nohz_full_setup()
commit 2390095113 upstream.

EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.

modpost used to detect it, but it had been broken for a decade.

Commit 28438794ab ("modpost: fix section mismatch check for exported
init/exit sections") fixed it so modpost started to warn it again, then
this showed up:

    MODPOST vmlinux.symvers
  WARNING: modpost: vmlinux.o(___ksymtab_gpl+tick_nohz_full_setup+0x0): Section mismatch in reference from the variable __ksymtab_tick_nohz_full_setup to the function .init.text:tick_nohz_full_setup()
  The symbol tick_nohz_full_setup is exported and annotated __init
  Fix this by removing the __init annotation of tick_nohz_full_setup or drop the export.

Drop the export because tick_nohz_full_setup() is only called from the
built-in code in kernel/sched/isolation.c.

Fixes: ae9e557b5b ("time: Export tick start/stop functions for rcutorture")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Backlund <tmb@tmb.nu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-02 16:41:12 +02:00
Dexuan Cui
cced9ce619 dma-direct: use the correct size for dma_set_encrypted()
commit 3be4562584 upstream.

The third parameter of dma_set_encrypted() is a size in bytes rather than
the number of pages.

Fixes: 4d0564785b ("dma-direct: factor out dma_set_{de,en}crypted helpers")
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-29 09:03:31 +02:00
Masami Hiramatsu (Google)
bae4d6a2dd tracing/kprobes: Check whether get_kretprobe() returns NULL in kretprobe_dispatcher()
commit cc72b72073 upstream.

There is a small chance that get_kretprobe(ri) returns NULL in
kretprobe_dispatcher() when another CPU unregisters the kretprobe
right after __kretprobe_trampoline_handler().

To avoid this issue, kretprobe_dispatcher() checks the get_kretprobe()
return value again. And if it is NULL, it returns soon because that
kretprobe is under unregistering process.

This issue has been introduced when the kretprobe is decoupled
from the struct kretprobe_instance by commit d741bf41d7
("kprobes: Remove kretprobe hash"). Before that commit, the
struct kretprob_instance::rp directly points the kretprobe
and it is never be NULL.

Link: https://lkml.kernel.org/r/165366693881.797669.16926184644089588731.stgit@devnote2

Reported-by: Yonghong Song <yhs@fb.com>
Fixes: d741bf41d7 ("kprobes: Remove kretprobe hash")
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: bpf <bpf@vger.kernel.org>
Cc: Kernel Team <kernel-team@fb.com>
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-29 09:03:20 +02:00
Toke Høiland-Jørgensen
5c0ab17c53 bpf: Fix calling global functions from BPF_PROG_TYPE_EXT programs
commit f858c2b2ca upstream.

The verifier allows programs to call global functions as long as their
argument types match, using BTF to check the function arguments. One of the
allowed argument types to such global functions is PTR_TO_CTX; however the
check for this fails on BPF_PROG_TYPE_EXT functions because the verifier
uses the wrong type to fetch the vmlinux BTF ID for the program context
type. This failure is seen when an XDP program is loaded using
libxdp (which loads it as BPF_PROG_TYPE_EXT and attaches it to a global XDP
type program).

Fix the issue by passing in the target program type instead of the
BPF_PROG_TYPE_EXT type to bpf_prog_get_ctx() when checking function
argument compatibility.

The first Fixes tag refers to the latest commit that touched the code in
question, while the second one points to the code that first introduced
the global function call verification.

v2:
- Use resolve_prog_type()

Fixes: 3363bd0cfb ("bpf: Extend kfunc with PTR_TO_CTX, PTR_TO_MEM argument support")
Fixes: 51c39bb1d5 ("bpf: Introduce function-by-function verification")
Reported-by: Simon Sundberg <simon.sundberg@kau.se>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20220606075253.28422-1-toke@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
[ backport: open-code missing resolve_prog_type() helper, resolve context diff ]
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-25 15:18:40 +02:00
Sami Tolvanen
75f3a5fa2a cfi: Fix __cfi_slowpath_diag RCU usage with cpuidle
commit 57cd6d157e upstream.

RCU_NONIDLE usage during __cfi_slowpath_diag can result in an invalid
RCU state in the cpuidle code path:

  WARNING: CPU: 1 PID: 0 at kernel/rcu/tree.c:613 rcu_eqs_enter+0xe4/0x138
  ...
  Call trace:
    rcu_eqs_enter+0xe4/0x138
    rcu_idle_enter+0xa8/0x100
    cpuidle_enter_state+0x154/0x3a8
    cpuidle_enter+0x3c/0x58
    do_idle.llvm.6590768638138871020+0x1f4/0x2ec
    cpu_startup_entry+0x28/0x2c
    secondary_start_kernel+0x1b8/0x220
    __secondary_switched+0x94/0x98

Instead, call rcu_irq_enter/exit to wake up RCU only when needed and
disable interrupts for the entire CFI shadow/module check when we do.

Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20220531175910.890307-1-samitolvanen@google.com
Fixes: cf68fffb66 ("add support for Clang CFI")
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-22 14:22:04 +02:00
Peter Zijlstra
668a1f5e75 sched: Fix balance_push() vs __sched_setscheduler()
[ Upstream commit 04193d590b ]

The purpose of balance_push() is to act as a filter on task selection
in the case of CPU hotplug, specifically when taking the CPU out.

It does this by (ab)using the balance callback infrastructure, with
the express purpose of keeping all the unlikely/odd cases in a single
place.

In order to serve its purpose, the balance_push_callback needs to be
(exclusively) on the callback list at all times (noting that the
callback always places itself back on the list the moment it runs,
also noting that when the CPU goes down, regular balancing concerns
are moot, so ignoring them is fine).

And here-in lies the problem, __sched_setscheduler()'s use of
splice_balance_callbacks() takes the callbacks off the list across a
lock-break, making it possible for, an interleaving, __schedule() to
see an empty list and not get filtered.

Fixes: ae79270232 ("sched: Optimize finish_lock_switch()")
Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Link: https://lkml.kernel.org/r/20220519134706.GH2578@worktop.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-22 14:22:02 +02:00
Rob Clark
e4e166f10e dma-debug: make things less spammy under memory pressure
[ Upstream commit e19f8fa6ce ]

Limit the error msg to avoid flooding the console.  If you have a lot of
threads hitting this at once, they could have already gotten passed the
dma_debug_disabled() check before they get to the point of allocation
failure, resulting in quite a lot of this error message spamming the
log.  Use pr_err_once() to limit that.

Signed-off-by: Rob Clark <robdclark@chromium.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-22 14:21:55 +02:00
Mark-PK Tsai
6eb85cbd9e tracing: Avoid adding tracer option before update_tracer_options
[ Upstream commit ef9188bcc6 ]

To prepare for support asynchronous tracer_init_tracefs initcall,
avoid calling create_trace_option_files before __update_tracer_options.
Otherwise, create_trace_option_files will show warning because
some tracers in trace_types list are already in tr->topts.

For example, hwlat_tracer call register_tracer in late_initcall,
and global_trace.dir is already created in tracing_init_dentry,
hwlat_tracer will be put into tr->topts.
Then if the __update_tracer_options is executed after hwlat_tracer
registered, create_trace_option_files find that hwlat_tracer is
already in tr->topts.

Link: https://lkml.kernel.org/r/20220426122407.17042-2-mark-pk.tsai@mediatek.com

Link: https://lore.kernel.org/lkml/20220322133339.GA32582@xsang-OptiPlex-9020/
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-14 18:36:14 +02:00
Jun Miao
9b534640a2 tracing: Fix sleeping function called from invalid context on RT kernel
[ Upstream commit 12025abdc8 ]

When setting bootparams="trace_event=initcall:initcall_start tp_printk=1" in the
cmdline, the output_printk() was called, and the spin_lock_irqsave() was called in the
atomic and irq disable interrupt context suitation. On the PREEMPT_RT kernel,
these locks are replaced with sleepable rt-spinlock, so the stack calltrace will
be triggered.
Fix it by raw_spin_lock_irqsave when PREEMPT_RT and "trace_event=initcall:initcall_start
tp_printk=1" enabled.

 BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
 preempt_count: 2, expected: 0
 RCU nest depth: 0, expected: 0
 Preemption disabled at:
 [<ffffffff8992303e>] try_to_wake_up+0x7e/0xba0
 CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.17.1-rt17+ #19 34c5812404187a875f32bee7977f7367f9679ea7
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
 Call Trace:
  <TASK>
  dump_stack_lvl+0x60/0x8c
  dump_stack+0x10/0x12
  __might_resched.cold+0x11d/0x155
  rt_spin_lock+0x40/0x70
  trace_event_buffer_commit+0x2fa/0x4c0
  ? map_vsyscall+0x93/0x93
  trace_event_raw_event_initcall_start+0xbe/0x110
  ? perf_trace_initcall_finish+0x210/0x210
  ? probe_sched_wakeup+0x34/0x40
  ? ttwu_do_wakeup+0xda/0x310
  ? trace_hardirqs_on+0x35/0x170
  ? map_vsyscall+0x93/0x93
  do_one_initcall+0x217/0x3c0
  ? trace_event_raw_event_initcall_level+0x170/0x170
  ? push_cpu_stop+0x400/0x400
  ? cblist_init_generic+0x241/0x290
  kernel_init_freeable+0x1ac/0x347
  ? _raw_spin_unlock_irq+0x65/0x80
  ? rest_init+0xf0/0xf0
  kernel_init+0x1e/0x150
  ret_from_fork+0x22/0x30
  </TASK>

Link: https://lkml.kernel.org/r/20220419013910.894370-1-jun.miao@intel.com

Signed-off-by: Jun Miao <jun.miao@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-14 18:36:14 +02:00
Jeff Xie
c1c62c5fa9 tracing: Make tp_printk work on syscall tracepoints
[ Upstream commit cb1c45fb68 ]

Currently the tp_printk option has no effect on syscall tracepoint.
When adding the kernel option parameter tp_printk, then:

echo 1 > /sys/kernel/debug/tracing/events/syscalls/enable

When running any application, no trace information is printed on the
terminal.

Now added printk for syscall tracepoints.

Link: https://lkml.kernel.org/r/20220410145025.681144-1-xiehuan09@gmail.com

Signed-off-by: Jeff Xie <xiehuan09@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-14 18:36:14 +02:00
Menglong Dong
f95e24bf19 bpf: Fix probe read error in ___bpf_prog_run()
[ Upstream commit caff1fa411 ]

I think there is something wrong with BPF_PROBE_MEM in ___bpf_prog_run()
in big-endian machine. Let's make a test and see what will happen if we
want to load a 'u16' with BPF_PROBE_MEM.

Let's make the src value '0x0001', the value of dest register will become
0x0001000000000000, as the value will be loaded to the first 2 byte of
DST with following code:

  bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));

Obviously, the value in DST is not correct. In fact, we can compare
BPF_PROBE_MEM with LDX_MEM_H:

  DST = *(SIZE *)(unsigned long) (SRC + insn->off);

If the memory load is done by LDX_MEM_H, the value in DST will be 0x1 now.

And I think this error results in the test case 'test_bpf_sk_storage_map'
failing:

  test_bpf_sk_storage_map:PASS:bpf_iter_bpf_sk_storage_map__open_and_load 0 nsec
  test_bpf_sk_storage_map:PASS:socket 0 nsec
  test_bpf_sk_storage_map:PASS:map_update 0 nsec
  test_bpf_sk_storage_map:PASS:socket 0 nsec
  test_bpf_sk_storage_map:PASS:map_update 0 nsec
  test_bpf_sk_storage_map:PASS:socket 0 nsec
  test_bpf_sk_storage_map:PASS:map_update 0 nsec
  test_bpf_sk_storage_map:PASS:attach_iter 0 nsec
  test_bpf_sk_storage_map:PASS:create_iter 0 nsec
  test_bpf_sk_storage_map:PASS:read 0 nsec
  test_bpf_sk_storage_map:FAIL:ipv6_sk_count got 0 expected 3
  $10/26 bpf_iter/bpf_sk_storage_map:FAIL

The code of the test case is simply, it will load sk->sk_family to the
register with BPF_PROBE_MEM and check if it is AF_INET6. With this patch,
now the test case 'bpf_iter' can pass:

  $10  bpf_iter:OK

Fixes: 2a02759ef5 ("bpf: Add support for BTF pointers to interpreter")
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jiang Biao <benbjiang@tencent.com>
Reviewed-by: Hao Peng <flyingpeng@tencent.com>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/bpf/20220524021228.533216-1-imagedong@tencent.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-14 18:36:11 +02:00
Song Liu
cae2978d69 ftrace: Clean up hash direct_functions on register failures
commit 7d54c15cb8 upstream.

We see the following GPF when register_ftrace_direct fails:

[ ] general protection fault, probably for non-canonical address \
  0x200000000000010: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[...]
[ ] RIP: 0010:ftrace_find_rec_direct+0x53/0x70
[ ] Code: 48 c1 e0 03 48 03 42 08 48 8b 10 31 c0 48 85 d2 74 [...]
[ ] RSP: 0018:ffffc9000138bc10 EFLAGS: 00010206
[ ] RAX: 0000000000000000 RBX: ffffffff813e0df0 RCX: 000000000000003b
[ ] RDX: 0200000000000000 RSI: 000000000000000c RDI: ffffffff813e0df0
[ ] RBP: ffffffffa00a3000 R08: ffffffff81180ce0 R09: 0000000000000001
[ ] R10: ffffc9000138bc18 R11: 0000000000000001 R12: ffffffff813e0df0
[ ] R13: ffffffff813e0df0 R14: ffff888171b56400 R15: 0000000000000000
[ ] FS:  00007fa9420c7780(0000) GS:ffff888ff6a00000(0000) knlGS:000000000
[ ] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ ] CR2: 000000000770d000 CR3: 0000000107d50003 CR4: 0000000000370ee0
[ ] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ ] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ ] Call Trace:
[ ]  <TASK>
[ ]  register_ftrace_direct+0x54/0x290
[ ]  ? render_sigset_t+0xa0/0xa0
[ ]  bpf_trampoline_update+0x3f5/0x4a0
[ ]  ? 0xffffffffa00a3000
[ ]  bpf_trampoline_link_prog+0xa9/0x140
[ ]  bpf_tracing_prog_attach+0x1dc/0x450
[ ]  bpf_raw_tracepoint_open+0x9a/0x1e0
[ ]  ? find_held_lock+0x2d/0x90
[ ]  ? lock_release+0x150/0x430
[ ]  __sys_bpf+0xbd6/0x2700
[ ]  ? lock_is_held_type+0xd8/0x130
[ ]  __x64_sys_bpf+0x1c/0x20
[ ]  do_syscall_64+0x3a/0x80
[ ]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[ ] RIP: 0033:0x7fa9421defa9
[ ] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 9 f8 [...]
[ ] RSP: 002b:00007ffed743bd78 EFLAGS: 00000246 ORIG_RAX: 0000000000000141
[ ] RAX: ffffffffffffffda RBX: 00000000069d2480 RCX: 00007fa9421defa9
[ ] RDX: 0000000000000078 RSI: 00007ffed743bd80 RDI: 0000000000000011
[ ] RBP: 00007ffed743be00 R08: 0000000000bb7270 R09: 0000000000000000
[ ] R10: 00000000069da210 R11: 0000000000000246 R12: 0000000000000001
[ ] R13: 00007ffed743c4b0 R14: 00000000069d2480 R15: 0000000000000001
[ ]  </TASK>
[ ] Modules linked in: klp_vm(OK)
[ ] ---[ end trace 0000000000000000 ]---

One way to trigger this is:
  1. load a livepatch that patches kernel function xxx;
  2. run bpftrace -e 'kfunc:xxx {}', this will fail (expected for now);
  3. repeat #2 => gpf.

This is because the entry is added to direct_functions, but not removed.
Fix this by remove the entry from direct_functions when
register_ftrace_direct fails.

Also remove the last trailing space from ftrace.c, so we don't have to
worry about it anymore.

Link: https://lkml.kernel.org/r/20220524170839.900849-1-song@kernel.org

Cc: stable@vger.kernel.org
Fixes: 763e34e74b ("ftrace: Add register_ftrace_direct()")
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09 10:23:27 +02:00
Naveen N. Rao
53b858c807 kexec_file: drop weak attribute from arch_kexec_apply_relocations[_add]
commit 3e35142ef9 upstream.

Since commit d1bcae833b32f1 ("ELF: Don't generate unused section
symbols") [1], binutils (v2.36+) started dropping section symbols that
it thought were unused.  This isn't an issue in general, but with
kexec_file.c, gcc is placing kexec_arch_apply_relocations[_add] into a
separate .text.unlikely section and the section symbol ".text.unlikely"
is being dropped. Due to this, recordmcount is unable to find a non-weak
symbol in .text.unlikely to generate a relocation record against.

Address this by dropping the weak attribute from these functions.
Instead, follow the existing pattern of having architectures #define the
name of the function they want to override in their headers.

