Commit graph

2061 commits

Author SHA1 Message Date
Daniel Xu
dd6e10fbd9 bpf: Add bpf_task_pt_regs() helper
The motivation behind this helper is to access userspace pt_regs in a
kprobe handler.

uprobe's ctx is the userspace pt_regs. kprobe's ctx is the kernelspace
pt_regs. bpf_task_pt_regs() allows accessing userspace pt_regs in a
kprobe handler. The final case (kernelspace pt_regs in uprobe) is
pretty rare (usermode helper) so I think that can be solved later if
necessary.

More concretely, this helper is useful in doing BPF-based DWARF stack
unwinding. Currently the kernel can only do framepointer based stack
unwinds for userspace code. This is because the DWARF state machines are
too fragile to be computed in kernelspace [0]. The idea behind
DWARF-based stack unwinds w/ BPF is to copy a chunk of the userspace
stack (while in prog context) and send it up to userspace for unwinding
(probably with libunwind) [1]. This would effectively enable profiling
applications with -fomit-frame-pointer using kprobes and uprobes.

[0]: https://lkml.org/lkml/2012/2/10/356
[1]: https://github.com/danobi/bpf-dwarf-walk

Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/e2718ced2d51ef4268590ab8562962438ab82815.1629772842.git.dxu@dxuuu.xyz
2021-08-25 10:37:05 -07:00
Daniel Xu
a396eda551 bpf: Extend bpf_base_func_proto helpers with bpf_get_current_task_btf()
bpf_get_current_task() is already supported so it's natural to also
include the _btf() variant for btf-powered helpers.

This is required for non-tracing progs to use bpf_task_pt_regs() in the
next commit.

Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/f99870ed5f834c9803d73b3476f8272b1bb987c0.1629772842.git.dxu@dxuuu.xyz
2021-08-25 10:37:05 -07:00
Daniel Xu
33c5cb3601 bpf: Consolidate task_struct BTF_ID declarations
No need to have it defined 5 times. Once is enough.

Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/6dcefa5bed26fe1226f26683f36819bb53ec19a2.1629772842.git.dxu@dxuuu.xyz
2021-08-25 10:37:05 -07:00
Andrey Ignatov
d7af7e497f bpf: Fix possible out of bound write in narrow load handling
Fix a verifier bug found by smatch static checker in [0].

This problem has never been seen in prod to my best knowledge. Fixing it
still seems to be a good idea since it's hard to say for sure whether
it's possible or not to have a scenario where a combination of
convert_ctx_access() and a narrow load would lead to an out of bound
write.

When narrow load is handled, one or two new instructions are added to
insn_buf array, but before it was only checked that

	cnt >= ARRAY_SIZE(insn_buf)

And it's safe to add a new instruction to insn_buf[cnt++] only once. The
second try will lead to out of bound write. And this is what can happen
if `shift` is set.

Fix it by making sure that if the BPF_RSH instruction has to be added in
addition to BPF_AND then there is enough space for two more instructions
in insn_buf.

The full report [0] is below:

kernel/bpf/verifier.c:12304 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c:12311 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array

kernel/bpf/verifier.c
    12282
    12283 			insn->off = off & ~(size_default - 1);
    12284 			insn->code = BPF_LDX | BPF_MEM | size_code;
    12285 		}
    12286
    12287 		target_size = 0;
    12288 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
    12289 					 &target_size);
    12290 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^
Bounds check.

    12291 		    (ctx_field_size && !target_size)) {
    12292 			verbose(env, "bpf verifier is misconfigured\n");
    12293 			return -EINVAL;
    12294 		}
    12295
    12296 		if (is_narrower_load && size < target_size) {
    12297 			u8 shift = bpf_ctx_narrow_access_offset(
    12298 				off, size, size_default) * 8;
    12299 			if (ctx_field_size <= 4) {
    12300 				if (shift)
    12301 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
                                                         ^^^^^
increment beyond end of array

    12302 									insn->dst_reg,
    12303 									shift);
--> 12304 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
                                                 ^^^^^
out of bounds write

    12305 								(1 << size * 8) - 1);
    12306 			} else {
    12307 				if (shift)
    12308 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
    12309 									insn->dst_reg,
    12310 									shift);
    12311 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
                                        ^^^^^^^^^^^^^^^
Same.