[1] https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=d1bcae833b32f1

[akpm@linux-foundation.org: arch/s390/include/asm/kexec.h needs linux/module.h]
Link: https://lkml.kernel.org/r/20220519091237.676736-1-naveen.n.rao@linux.vnet.ibm.com
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09 10:23:27 +02:00
Gautam Menghani
4ef5ab5344 tracing: Initialize integer variable to prevent garbage return value
commit 154827f8e5 upstream.

Initialize the integer variable to 0 to fix the clang scan warning:
Undefined or garbage value returned to caller
[core.uninitialized.UndefReturn]
        return ret;

Link: https://lkml.kernel.org/r/20220522061826.1751-1-gautammenghani201@gmail.com

Cc: stable@vger.kernel.org
Fixes: 8993665abc ("tracing/boot: Support multiple handlers for per-event histogram")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Gautam Menghani <gautammenghani201@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09 10:23:21 +02:00
Keita Suzuki
37443b3508 tracing: Fix potential double free in create_var_ref()
commit 99696a2592 upstream.

In create_var_ref(), init_var_ref() is called to initialize the fields
of variable ref_field, which is allocated in the previous function call
to create_hist_field(). Function init_var_ref() allocates the
corresponding fields such as ref_field->system, but frees these fields
when the function encounters an error. The caller later calls
destroy_hist_field() to conduct error handling, which frees the fields
and the variable itself. This results in double free of the fields which
are already freed in the previous function.

Fix this by storing NULL to the corresponding fields when they are freed
in init_var_ref().

Link: https://lkml.kernel.org/r/20220425063739.3859998-1-keitasuzuki.park@sslab.ics.keio.ac.jp

Fixes: 067fe038e7 ("tracing: Add variable reference handling to hist triggers")
CC: stable@vger.kernel.org
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Keita Suzuki <keitasuzuki.park@sslab.ics.keio.ac.jp>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09 10:23:20 +02:00
Robin Murphy
a48a7f8949 dma-direct: don't over-decrypt memory
[ Upstream commit 4a37f3dd9a ]

The original x86 sev_alloc() only called set_memory_decrypted() on
memory returned by alloc_pages_node(), so the page order calculation
fell out of that logic. However, the common dma-direct code has several
potential allocators, not all of which are guaranteed to round up the
underlying allocation to a power-of-two size, so carrying over that
calculation for the encryption/decryption size was a mistake. Fix it by
rounding to a *number* of pages, rather than an order.

Until recently there was an even worse interaction with DMA_DIRECT_REMAP
where we could have ended up decrypting part of the next adjacent
vmalloc area, only averted by no architecture actually supporting both
configs at once. Don't ask how I found that one out...

Fixes: c10f07aa27 ("dma/direct: Handle force decryption for DMA coherent buffers in common code")
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:23:03 +02:00
Christoph Hellwig
5beb74d11e dma-direct: always leak memory that can't be re-encrypted
[ Upstream commit a90cf30437 ]

We must never let unencrypted memory go back into the general page pool.
So if we fail to set it back to encrypted when freeing DMA memory, leak
the memory instead and warn the user.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:23:03 +02:00
Christoph Hellwig
9ba801c80c dma-direct: don't call dma_set_decrypted for remapped allocations
[ Upstream commit 5570449b68 ]

Remapped allocations handle the encrypted bit through the pgprot passed
to vmap, so there is no call dma_set_decrypted.  Note that this case is
currently entirely theoretical as no valid kernel configuration supports
remapped allocations and memory encryption currently.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:23:03 +02:00
Christoph Hellwig
82b3f045af dma-direct: factor out dma_set_{de,en}crypted helpers
[ Upstream commit 4d0564785b ]

Factor out helpers the make dealing with memory encryption a little less
cumbersome.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:23:03 +02:00
Christoph Hellwig
6635e6ba16 dma-direct: don't fail on highmem CMA pages in dma_direct_alloc_pages
[ Upstream commit 92826e9675 ]

When dma_direct_alloc_pages encounters a highmem page it just gives up
currently.  But what we really should do is to try memory using the
page allocator instead - without this platforms with a global highmem
CMA pool will fail all dma_alloc_pages allocations.

Fixes: efa70f2fdc ("dma-mapping: add a new dma_alloc_pages API")
Reported-by: Mark O'Neill <mao@tumblingdice.co.uk>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:56 +02:00
Christoph Hellwig
639518f8e0 dma-direct: factor out a helper for DMA_ATTR_NO_KERNEL_MAPPING allocations
[ Upstream commit d541ae55d5 ]

Split the code for DMA_ATTR_NO_KERNEL_MAPPING allocations into a separate
helper to make dma_direct_alloc a little more readable.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:56 +02:00
John Ogness
5c7957948c printk: wake waiters for safe and NMI contexts
[ Upstream commit 5341b93dea ]

When printk() is called from safe or NMI contexts, it will directly
store the record (vprintk_store()) and then defer the console output.
However, defer_console_output() only causes console printing and does
not wake any waiters of new records.

Wake waiters from defer_console_output() so that they also are aware
of the new records from safe and NMI contexts.

Fixes: 03fc7f9c99 ("printk/nmi: Prevent deadlock when accessing the main log buffer in NMI")
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220421212250.565456-6-john.ogness@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:49 +02:00
John Ogness
3b336d607b printk: add missing memory barrier to wake_up_klogd()
[ Upstream commit 1f5d783094 ]

It is important that any new records are visible to preparing
waiters before the waker checks if the wait queue is empty.
Otherwise it is possible that:

- there are new records available
- the waker sees an empty wait queue and does not wake
- the preparing waiter sees no new records and begins to wait

This is exactly the problem that the function description of
waitqueue_active() warns about.

Use wq_has_sleeper() instead of waitqueue_active() because it
includes the necessary full memory barrier.

Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220421212250.565456-4-john.ogness@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:48 +02:00
John Ogness
195cb7826a printk: use atomic updates for klogd work
[ Upstream commit 2ba3673d70 ]

The per-cpu @printk_pending variable can be updated from
sleepable contexts, such as:

  get_random_bytes()
    warn_unseeded_randomness()
      printk_deferred()
        defer_console_output()

and can be updated from interrupt contexts, such as:

  handle_irq_event_percpu()
    __irq_wake_thread()
      wake_up_process()
        try_to_wake_up()
          select_task_rq()
            select_fallback_rq()
              printk_deferred()
                defer_console_output()

and can be updated from NMI contexts, such as:

  vprintk()
    if (in_nmi()) defer_console_output()

Therefore the atomic variant of the updating functions must be used.

Replace __this_cpu_xchg() with this_cpu_xchg().
Replace __this_cpu_or() with this_cpu_or().

Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/87iltld4ue.fsf@jogness.linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:48 +02:00
Chengming Zhou
dc4d1f3b53 sched/psi: report zeroes for CPU full at the system level
[ Upstream commit 890d550d7d ]

Martin find it confusing when look at the /proc/pressure/cpu output,
and found no hint about that CPU "full" line in psi Documentation.

% cat /proc/pressure/cpu
some avg10=0.92 avg60=0.91 avg300=0.73 total=933490489
full avg10=0.22 avg60=0.23 avg300=0.16 total=358783277

The PSI_CPU_FULL state is introduced by commit e7fcd76228
("psi: Add PSI_CPU_FULL state"), which mainly for cgroup level,
but also counted at the system level as a side effect.

Naturally, the FULL state doesn't exist for the CPU resource at
the system level. These "full" numbers can come from CPU idle
schedule latency. For example, t1 is the time when task wakeup
on an idle CPU, t2 is the time when CPU pick and switch to it.
The delta of (t2 - t1) will be in CPU_FULL state.

Another case all processes can be stalled is when all cgroups
have been throttled at the same time, which unlikely to happen.

Anyway, CPU_FULL metric is meaningless and confusing at the
system level. So this patch will report zeroes for CPU full
at the system level, and update psi Documentation accordingly.

Fixes: e7fcd76228 ("psi: Add PSI_CPU_FULL state")
Reported-by: Martin Steigerwald <Martin.Steigerwald@proact.de>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20220408121914.82855-1-zhouchengming@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:48 +02:00
Chengming Zhou
36f416fdda sched/fair: Fix cfs_rq_clock_pelt() for throttled cfs_rq
[ Upstream commit 64eaf50731 ]

Since commit 2312729688 ("sched/fair: Update scale invariance of PELT")
change to use rq_clock_pelt() instead of rq_clock_task(), we should also
use rq_clock_pelt() for throttled_clock_task_time and throttled_clock_task
accounting to get correct cfs_rq_clock_pelt() of throttled cfs_rq. And
rename throttled_clock_task(_time) to be clock_pelt rather than clock_task.

Fixes: 2312729688 ("sched/fair: Update scale invariance of PELT")
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220408115309.81603-1-zhouchengming@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:48 +02:00
Marco Elver
60768ffced signal: Deliver SIGTRAP on perf event asynchronously if blocked
[ Upstream commit 78ed93d72d ]

With SIGTRAP on perf events, we have encountered termination of
processes due to user space attempting to block delivery of SIGTRAP.
Consider this case:

    <set up SIGTRAP on a perf event>
    ...
    sigset_t s;
    sigemptyset(&s);
    sigaddset(&s, SIGTRAP | <and others>);
    sigprocmask(SIG_BLOCK, &s, ...);
    ...
    <perf event triggers>

When the perf event triggers, while SIGTRAP is blocked, force_sig_perf()
will force the signal, but revert back to the default handler, thus
terminating the task.

This makes sense for error conditions, but not so much for explicitly
requested monitoring. However, the expectation is still that signals
generated by perf events are synchronous, which will no longer be the
case if the signal is blocked and delivered later.

To give user space the ability to clearly distinguish synchronous from
asynchronous signals, introduce siginfo_t::si_perf_flags and
TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is
required in future).

The resolution to the problem is then to (a) no longer force the signal
(avoiding the terminations), but (b) tell user space via si_perf_flags
if the signal was synchronous or not, so that such signals can be
handled differently (e.g. let user space decide to ignore or consider
the data imprecise).

The alternative of making the kernel ignore SIGTRAP on perf events if
the signal is blocked may work for some usecases, but likely causes
issues in others that then have to revert back to interception of
sigprocmask() (which we want to avoid). [ A concrete example: when using
breakpoint perf events to track data-flow, in a region of code where
signals are blocked, data-flow can no longer be tracked accurately.
When a relevant asynchronous signal is received after unblocking the
signal, the data-flow tracking logic needs to know its state is
imprecise. ]

Fixes: 97ba62b278 ("perf: Add support for SIGTRAP on perf events")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Link: https://lore.kernel.org/r/20220404111204.935357-1-elver@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:48 +02:00
Paul E. McKenney
79e852bf8f scftorture: Fix distribution of short handler delays
[ Upstream commit 8106bddbab ]

The scftorture test module's scf_handler() function is supposed to provide
three different distributions of short delays (including "no delay") and
one distribution of long delays, if specified by the scftorture.longwait
module parameter.  However, the second of the two non-zero-wait short delays
is disabled due to the first such delay's "goto out" not being enclosed in
the "then" clause with the "udelay()".

This commit therefore adjusts the code to provide the intended set of
delays.

Fixes: e9d338a0b1 ("scftorture: Add smp_call_function() torture test")
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:46 +02:00
Mikulas Patocka
e202dad519 dma-debug: change allocation mode from GFP_NOWAIT to GFP_ATIOMIC
[ Upstream commit 84bc4f1dbb ]

We observed the error "cacheline tracking ENOMEM, dma-debug disabled"
during a light system load (copying some files). The reason for this error
is that the dma_active_cacheline radix tree uses GFP_NOWAIT allocation -
so it can't access the emergency memory reserves and it fails as soon as
anybody reaches the watermark.

This patch changes GFP_NOWAIT to GFP_ATOMIC, so that it can access the
emergency memory reserves.

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:37 +02:00
Hao Jia
aeca695a19 sched/core: Avoid obvious double update_rq_clock warning
[ Upstream commit 2679a83731 ]

When we use raw_spin_rq_lock() to acquire the rq lock and have to
update the rq clock while holding the lock, the kernel may issue
a WARN_DOUBLE_CLOCK warning.

Since we directly use raw_spin_rq_lock() to acquire rq lock instead of
rq_lock(), there is no corresponding change to rq->clock_update_flags.
In particular, we have obtained the rq lock of other CPUs, the
rq->clock_update_flags of this CPU may be RQCF_UPDATED at this time, and
then calling update_rq_clock() will trigger the WARN_DOUBLE_CLOCK warning.

So we need to clear RQCF_UPDATED of rq->clock_update_flags to avoid
the WARN_DOUBLE_CLOCK warning.

For the sched_rt_period_timer() and migrate_task_rq_dl() cases
we simply replace raw_spin_rq_lock()/raw_spin_rq_unlock() with
rq_lock()/rq_unlock().

For the {pull,push}_{rt,dl}_task() cases, we add the
double_rq_clock_clear_update() function to clear RQCF_UPDATED of
rq->clock_update_flags, and call double_rq_clock_clear_update()
before double_lock_balance()/double_rq_lock() returns to avoid the
WARN_DOUBLE_CLOCK warning.

Some call trace reports:
Call Trace 1:
 <IRQ>
 sched_rt_period_timer+0x10f/0x3a0
 ? enqueue_top_rt_rq+0x110/0x110
 __hrtimer_run_queues+0x1a9/0x490
 hrtimer_interrupt+0x10b/0x240
 __sysvec_apic_timer_interrupt+0x8a/0x250
 sysvec_apic_timer_interrupt+0x9a/0xd0
 </IRQ>
 <TASK>
 asm_sysvec_apic_timer_interrupt+0x12/0x20

Call Trace 2:
 <TASK>
 activate_task+0x8b/0x110
 push_rt_task.part.108+0x241/0x2c0
 push_rt_tasks+0x15/0x30
 finish_task_switch+0xaa/0x2e0
 ? __switch_to+0x134/0x420
 __schedule+0x343/0x8e0
 ? hrtimer_start_range_ns+0x101/0x340
 schedule+0x4e/0xb0
 do_nanosleep+0x8e/0x160
 hrtimer_nanosleep+0x89/0x120
 ? hrtimer_init_sleeper+0x90/0x90
 __x64_sys_nanosleep+0x96/0xd0
 do_syscall_64+0x34/0x90
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Call Trace 3:
 <TASK>
 deactivate_task+0x93/0xe0
 pull_rt_task+0x33e/0x400
 balance_rt+0x7e/0x90
 __schedule+0x62f/0x8e0
 do_task_dead+0x3f/0x50
 do_exit+0x7b8/0xbb0
 do_group_exit+0x2d/0x90
 get_signal+0x9df/0x9e0
 ? preempt_count_add+0x56/0xa0
 ? __remove_hrtimer+0x35/0x70
 arch_do_signal_or_restart+0x36/0x720
 ? nanosleep_copyout+0x39/0x50
 ? do_nanosleep+0x131/0x160
 ? audit_filter_inodes+0xf5/0x120
 exit_to_user_mode_prepare+0x10f/0x1e0
 syscall_exit_to_user_mode+0x17/0x30
 do_syscall_64+0x40/0x90
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Call Trace 4:
 update_rq_clock+0x128/0x1a0
 migrate_task_rq_dl+0xec/0x310
 set_task_cpu+0x84/0x1e4
 try_to_wake_up+0x1d8/0x5c0
 wake_up_process+0x1c/0x30
 hrtimer_wakeup+0x24/0x3c
 __hrtimer_run_queues+0x114/0x270
 hrtimer_interrupt+0xe8/0x244
 arch_timer_handler_phys+0x30/0x50
 handle_percpu_devid_irq+0x88/0x140
 generic_handle_domain_irq+0x40/0x60
 gic_handle_irq+0x48/0xe0
 call_on_irq_stack+0x2c/0x60
 do_interrupt_handler+0x80/0x84

Steps to reproduce:
1. Enable CONFIG_SCHED_DEBUG when compiling the kernel
2. echo 1 > /sys/kernel/debug/clear_warn_once
   echo "WARN_DOUBLE_CLOCK" > /sys/kernel/debug/sched/features
   echo "NO_RT_PUSH_IPI" > /sys/kernel/debug/sched/features
3. Run some rt/dl tasks that periodically work and sleep, e.g.
Create 2*n rt or dl (90% running) tasks via rt-app (on a system
with n CPUs), and Dietmar Eggemann reports Call Trace 4 when running
on PREEMPT_RT kernel.

Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20220430085843.62939-2-jiahao.os@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:36 +02:00
Paul E. McKenney
2da36b14af rcu: Make TASKS_RUDE_RCU select IRQ_WORK
[ Upstream commit 46e861be58 ]

The TASKS_RUDE_RCU does not select IRQ_WORK, which can result in build
failures for kernels that do not otherwise select IRQ_WORK.  This commit
therefore causes the TASKS_RUDE_RCU Kconfig option to select IRQ_WORK.