    12312 								(1ULL << size * 8) - 1);
    12313 			}
    12314 		}
    12315
    12316 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
    12317 		if (!new_prog)
    12318 			return -ENOMEM;
    12319
    12320 		delta += cnt - 1;
    12321
    12322 		/* keep walking new program and skip insns we just inserted */
    12323 		env->prog = new_prog;
    12324 		insn      = new_prog->insnsi + i + delta;
    12325 	}
    12326
    12327 	return 0;
    12328 }

[0] https://lore.kernel.org/bpf/20210817050843.GA21456@kili/

v1->v2:
- clarify that problem was only seen by static checker but not in prod;

Fixes: 46f53a65d2 ("bpf: Allow narrow loads with offset > 0")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210820163935.1902398-1-rdna@fb.com
2021-08-24 14:32:26 -07:00
Dave Marchevsky
6fc88c354f bpf: Migrate cgroup_bpf to internal cgroup_bpf_attach_type enum
Add an enum (cgroup_bpf_attach_type) containing only valid cgroup_bpf
attach types and a function to map bpf_attach_type values to the new
enum. Inspired by netns_bpf_attach_type.

Then, migrate cgroup_bpf to use cgroup_bpf_attach_type wherever
possible.  Functionality is unchanged as attach_type_to_prog_type
switches in bpf/syscall.c were preventing non-cgroup programs from
making use of the invalid cgroup_bpf array slots.

As a result struct cgroup_bpf uses 504 fewer bytes relative to when its
arrays were sized using MAX_BPF_ATTACH_TYPE.

bpf_cgroup_storage is notably not migrated as struct
bpf_cgroup_storage_key is part of uapi and contains a bpf_attach_type
member which is not meant to be opaque. Similarly, bpf_cgroup_link
continues to report its bpf_attach_type member to userspace via fdinfo
and bpf_link_info.

To ease disambiguation, bpf_attach_type variables are renamed from
'type' to 'atype' when changed to cgroup_bpf_attach_type.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210819092420.1984861-2-davemarchevsky@fb.com
2021-08-23 17:50:24 -07:00
Daniel Borkmann
5b029a32cf bpf: Fix ringbuf helper function compatibility
Commit 457f44363a ("bpf: Implement BPF ring buffer and verifier support
for it") extended check_map_func_compatibility() by enforcing map -> helper
function match, but not helper -> map type match.

Due to this all of the bpf_ringbuf_*() helper functions could be used with
a wrong map type such as array or hash map, leading to invalid access due
to type confusion.

Also, both BPF_FUNC_ringbuf_{submit,discard} have ARG_PTR_TO_ALLOC_MEM as
argument and not a BPF map. Therefore, their check_map_func_compatibility()
presence is incorrect since it's only for map type checking.

Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: Ryota Shiga (Flatt Security)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-08-23 23:09:10 +02:00
Jakub Kicinski
f444fea789 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
drivers/ptp/Kconfig:
  55c8fca1da ("ptp_pch: Restore dependency on PCI")
  e5f3155267 ("ethernet: fix PTP_1588_CLOCK dependencies")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-19 18:09:18 -07:00
Prankur Gupta
2c531639de bpf: Add support for {set|get} socket options from setsockopt BPF
Add logic to call bpf_setsockopt() and bpf_getsockopt() from setsockopt BPF
programs. An example use case is when the user sets the IPV6_TCLASS socket
option, we would also like to change the tcp-cc for that socket.

We don't have any use case for calling bpf_setsockopt() from supposedly read-
only sys_getsockopt(), so it is made available to BPF_CGROUP_SETSOCKOPT only
at this point.

Signed-off-by: Prankur Gupta <prankgup@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210817224221.3257826-2-prankgup@fb.com
2021-08-20 01:04:52 +02:00
Stanislav Fomichev
44779a4b85 bpf: Use kvmalloc for map keys in syscalls
Same as previous patch but for the keys. memdup_bpfptr is renamed
to kvmemdup_bpfptr (and converted to kvmalloc).