Reported-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:32 +02:00
Padmanabha Srinivasaiah
ba722d061b rcu-tasks: Fix race in schedule and flush work
[ Upstream commit f75fd4b922 ]

While booting secondary CPUs, cpus_read_[lock/unlock] is not keeping
online cpumask stable. The transient online mask results in below
calltrace.

[    0.324121] CPU1: Booted secondary processor 0x0000000001 [0x410fd083]
[    0.346652] Detected PIPT I-cache on CPU2
[    0.347212] CPU2: Booted secondary processor 0x0000000002 [0x410fd083]
[    0.377255] Detected PIPT I-cache on CPU3
[    0.377823] CPU3: Booted secondary processor 0x0000000003 [0x410fd083]
[    0.379040] ------------[ cut here ]------------
[    0.383662] WARNING: CPU: 0 PID: 10 at kernel/workqueue.c:3084 __flush_work+0x12c/0x138
[    0.384850] Modules linked in:
[    0.385403] CPU: 0 PID: 10 Comm: rcu_tasks_rude_ Not tainted 5.17.0-rc3-v8+ #13
[    0.386473] Hardware name: Raspberry Pi 4 Model B Rev 1.4 (DT)
[    0.387289] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[    0.388308] pc : __flush_work+0x12c/0x138
[    0.388970] lr : __flush_work+0x80/0x138
[    0.389620] sp : ffffffc00aaf3c60
[    0.390139] x29: ffffffc00aaf3d20 x28: ffffffc009c16af0 x27: ffffff80f761df48
[    0.391316] x26: 0000000000000004 x25: 0000000000000003 x24: 0000000000000100
[    0.392493] x23: ffffffffffffffff x22: ffffffc009c16b10 x21: ffffffc009c16b28
[    0.393668] x20: ffffffc009e53861 x19: ffffff80f77fbf40 x18: 00000000d744fcc9
[    0.394842] x17: 000000000000000b x16: 00000000000001c2 x15: ffffffc009e57550
[    0.396016] x14: 0000000000000000 x13: ffffffffffffffff x12: 0000000100000000
[    0.397190] x11: 0000000000000462 x10: ffffff8040258008 x9 : 0000000100000000
[    0.398364] x8 : 0000000000000000 x7 : ffffffc0093c8bf4 x6 : 0000000000000000
[    0.399538] x5 : 0000000000000000 x4 : ffffffc00a976e40 x3 : ffffffc00810444c
[    0.400711] x2 : 0000000000000004 x1 : 0000000000000000 x0 : 0000000000000000
[    0.401886] Call trace:
[    0.402309]  __flush_work+0x12c/0x138
[    0.402941]  schedule_on_each_cpu+0x228/0x278
[    0.403693]  rcu_tasks_rude_wait_gp+0x130/0x144
[    0.404502]  rcu_tasks_kthread+0x220/0x254
[    0.405264]  kthread+0x174/0x1ac
[    0.405837]  ret_from_fork+0x10/0x20
[    0.406456] irq event stamp: 102
[    0.406966] hardirqs last  enabled at (101): [<ffffffc0093c8468>] _raw_spin_unlock_irq+0x78/0xb4
[    0.408304] hardirqs last disabled at (102): [<ffffffc0093b8270>] el1_dbg+0x24/0x5c
[    0.409410] softirqs last  enabled at (54): [<ffffffc0081b80c8>] local_bh_enable+0xc/0x2c
[    0.410645] softirqs last disabled at (50): [<ffffffc0081b809c>] local_bh_disable+0xc/0x2c
[    0.411890] ---[ end trace 0000000000000000 ]---
[    0.413000] smp: Brought up 1 node, 4 CPUs
[    0.413762] SMP: Total of 4 processors activated.
[    0.414566] CPU features: detected: 32-bit EL0 Support
[    0.415414] CPU features: detected: 32-bit EL1 Support
[    0.416278] CPU features: detected: CRC32 instructions
[    0.447021] Callback from call_rcu_tasks_rude() invoked.
[    0.506693] Callback from call_rcu_tasks() invoked.

This commit therefore fixes this issue by applying a single-CPU
optimization to the RCU Tasks Rude grace-period process.  The key point
here is that the purpose of this RCU flavor is to force a schedule on
each online CPU since some past event.  But the rcu_tasks_rude_wait_gp()
function runs in the context of the RCU Tasks Rude's grace-period kthread,
so there must already have been a context switch on the current CPU since
the call to either synchronize_rcu_tasks_rude() or call_rcu_tasks_rude().
So if there is only a single CPU online, RCU Tasks Rude's grace-period
kthread does not need to anything at all.

It turns out that the rcu_tasks_rude_wait_gp() function's call to
schedule_on_each_cpu() causes problems during early boot.  During that
time, there is only one online CPU, namely the boot CPU.  Therefore,
applying this single-CPU optimization fixes early-boot instances of
this problem.

Link: https://lore.kernel.org/lkml/20220210184319.25009-1-treasure4paddy@gmail.com/T/
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Padmanabha Srinivasaiah <treasure4paddy@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:32 +02:00
Eric W. Biederman
83d0ed00cc ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
commit 6a2d90ba02 upstream.

The current implementation of PTRACE_KILL is buggy and has been for
many years as it assumes it's target has stopped in ptrace_stop.  At a
quick skim it looks like this assumption has existed since ptrace
support was added in linux v1.0.

While PTRACE_KILL has been deprecated we can not remove it as
a quick search with google code search reveals many existing
programs calling it.

When the ptracee is not stopped at ptrace_stop some fields would be
set that are ignored except in ptrace_stop.  Making the userspace
visible behavior of PTRACE_KILL a noop in those case.

As the usual rules are not obeyed it is not clear what the
consequences are of calling PTRACE_KILL on a running process.
Presumably userspace does not do this as it achieves nothing.

Replace the implementation of PTRACE_KILL with a simple
send_sig_info(SIGKILL) followed by a return 0.  This changes the
observable user space behavior only in that PTRACE_KILL on a process
not stopped in ptrace_stop will also kill it.  As that has always
been the intent of the code this seems like a reasonable change.

Cc: stable@vger.kernel.org
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20220505182645.497868-7-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09 10:22:29 +02:00
Kumar Kartikeya Dwivedi
6099a6c8a7 bpf: Check PTR_TO_MEM | MEM_RDONLY in check_helper_mem_access
commit 97e6d7dab1 upstream.

The commit being fixed was aiming to disallow users from incorrectly
obtaining writable pointer to memory that is only meant to be read. This
is enforced now using a MEM_RDONLY flag.

For instance, in case of global percpu variables, when the BTF type is
not struct (e.g. bpf_prog_active), the verifier marks register type as
PTR_TO_MEM | MEM_RDONLY from bpf_this_cpu_ptr or bpf_per_cpu_ptr
helpers. However, when passing such pointer to kfunc, global funcs, or
BPF helpers, in check_helper_mem_access, there is no expectation
MEM_RDONLY flag will be set, hence it is checked as pointer to writable
memory. Later, verifier sets up argument type of global func as
PTR_TO_MEM | PTR_MAYBE_NULL, so user can use a global func to get around
the limitations imposed by this flag.

This check will also cover global non-percpu variables that may be
introduced in kernel BTF in future.

Also, we update the log message for PTR_TO_BUF case to be similar to
PTR_TO_MEM case, so that the reason for error is clear to user.

Fixes: 34d3a78c68 ("bpf: Make per_cpu_ptr return rdonly PTR_TO_MEM.")
Reviewed-by: Hao Luo <haoluo@google.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220319080827.73251-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-06 08:43:42 +02:00
Kumar Kartikeya Dwivedi
5d0bba8232 bpf: Reject writes for PTR_TO_MAP_KEY in check_helper_mem_access
commit 7b3552d3f9 upstream.

It is not permitted to write to PTR_TO_MAP_KEY, but the current code in
check_helper_mem_access would allow for it, reject this case as well, as
helpers taking ARG_PTR_TO_UNINIT_MEM also take PTR_TO_MAP_KEY.

Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220319080827.73251-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-06 08:43:42 +02:00
Yuntao Wang
51f6657e94 bpf: Fix excessive memory allocation in stack_map_alloc()
commit b45043192b upstream.

The 'n_buckets * (value_size + sizeof(struct stack_map_bucket))' part of the
allocated memory for 'smap' is never used after the memlock accounting was
removed, thus get rid of it.