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210818235216.1159202-2-sdf@google.com
2021-08-20 00:09:49 +02:00
Stanislav Fomichev
f0dce1d9b7 bpf: Use kvmalloc for map values in syscall
Use kvmalloc/kvfree for temporary value when manipulating a map via
syscall. kmalloc might not be sufficient for percpu maps where the value
is big (and further multiplied by hundreds of CPUs).

Can be reproduced with netcnt test on qemu with "-smp 255".

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210818235216.1159202-1-sdf@google.com
2021-08-20 00:09:38 +02:00
Daniel Borkmann
f9dabe016b bpf: Undo off-by-one in interpreter tail call count limit
The BPF interpreter as well as x86-64 BPF JIT were both in line by allowing
up to 33 tail calls (however odd that number may be!). Recently, this was
changed for the interpreter to reduce it down to 32 with the assumption that
this should have been the actual limit "which is in line with the behavior of
the x86 JITs" according to b61a28cf11 ("bpf: Fix off-by-one in tail call
count limiting").

Paul recently reported:

  I'm a bit surprised by this because I had previously tested the tail call
  limit of several JIT compilers and found it to be 33 (i.e., allowing chains
  of up to 34 programs). I've just extended a test program I had to validate
  this again on the x86-64 JIT, and found a limit of 33 tail calls again [1].

  Also note we had previously changed the RISC-V and MIPS JITs to allow up to
  33 tail calls [2, 3], for consistency with other JITs and with the interpreter.
  We had decided to increase these two to 33 rather than decrease the other
  JITs to 32 for backward compatibility, though that probably doesn't matter
  much as I'd expect few people to actually use 33 tail calls.

  [1] ae78874829
  [2] 96bc4432f5 ("bpf, riscv: Limit to 33 tail calls")
  [3] e49e6f6db0 ("bpf, mips: Limit to 33 tail calls")

Therefore, revert b61a28cf11 to re-align interpreter to limit a maximum of
33 tail calls. While it is unlikely to hit the limit for the vast majority,
programs in the wild could one way or another depend on this, so lets rather
be a bit more conservative, and lets align the small remainder of JITs to 33.
If needed in future, this limit could be slightly increased, but not decreased.

Fixes: b61a28cf11 ("bpf: Fix off-by-one in tail call count limiting")
Reported-by: Paul Chaignon <paul@cilium.io>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/CAO5pjwTWrC0_dzTbTHFPSqDwA56aVH+4KFGVqdq8=ASs0MqZGQ@mail.gmail.com
2021-08-19 18:33:37 +02:00
Colin Ian King
8cacfc85b6 bpf: Remove redundant initialization of variable allow
The variable allow is being initialized with a value that is never read, it
is being updated later on. The assignment is redundant and can be removed.

Addresses-Coverity: ("Unused value")

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210817170842.495440-1-colin.king@canonical.com
2021-08-17 14:09:12 -07:00
Andrii Nakryiko
82e6b1eee6 bpf: Allow to specify user-provided bpf_cookie for BPF perf links
Add ability for users to specify custom u64 value (bpf_cookie) when creating
BPF link for perf_event-backed BPF programs (kprobe/uprobe, perf_event,
tracepoints).

This is useful for cases when the same BPF program is used for attaching and
processing invocation of different tracepoints/kprobes/uprobes in a generic
fashion, but such that each invocation is distinguished from each other (e.g.,
BPF program can look up additional information associated with a specific
kernel function without having to rely on function IP lookups). This enables
new use cases to be implemented simply and efficiently that previously were
possible only through code generation (and thus multiple instances of almost
identical BPF program) or compilation at runtime (BCC-style) on target hosts
(even more expensive resource-wise). For uprobes it is not even possible in
some cases to know function IP before hand (e.g., when attaching to shared
library without PID filtering, in which case base load address is not known
for a library).

This is done by storing u64 bpf_cookie in struct bpf_prog_array_item,
corresponding to each attached and run BPF program. Given cgroup BPF programs
already use two 8-byte pointers for their needs and cgroup BPF programs don't
have (yet?) support for bpf_cookie, reuse that space through union of
cgroup_storage and new bpf_cookie field.

Make it available to kprobe/tracepoint BPF programs through bpf_trace_run_ctx.
This is set by BPF_PROG_RUN_ARRAY, used by kprobe/uprobe/tracepoint BPF
program execution code, which luckily is now also split from
BPF_PROG_RUN_ARRAY_CG. This run context will be utilized by a new BPF helper
giving access to this user-provided cookie value from inside a BPF program.
Generic perf_event BPF programs will access this value from perf_event itself
through passed in BPF program context.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/bpf/20210815070609.987780-6-andrii@kernel.org
2021-08-17 00:45:07 +02:00
Andrii Nakryiko
b89fbfbb85 bpf: Implement minimal BPF perf link
Introduce a new type of BPF link - BPF perf link. This brings perf_event-based
BPF program attachments (perf_event, tracepoints, kprobes, and uprobes) into
the common BPF link infrastructure, allowing to list all active perf_event
based attachments, auto-detaching BPF program from perf_event when link's FD
is closed, get generic BPF link fdinfo/get_info functionality.

BPF_LINK_CREATE command expects perf_event's FD as target_fd. No extra flags
are currently supported.

Force-detaching and atomic BPF program updates are not yet implemented, but
with perf_event-based BPF links we now have common framework for this without
the need to extend ioctl()-based perf_event interface.

One interesting consideration is a new value for bpf_attach_type, which
BPF_LINK_CREATE command expects. Generally, it's either 1-to-1 mapping from
bpf_attach_type to bpf_prog_type, or many-to-1 mapping from a subset of
bpf_attach_types to one bpf_prog_type (e.g., see BPF_PROG_TYPE_SK_SKB or
BPF_PROG_TYPE_CGROUP_SOCK). In this case, though, we have three different
program types (KPROBE, TRACEPOINT, PERF_EVENT) using the same perf_event-based
mechanism, so it's many bpf_prog_types to one bpf_attach_type. I chose to
define a single BPF_PERF_EVENT attach type for all of them and adjust
link_create()'s logic for checking correspondence between attach type and
program type.

The alternative would be to define three new attach types (e.g., BPF_KPROBE,
BPF_TRACEPOINT, and BPF_PERF_EVENT), but that seemed like unnecessary overkill
and BPF_KPROBE will cause naming conflicts with BPF_KPROBE() macro, defined by
libbpf. I chose to not do this to avoid unnecessary proliferation of
bpf_attach_type enum values and not have to deal with naming conflicts.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/bpf/20210815070609.987780-5-andrii@kernel.org
2021-08-17 00:45:07 +02:00
Andrii Nakryiko
7d08c2c911 bpf: Refactor BPF_PROG_RUN_ARRAY family of macros into functions
Similar to BPF_PROG_RUN, turn BPF_PROG_RUN_ARRAY macros into proper functions
with all the same readability and maintainability benefits. Making them into
functions required shuffling around bpf_set_run_ctx/bpf_reset_run_ctx
functions. Also, explicitly specifying the type of the BPF prog run callback
required adjusting __bpf_prog_run_save_cb() to accept const void *, casted
internally to const struct sk_buff.

Further, split out a cgroup-specific BPF_PROG_RUN_ARRAY_CG and
BPF_PROG_RUN_ARRAY_CG_FLAGS from the more generic BPF_PROG_RUN_ARRAY due to
the differences in bpf_run_ctx used for those two different use cases.

I think BPF_PROG_RUN_ARRAY_CG would benefit from further refactoring to accept
struct cgroup and enum bpf_attach_type instead of bpf_prog_array, fetching
cgrp->bpf.effective[type] and RCU-dereferencing it internally. But that
required including include/linux/cgroup-defs.h, which I wasn't sure is ok with
everyone.

The remaining generic BPF_PROG_RUN_ARRAY function will be extended to
pass-through user-provided context value in the next patch.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210815070609.987780-3-andrii@kernel.org
2021-08-17 00:45:07 +02:00
Andrii Nakryiko
fb7dd8bca0 bpf: Refactor BPF_PROG_RUN into a function
Turn BPF_PROG_RUN into a proper always inlined function. No functional and
performance changes are intended, but it makes it much easier to understand
what's going on with how BPF programs are actually get executed. It's more
obvious what types and callbacks are expected. Also extra () around input
parameters can be dropped, as well as `__` variable prefixes intended to avoid
naming collisions, which makes the code simpler to read and write.