[ Note, Daniel:

Commit b936ca643a ("bpf: rework memlock-based memory accounting for maps")
moved `cost += n_buckets * (value_size + sizeof(struct stack_map_bucket))`
up and therefore before the bpf_map_area_alloc() allocation, sigh. In a later
step commit c85d69135a ("bpf: move memory size checks to bpf_map_charge_init()"),
and the overflow checks of `cost >= U32_MAX - PAGE_SIZE` moved into
bpf_map_charge_init(). And then 370868107b ("bpf: Eliminate rlimit-based
memory accounting for stackmap maps") finally removed the bpf_map_charge_init().
Anyway, the original code did the allocation same way as /after/ this fix. ]

Fixes: b936ca643a ("bpf: rework memlock-based memory accounting for maps")
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220407130423.798386-1-ytcoode@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-06 08:43:42 +02:00
Yuntao Wang
e36452d5da bpf: Fix potential array overflow in bpf_trampoline_get_progs()
commit a2aa95b71c upstream.

The cnt value in the 'cnt >= BPF_MAX_TRAMP_PROGS' check does not
include BPF_TRAMP_MODIFY_RETURN bpf programs, so the number of
the attached BPF_TRAMP_MODIFY_RETURN bpf programs in a trampoline
can exceed BPF_MAX_TRAMP_PROGS.

When this happens, the assignment '*progs++ = aux->prog' in
bpf_trampoline_get_progs() will cause progs array overflow as the
progs field in the bpf_tramp_progs struct can only hold at most
BPF_MAX_TRAMP_PROGS bpf programs.

Fixes: 88fd9e5352 ("bpf: Refactor trampoline update code")
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Link: https://lore.kernel.org/r/20220430130803.210624-1-ytcoode@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-06 08:43:42 +02:00
Jason A. Donenfeld
82f182812f timekeeping: Add raw clock fallback for random_get_entropy()
commit 1366992e16 upstream.

The addition of random_get_entropy_fallback() provides access to
whichever time source has the highest frequency, which is useful for
gathering entropy on platforms without available cycle counters. It's
not necessarily as good as being able to quickly access a cycle counter
that the CPU has, but it's still something, even when it falls back to
being jiffies-based.

In the event that a given arch does not define get_cycles(), falling
back to the get_cycles() default implementation that returns 0 is really
not the best we can do. Instead, at least calling
random_get_entropy_fallback() would be preferable, because that always
needs to return _something_, even falling back to jiffies eventually.
It's not as though random_get_entropy_fallback() is super high precision
or guaranteed to be entropic, but basically anything that's not zero all
the time is better than returning zero all the time.

Finally, since random_get_entropy_fallback() is used during extremely
early boot when randomizing freelists in mm_init(), it can be called
before timekeeping has been initialized. In that case there really is
nothing we can do; jiffies hasn't even started ticking yet. So just give
up and return 0.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-30 09:29:13 +02:00
Jason A. Donenfeld
144c1e7ecf random: clear fast pool, crng, and batches in cpuhp bring up
commit 3191dd5a11 upstream.

For the irq randomness fast pool, rather than having to use expensive
atomics, which were visibly the most expensive thing in the entire irq
handler, simply take care of the extreme edge case of resetting count to
zero in the cpuhp online handler, just after workqueues have been
reenabled. This simplifies the code a bit and lets us use vanilla
variables rather than atomics, and performance should be improved.

As well, very early on when the CPU comes up, while interrupts are still
disabled, we clear out the per-cpu crng and its batches, so that it
always starts with fresh randomness.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-30 09:29:09 +02:00
Sebastian Andrzej Siewior
c5a7694fa8 random: remove unused irq_flags argument from add_interrupt_randomness()
commit 703f7066f4 upstream.

Since commit
   ee3e00e9e7 ("random: use registers from interrupted code for CPU's w/o a cycle counter")

the irq_flags argument is no longer used.

Remove unused irq_flags.

Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: linux-hyperv@vger.kernel.org
Cc: x86@kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Wei Liu <wei.liu@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-30 09:29:00 +02:00
Daniel Thompson
69c5d307dc lockdown: also lock down previous kgdb use
commit eadb2f47a3 upstream.

KGDB and KDB allow read and write access to kernel memory, and thus
should be restricted during lockdown.  An attacker with access to a
serial port (for example, via a hypervisor console, which some cloud
vendors provide over the network) could trigger the debugger so it is
important that the debugger respect the lockdown mode when/if it is
triggered.

Fix this by integrating lockdown into kdb's existing permissions
mechanism.  Unfortunately kgdb does not have any permissions mechanism
(although it certainly could be added later) so, for now, kgdb is simply
and brutally disabled by immediately exiting the gdb stub without taking
any action.

For lockdowns established early in the boot (e.g. the normal case) then
this should be fine but on systems where kgdb has set breakpoints before
the lockdown is enacted than "bad things" will happen.

CVE: CVE-2022-21499
Co-developed-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Signed-off-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-25 09:57:37 +02:00
Peter Zijlstra
e085354dde perf: Fix sys_perf_event_open() race against self
commit 3ac6487e58 upstream.

Norbert reported that it's possible to race sys_perf_event_open() such
that the looser ends up in another context from the group leader,
triggering many WARNs.

The move_group case checks for races against itself, but the
!move_group case doesn't, seemingly relying on the previous
group_leader->ctx == ctx check. However, that check is racy due to not
holding any locks at that time.

Therefore, re-check the result after acquiring locks and bailing
if they no longer match.

Additionally, clarify the not_move_group case from the
move_group-vs-move_group race.

Fixes: f63a8daa58 ("perf: Fix event->ctx locking")
Reported-by: Norbert Slusarek <nslusarek@gmx.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-25 09:57:27 +02:00
Waiman Long
8e1716993b cgroup/cpuset: Remove cpus_allowed/mems_allowed setup in cpuset_init_smp()
commit 2685027fca upstream.

There are 3 places where the cpu and node masks of the top cpuset can
be initialized in the order they are executed:
 1) start_kernel -> cpuset_init()
 2) start_kernel -> cgroup_init() -> cpuset_bind()
 3) kernel_init_freeable() -> do_basic_setup() -> cpuset_init_smp()

The first cpuset_init() call just sets all the bits in the masks.
The second cpuset_bind() call sets cpus_allowed and mems_allowed to the
default v2 values. The third cpuset_init_smp() call sets them back to
v1 values.

For systems with cgroup v2 setup, cpuset_bind() is called once.  As a
result, cpu and memory node hot add may fail to update the cpu and node
masks of the top cpuset to include the newly added cpu or node in a
cgroup v2 environment.

For systems with cgroup v1 setup, cpuset_bind() is called again by
rebind_subsystem() when the v1 cpuset filesystem is mounted as shown
in the dmesg log below with an instrumented kernel.

  [    2.609781] cpuset_bind() called - v2 = 1
  [    3.079473] cpuset_init_smp() called
  [    7.103710] cpuset_bind() called - v2 = 0

smp_init() is called after the first two init functions.  So we don't
have a complete list of active cpus and memory nodes until later in
cpuset_init_smp() which is the right time to set up effective_cpus
and effective_mems.

To fix this cgroup v2 mask setup problem, the potentially incorrect
cpus_allowed & mems_allowed setting in cpuset_init_smp() are removed.
For cgroup v2 systems, the initial cpuset_bind() call will set the masks
correctly.  For cgroup v1 systems, the second call to cpuset_bind()
will do the right setup.

cc: stable@vger.kernel.org
Signed-off-by: Waiman Long <longman@redhat.com>
Tested-by: Feng Tang <feng.tang@intel.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-18 10:26:56 +02:00
Frederic Weisbecker
0060c7bd9e rcu: Apply callbacks processing time limit only on softirq
commit a554ba2888 upstream.

Time limit only makes sense when callbacks are serviced in softirq mode
because:

_ In case we need to get back to the scheduler,
  cond_resched_tasks_rcu_qs() is called after each callback.

_ In case some other softirq vector needs the CPU, the call to
  local_bh_enable() before cond_resched_tasks_rcu_qs() takes care about
  them via a call to do_softirq().

Therefore, make sure the time limit only applies to softirq mode.

Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[UR: backport to 5.15-stable]
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-12 12:30:26 +02:00
Frederic Weisbecker
2c5029d652 rcu: Fix callbacks processing time limit retaining cond_resched()
commit 3e61e95e2d upstream.

The callbacks processing time limit makes sure we are not exceeding a
given amount of time executing the queue.

However its "continue" clause bypasses the cond_resched() call on
rcuc and NOCB kthreads, delaying it until we reach the limit, which can
be very long...

Make sure the scheduler has a higher priority than the time limit.

Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[UR: backport to 5.15-stable + commit update]
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-12 12:30:26 +02:00
Thomas Pfaff
61808e4089 genirq: Synchronize interrupt thread startup
commit 8707898e22 upstream.