This refactoring also highlighted one extra issue. BPF_PROG_RUN is both
a macro and an enum value (BPF_PROG_RUN == BPF_PROG_TEST_RUN). Turning
BPF_PROG_RUN into a function causes naming conflict compilation error. So
rename BPF_PROG_RUN into lower-case bpf_prog_run(), similar to
bpf_prog_run_xdp(), bpf_prog_run_pin_on_cpu(), etc. All existing callers of
BPF_PROG_RUN, the macro, are switched to bpf_prog_run() explicitly.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210815070609.987780-2-andrii@kernel.org
2021-08-17 00:45:07 +02:00
Kuniyuki Iwashima
3478cfcfcd bpf: Support "%c" in bpf_bprintf_prepare().
/proc/net/unix uses "%c" to print a single-byte character to escape '\0' in
the name of the abstract UNIX domain socket.  The following selftest uses
it, so this patch adds support for "%c".  Note that it does not support
wide character ("%lc" and "%llc") for simplicity.

Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210814015718.42704-3-kuniyu@amazon.co.jp
2021-08-15 00:13:33 -07:00
Stanislav Fomichev
f1248dee95 bpf: Allow bpf_get_netns_cookie in BPF_PROG_TYPE_CGROUP_SOCKOPT
This is similar to existing BPF_PROG_TYPE_CGROUP_SOCK
and BPF_PROG_TYPE_CGROUP_SOCK_ADDR.

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210813230530.333779-2-sdf@google.com
2021-08-13 17:50:40 -07:00
Ilya Leoshkevich
45c709f8c7 bpf: Clear zext_dst of dead insns
"access skb fields ok" verifier test fails on s390 with the "verifier
bug. zext_dst is set, but no reg is defined" message. The first insns
of the test prog are ...

   0:	61 01 00 00 00 00 00 00 	ldxw %r0,[%r1+0]
   8:	35 00 00 01 00 00 00 00 	jge %r0,0,1
  10:	61 01 00 08 00 00 00 00 	ldxw %r0,[%r1+8]

... and the 3rd one is dead (this does not look intentional to me, but
this is a separate topic).

sanitize_dead_code() converts dead insns into "ja -1", but keeps
zext_dst. When opt_subreg_zext_lo32_rnd_hi32() tries to parse such
an insn, it sees this discrepancy and bails. This problem can be seen
only with JITs whose bpf_jit_needs_zext() returns true.

Fix by clearning dead insns' zext_dst.

The commits that contributed to this problem are:

1. 5aa5bd14c5 ("bpf: add initial suite for selftests"), which
   introduced the test with the dead code.
2. 5327ed3d44 ("bpf: verifier: mark verified-insn with
   sub-register zext flag"), which introduced the zext_dst flag.
3. 83a2881903 ("bpf: Account for BPF_FETCH in
   insn_has_def32()"), which introduced the sanity check.
4. 9183671af6 ("bpf: Fix leakage under speculation on
   mispredicted branches"), which bisect points to.

It's best to fix this on stable branches that contain the second one,
since that's the point where the inconsistency was introduced.

Fixes: 5327ed3d44 ("bpf: verifier: mark verified-insn with sub-register zext flag")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210812151811.184086-2-iii@linux.ibm.com
2021-08-13 17:43:43 +02:00
Jakub Kicinski
f4083a752a Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Conflicts:

drivers/net/ethernet/broadcom/bnxt/bnxt_ptp.h
  9e26680733 ("bnxt_en: Update firmware call to retrieve TX PTP timestamp")
  9e518f2580 ("bnxt_en: 1PPS functions to configure TSIO pins")
  099fdeda65 ("bnxt_en: Event handler for PPS events")

kernel/bpf/helpers.c
include/linux/bpf-cgroup.h
  a2baf4e8bb ("bpf: Fix potentially incorrect results with bpf_get_local_storage()")
  c7603cfa04 ("bpf: Add ambient BPF runtime context stored in current")

drivers/net/ethernet/mellanox/mlx5/core/pci_irq.c
  5957cc557d ("net/mlx5: Set all field of mlx5_irq before inserting it to the xarray")
  2d0b41a376 ("net/mlx5: Refcount mlx5_irq with integer")

MAINTAINERS
  7b637cd52f ("MAINTAINERS: fix Microchip CAN BUS Analyzer Tool entry typo")
  7d901a1e87 ("net: phy: add Maxlinear GPY115/21x/24x driver")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-13 06:41:22 -07:00
Yonghong Song
2d3a1e3615 bpf: Add rcu_read_lock in bpf_get_current_[ancestor_]cgroup_id() helpers
Currently, if bpf_get_current_cgroup_id() or
bpf_get_current_ancestor_cgroup_id() helper is
called with sleepable programs e.g., sleepable
fentry/fmod_ret/fexit/lsm programs, a rcu warning
may appear. For example, if I added the following
hack to test_progs/test_lsm sleepable fentry program
test_sys_setdomainname:

  --- a/tools/testing/selftests/bpf/progs/lsm.c
  +++ b/tools/testing/selftests/bpf/progs/lsm.c
  @@ -168,6 +168,10 @@ int BPF_PROG(test_sys_setdomainname, struct pt_regs *regs)
          int buf = 0;
          long ret;

  +       __u64 cg_id = bpf_get_current_cgroup_id();
  +       if (cg_id == 1000)
  +               copy_test++;
  +
          ret = bpf_copy_from_user(&buf, sizeof(buf), ptr);
          if (len == -2 && ret == 0 && buf == 1234)
                  copy_test++;

I will hit the following rcu warning:

  include/linux/cgroup.h:481 suspicious rcu_dereference_check() usage!
  other info that might help us debug this:
    rcu_scheduler_active = 2, debug_locks = 1
    1 lock held by test_progs/260:
      #0: ffffffffa5173360 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xa0
    stack backtrace:
    CPU: 1 PID: 260 Comm: test_progs Tainted: G           O      5.14.0-rc2+ #176
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
    Call Trace:
      dump_stack_lvl+0x56/0x7b
      bpf_get_current_cgroup_id+0x9c/0xb1
      bpf_prog_a29888d1c6706e09_test_sys_setdomainname+0x3e/0x89c
      bpf_trampoline_6442469132_0+0x2d/0x1000
      __x64_sys_setdomainname+0x5/0x110
      do_syscall_64+0x3a/0x80
      entry_SYSCALL_64_after_hwframe+0x44/0xae

I can get similar warning using bpf_get_current_ancestor_cgroup_id() helper.
syzbot reported a similar issue in [1] for syscall program. Helper
bpf_get_current_cgroup_id() or bpf_get_current_ancestor_cgroup_id()
has the following callchain:
   task_dfl_cgroup
     task_css_set
       task_css_set_check
and we have
   #define task_css_set_check(task, __c)                                   \
           rcu_dereference_check((task)->cgroups,                          \
                   lockdep_is_held(&cgroup_mutex) ||                       \
                   lockdep_is_held(&css_set_lock) ||                       \
                   ((task)->flags & PF_EXITING) || (__c))
Since cgroup_mutex/css_set_lock is not held and the task
is not existing and rcu read_lock is not held, a warning
will be issued. Note that bpf sleepable program is protected by
rcu_read_lock_trace().

The above sleepable bpf programs are already protected
by migrate_disable(). Adding rcu_read_lock() in these
two helpers will silence the above warning.
I marked the patch fixing 95b861a793
("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
which added bpf_get_current_ancestor_cgroup_id() to tracing programs
in 5.14. I think backporting 5.14 is probably good enough as sleepable
progrems are not widely used.

This patch should fix [1] as well since syscall program is a sleepable
program protected with migrate_disable().

 [1] https://lore.kernel.org/bpf/0000000000006d5cab05c7d9bb87@google.com/

Fixes: 95b861a793 ("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
Reported-by: syzbot+7ee5c2c09c284495371f@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210810230537.2864668-1-yhs@fb.com
2021-08-11 11:45:43 -07:00
Randy Dunlap
019d0454c6 bpf, core: Fix kernel-doc notation
Fix kernel-doc warnings in kernel/bpf/core.c (found by scripts/kernel-doc
and W=1 builds). That is, correct a function name in a comment and add
return descriptions for 2 functions.