A kernel hang can be observed when running setserial in a loop on a kernel
with force threaded interrupts. The sequence of events is:

   setserial
     open("/dev/ttyXXX")
       request_irq()
     do_stuff()
      -> serial interrupt
         -> wake(irq_thread)
	      desc->threads_active++;
     close()
       free_irq()
         kthread_stop(irq_thread)
     synchronize_irq() <- hangs because desc->threads_active != 0

The thread is created in request_irq() and woken up, but does not get on a
CPU to reach the actual thread function, which would handle the pending
wake-up. kthread_stop() sets the should stop condition which makes the
thread immediately exit, which in turn leaves the stale threads_active
count around.

This problem was introduced with commit 519cc8652b, which addressed a
interrupt sharing issue in the PCIe code.

Before that commit free_irq() invoked synchronize_irq(), which waits for
the hard interrupt handler and also for associated threads to complete.

To address the PCIe issue synchronize_irq() was replaced with
__synchronize_hardirq(), which only waits for the hard interrupt handler to
complete, but not for threaded handlers.

This was done under the assumption, that the interrupt thread already
reached the thread function and waits for a wake-up, which is guaranteed to
be handled before acting on the stop condition. The problematic case, that
the thread would not reach the thread function, was obviously overlooked.

Make sure that the interrupt thread is really started and reaches
thread_fn() before returning from __setup_irq().

This utilizes the existing wait queue in the interrupt descriptor. The
wait queue is unused for non-shared interrupts. For shared interrupts the
usage might cause a spurious wake-up of a waiter in synchronize_irq() or the
completion of a threaded handler might cause a spurious wake-up of the
waiter for the ready flag. Both are harmless and have no functional impact.

[ tglx: Amended changelog ]

Fixes: 519cc8652b ("genirq: Synchronize only with single thread on free_irq()")
Signed-off-by: Thomas Pfaff <tpfaff@pcs.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/552fe7b4-9224-b183-bb87-a8f36d335690@pcs.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-12 12:30:06 +02:00
Kurt Kanzenbach
07adb69545 timekeeping: Mark NMI safe time accessors as notrace
commit 2c33d775ef upstream.

Mark the CLOCK_MONOTONIC fast time accessors as notrace. These functions are
used in tracing to retrieve timestamps, so they should not recurse.

Fixes: 4498e7467e ("time: Parametrize all tk_fast_mono users")
Fixes: f09cb9a180 ("time: Introduce tk_fast_raw")
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220426175338.3807ca4f@gandalf.local.home/
Link: https://lore.kernel.org/r/20220428062432.61063-1-kurt@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-12 12:30:04 +02:00
Kumar Kartikeya Dwivedi
8c39925e98 bpf: Fix crash due to out of bounds access into reg2btf_ids.
commit 45ce4b4f90 upstream

When commit e6ac2450d6 ("bpf: Support bpf program calling kernel function") added
kfunc support, it defined reg2btf_ids as a cheap way to translate the verifier
reg type to the appropriate btf_vmlinux BTF ID, however
commit c25b2ae136 ("bpf: Replace PTR_TO_XXX_OR_NULL with PTR_TO_XXX | PTR_MAYBE_NULL")
moved the __BPF_REG_TYPE_MAX from the last member of bpf_reg_type enum to after
the base register types, and defined other variants using type flag
composition. However, now, the direct usage of reg->type to index into
reg2btf_ids may no longer fall into __BPF_REG_TYPE_MAX range, and hence lead to
out of bounds access and kernel crash on dereference of bad pointer.

[backport note: commit 3363bd0cfb ("bpf: Extend kfunc with PTR_TO_CTX, PTR_TO_MEM
 argument support") was introduced after 5.15 and contains an out of bound
 reg2btf_ids access. Since that commit hasn't been backported, this patch
 doesn't include fix to that access. If we backport that commit in future,
 we need to fix its faulting access as well.]

Fixes: c25b2ae136 ("bpf: Replace PTR_TO_XXX_OR_NULL with PTR_TO_XXX | PTR_MAYBE_NULL")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220216201943.624869-1-memxor@gmail.com
Cc: stable@vger.kernel.org # v5.15+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-01 17:22:26 +02:00
Hao Luo
2a77c58726 bpf: Add MEM_RDONLY for helper args that are pointers to rdonly mem.
commit 216e3cd2f2 upstream.

Some helper functions may modify its arguments, for example,
bpf_d_path, bpf_get_stack etc. Previously, their argument types
were marked as ARG_PTR_TO_MEM, which is compatible with read-only
mem types, such as PTR_TO_RDONLY_BUF. Therefore it's legitimate,
but technically incorrect, to modify a read-only memory by passing
it into one of such helper functions.

This patch tags the bpf_args compatible with immutable memory with
MEM_RDONLY flag. The arguments that don't have this flag will be
only compatible with mutable memory types, preventing the helper
from modifying a read-only memory. The bpf_args that have
MEM_RDONLY are compatible with both mutable memory and immutable
memory.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-9-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-01 17:22:26 +02:00
Hao Luo
15166bb300 bpf: Make per_cpu_ptr return rdonly PTR_TO_MEM.
commit 34d3a78c68 upstream.

Tag the return type of {per, this}_cpu_ptr with RDONLY_MEM. The
returned value of this pair of helpers is kernel object, which
can not be updated by bpf programs. Previously these two helpers
return PTR_OT_MEM for kernel objects of scalar type, which allows
one to directly modify the memory. Now with RDONLY_MEM tagging,
the verifier will reject programs that write into RDONLY_MEM.

Fixes: 63d9b80dcf ("bpf: Introducte bpf_this_cpu_ptr()")
Fixes: eaa6bcb71e ("bpf: Introduce bpf_per_cpu_ptr()")
Fixes: 4976b718c3 ("bpf: Introduce pseudo_btf_id")
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-8-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-01 17:22:25 +02:00
Hao Luo
b710f73704 bpf: Convert PTR_TO_MEM_OR_NULL to composable types.
commit cf9f2f8d62 upstream.

Remove PTR_TO_MEM_OR_NULL and replace it with PTR_TO_MEM combined with
flag PTR_MAYBE_NULL.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-7-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-01 17:22:25 +02:00
Hao Luo
b453361384 bpf: Introduce MEM_RDONLY flag
commit 20b2aff4bc upstream.

This patch introduce a flag MEM_RDONLY to tag a reg value
pointing to read-only memory. It makes the following changes:

1. PTR_TO_RDWR_BUF -> PTR_TO_BUF
2. PTR_TO_RDONLY_BUF -> PTR_TO_BUF | MEM_RDONLY

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-6-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-01 17:22:24 +02:00
Hao Luo
8d38cde47a bpf: Replace PTR_TO_XXX_OR_NULL with PTR_TO_XXX | PTR_MAYBE_NULL
commit c25b2ae136 upstream.

We have introduced a new type to make bpf_reg composable, by
allocating bits in the type to represent flags.

One of the flags is PTR_MAYBE_NULL which indicates a pointer
may be NULL. This patch switches the qualified reg_types to
use this flag. The reg_types changed in this patch include:

1. PTR_TO_MAP_VALUE_OR_NULL
2. PTR_TO_SOCKET_OR_NULL
3. PTR_TO_SOCK_COMMON_OR_NULL
4. PTR_TO_TCP_SOCK_OR_NULL
5. PTR_TO_BTF_ID_OR_NULL
6. PTR_TO_MEM_OR_NULL
7. PTR_TO_RDONLY_BUF_OR_NULL
8. PTR_TO_RDWR_BUF_OR_NULL

[haoluo: backport notes
 There was a reg_type_may_be_null() in adjust_ptr_min_max_vals() in
 5.15.x, but didn't exist in the upstream commit. This backport
 converted that reg_type_may_be_null() to type_may_be_null() as well.]

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211217003152.48334-5-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-01 17:22:24 +02:00
Hao Luo
3c141c82b9 bpf: Replace RET_XXX_OR_NULL with RET_XXX | PTR_MAYBE_NULL
commit 3c48073226 upstream.

We have introduced a new type to make bpf_ret composable, by
reserving high bits to represent flags.

One of the flag is PTR_MAYBE_NULL, which indicates a pointer
may be NULL. When applying this flag to ret_types, it means
the returned value could be a NULL pointer. This patch
switches the qualified arg_types to use this flag.
The ret_types changed in this patch include:

1. RET_PTR_TO_MAP_VALUE_OR_NULL
2. RET_PTR_TO_SOCKET_OR_NULL
3. RET_PTR_TO_TCP_SOCK_OR_NULL
4. RET_PTR_TO_SOCK_COMMON_OR_NULL
5. RET_PTR_TO_ALLOC_MEM_OR_NULL
6. RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL
7. RET_PTR_TO_BTF_ID_OR_NULL

This patch doesn't eliminate the use of these names, instead
it makes them aliases to 'RET_PTR_TO_XXX | PTR_MAYBE_NULL'.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-4-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-01 17:22:23 +02:00
Hao Luo
d58a396fa6 bpf: Replace ARG_XXX_OR_NULL with ARG_XXX | PTR_MAYBE_NULL
commit 48946bd6a5 upstream.

We have introduced a new type to make bpf_arg composable, by
reserving high bits of bpf_arg to represent flags of a type.

One of the flags is PTR_MAYBE_NULL which indicates a pointer
may be NULL. When applying this flag to an arg_type, it means
the arg can take NULL pointer. This patch switches the
qualified arg_types to use this flag. The arg_types changed
in this patch include:

1. ARG_PTR_TO_MAP_VALUE_OR_NULL
2. ARG_PTR_TO_MEM_OR_NULL
3. ARG_PTR_TO_CTX_OR_NULL
4. ARG_PTR_TO_SOCKET_OR_NULL
5. ARG_PTR_TO_ALLOC_MEM_OR_NULL
6. ARG_PTR_TO_STACK_OR_NULL

This patch does not eliminate the use of these arg_types, instead
it makes them an alias to the 'ARG_XXX | PTR_MAYBE_NULL'.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-3-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-01 17:22:23 +02:00
Zhipeng Xie
56637084e8 perf/core: Fix perf_mmap fail when CONFIG_PERF_USE_VMALLOC enabled
[ Upstream commit 60490e7966 ]

This problem can be reproduced with CONFIG_PERF_USE_VMALLOC enabled on
both x86_64 and aarch64 arch when using sysdig -B(using ebpf)[1].
sysdig -B works fine after rebuilding the kernel with
CONFIG_PERF_USE_VMALLOC disabled.

I tracked it down to the if condition event->rb->nr_pages != nr_pages
in perf_mmap is true when CONFIG_PERF_USE_VMALLOC is enabled where
event->rb->nr_pages = 1 and nr_pages = 2048 resulting perf_mmap to
return -EINVAL. This is because when CONFIG_PERF_USE_VMALLOC is
enabled, rb->nr_pages is always equal to 1.

Arch with CONFIG_PERF_USE_VMALLOC enabled by default:
	arc/arm/csky/mips/sh/sparc/xtensa

Arch with CONFIG_PERF_USE_VMALLOC disabled by default:
	x86_64/aarch64/...

Fix this problem by using data_page_nr()

[1] https://github.com/draios/sysdig

Fixes: 906010b213 ("perf_event: Provide vmalloc() based mmap() backing")
Signed-off-by: Zhipeng Xie <xiezhipeng1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220209145417.6495-1-xiezhipeng1@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-04-27 14:38:58 +02:00
kuyo chang
b1b9294682 sched/pelt: Fix attach_entity_load_avg() corner case
[ Upstream commit 40f5aa4c5e ]

The warning in cfs_rq_is_decayed() triggered:

    SCHED_WARN_ON(cfs_rq->avg.load_avg ||
		  cfs_rq->avg.util_avg ||
		  cfs_rq->avg.runnable_avg)

There exists a corner case in attach_entity_load_avg() which will
cause load_sum to be zero while load_avg will not be.

Consider se_weight is 88761 as per the sched_prio_to_weight[] table.
Further assume the get_pelt_divider() is 47742, this gives:
se->avg.load_avg is 1.

However, calculating load_sum:

  se->avg.load_sum = div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
  se->avg.load_sum = 1*47742/88761 = 0.

Then enqueue_load_avg() adds this to the cfs_rq totals:

  cfs_rq->avg.load_avg += se->avg.load_avg;
  cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;

Resulting in load_avg being 1 with load_sum is 0, which will trigger
the WARN.

Fixes: f207934fb7 ("sched/fair: Align PELT windows between cfs_rq and its se")
Signed-off-by: kuyo chang <kuyo.chang@mediatek.com>
[peterz: massage changelog]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20220414090229.342-1-kuyo.chang@mediatek.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-04-27 14:38:58 +02:00
Mike Rapoport
c01430cf5b dma-mapping: remove bogus test for pfn_valid from dma_map_resource
commit a9c38c5d26 upstream.

dma_map_resource() uses pfn_valid() to ensure the range is not RAM.
However, pfn_valid() only checks for availability of the memory map for a
PFN but it does not ensure that the PFN is actually backed by RAM.

As dma_map_resource() is the only method in DMA mapping APIs that has this
check, simply drop the pfn_valid() test from dma_map_resource().

Link: https://lore.kernel.org/all/20210824173741.GC623@arm.com/
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20210930013039.11260-2-rppt@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Fixes: 859a85ddf9 ("mm: remove pfn_valid_within() and CONFIG_HOLES_IN_ZONE")
Link: https://lore.kernel.org/r/Yl0IZWT2nsiYtqBT@linux.ibm.com
Signed-off-by: Georgi Djakov <quic_c_gdjako@quicinc.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-27 14:38:50 +02:00
Steven Price
d712aea3cd cpu/hotplug: Remove the 'cpu' member of cpuhp_cpu_state
commit b7ba6d8dc3 upstream.

Currently the setting of the 'cpu' member of struct cpuhp_cpu_state in
cpuhp_create() is too late as it is used earlier in _cpu_up().

If kzalloc_node() in __smpboot_create_thread() fails then the rollback will
be done with st->cpu==0 causing CPU0 to be erroneously set to be dying,
causing the scheduler to get mightily confused and throw its toys out of
the pram.

However the cpu number is actually available directly, so simply remove
the 'cpu' member and avoid the problem in the first place.

Fixes: 2ea46c6fc9 ("cpumask/hotplug: Fix cpu_dying() state tracking")
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220411152233.474129-2-steven.price@arm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-20 09:34:21 +02:00
Chao Gao
4ef9951d02 dma-direct: avoid redundant memory sync for swiotlb
commit 9e02977bfa upstream.

When we looked into FIO performance with swiotlb enabled in VM, we found
swiotlb_bounce() is always called one more time than expected for each DMA
read request.

It turns out that the bounce buffer is copied to original DMA buffer twice
after the completion of a DMA request (one is done by in
dma_direct_sync_single_for_cpu(), the other by swiotlb_tbl_unmap_single()).
But the content in bounce buffer actually doesn't change between the two
rounds of copy. So, one round of copy is redundant.

Pass DMA_ATTR_SKIP_CPU_SYNC flag to swiotlb_tbl_unmap_single() to
skip the memory copy in it.

This fix increases FIO 64KB sequential read throughput in a guest with
swiotlb=force by 5.6%.

Fixes: 55897af630 ("dma-direct: merge swiotlb_dma_ops into the dma_direct code")
Reported-by: Wang Zhaoyang1 <zhaoyang1.wang@intel.com>
Reported-by: Gao Liang <liang.gao@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-20 09:34:21 +02:00
Anna-Maria Behnsen
111becd63e timers: Fix warning condition in __run_timers()
commit c54bc0fc84 upstream.

When the timer base is empty, base::next_expiry is set to base::clk +
NEXT_TIMER_MAX_DELTA and base::next_expiry_recalc is false. When no timer
is queued until jiffies reaches base::next_expiry value, the warning for
not finding any expired timer and base::next_expiry_recalc is false in
__run_timers() triggers.

To prevent triggering the warning in this valid scenario
base::timers_pending needs to be added to the warning condition.

Fixes: 31cd0e119d ("timers: Recalculate next timer interrupt only when necessary")
Reported-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220405191732.7438-3-anna-maria@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-20 09:34:21 +02:00
Nadav Amit
44981e4cde smp: Fix offline cpu check in flush_smp_call_function_queue()
commit 9e949a3886 upstream.

The check in flush_smp_call_function_queue() for callbacks that are sent
to offline CPUs currently checks whether the queue is empty.

However, flush_smp_call_function_queue() has just deleted all the
callbacks from the queue and moved all the entries into a local list.
This checks would only be positive if some callbacks were added in the
short time after llist_del_all() was called. This does not seem to be
the intention of this check.

Change the check to look at the local list to which the entries were
moved instead of the queue from which all the callbacks were just
removed.

Fixes: 8d056c48e4 ("CPU hotplug, smp: flush any pending IPI callbacks before CPU offline")
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220319072015.1495036-1-namit@vmware.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-20 09:34:21 +02:00