Fixes these kernel-doc warnings:

  kernel/bpf/core.c:1372: warning: expecting prototype for __bpf_prog_run(). Prototype was for ___bpf_prog_run() instead
  kernel/bpf/core.c:1372: warning: No description found for return value of '___bpf_prog_run'
  kernel/bpf/core.c:1883: warning: No description found for return value of 'bpf_prog_select_runtime'

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210809215229.7556-1-rdunlap@infradead.org
2021-08-10 13:09:28 +02:00
Yonghong Song
a2baf4e8bb bpf: Fix potentially incorrect results with bpf_get_local_storage()
Commit b910eaaaa4 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage()
helper") fixed a bug for bpf_get_local_storage() helper so different tasks
won't mess up with each other's percpu local storage.

The percpu data contains 8 slots so it can hold up to 8 contexts (same or
different tasks), for 8 different program runs, at the same time. This in
general is sufficient. But our internal testing showed the following warning
multiple times:

  [...]
  warning: WARNING: CPU: 13 PID: 41661 at include/linux/bpf-cgroup.h:193
     __cgroup_bpf_run_filter_sock_ops+0x13e/0x180
  RIP: 0010:__cgroup_bpf_run_filter_sock_ops+0x13e/0x180
  <IRQ>
   tcp_call_bpf.constprop.99+0x93/0xc0
   tcp_conn_request+0x41e/0xa50
   ? tcp_rcv_state_process+0x203/0xe00
   tcp_rcv_state_process+0x203/0xe00
   ? sk_filter_trim_cap+0xbc/0x210
   ? tcp_v6_inbound_md5_hash.constprop.41+0x44/0x160
   tcp_v6_do_rcv+0x181/0x3e0
   tcp_v6_rcv+0xc65/0xcb0
   ip6_protocol_deliver_rcu+0xbd/0x450
   ip6_input_finish+0x11/0x20
   ip6_input+0xb5/0xc0
   ip6_sublist_rcv_finish+0x37/0x50
   ip6_sublist_rcv+0x1dc/0x270
   ipv6_list_rcv+0x113/0x140
   __netif_receive_skb_list_core+0x1a0/0x210
   netif_receive_skb_list_internal+0x186/0x2a0
   gro_normal_list.part.170+0x19/0x40
   napi_complete_done+0x65/0x150
   mlx5e_napi_poll+0x1ae/0x680
   __napi_poll+0x25/0x120
   net_rx_action+0x11e/0x280
   __do_softirq+0xbb/0x271
   irq_exit_rcu+0x97/0xa0
   common_interrupt+0x7f/0xa0
   </IRQ>
   asm_common_interrupt+0x1e/0x40
  RIP: 0010:bpf_prog_1835a9241238291a_tw_egress+0x5/0xbac
   ? __cgroup_bpf_run_filter_skb+0x378/0x4e0
   ? do_softirq+0x34/0x70
   ? ip6_finish_output2+0x266/0x590
   ? ip6_finish_output+0x66/0xa0
   ? ip6_output+0x6c/0x130
   ? ip6_xmit+0x279/0x550
   ? ip6_dst_check+0x61/0xd0
  [...]

Using drgn [0] to dump the percpu buffer contents showed that on this CPU
slot 0 is still available, but slots 1-7 are occupied and those tasks in
slots 1-7 mostly don't exist any more. So we might have issues in
bpf_cgroup_storage_unset().

Further debugging confirmed that there is a bug in bpf_cgroup_storage_unset().
Currently, it tries to unset "current" slot with searching from the start.
So the following sequence is possible:

  1. A task is running and claims slot 0
  2. Running BPF program is done, and it checked slot 0 has the "task"
     and ready to reset it to NULL (not yet).
  3. An interrupt happens, another BPF program runs and it claims slot 1
     with the *same* task.
  4. The unset() in interrupt context releases slot 0 since it matches "task".
  5. Interrupt is done, the task in process context reset slot 0.

At the end, slot 1 is not reset and the same process can continue to occupy
slots 2-7 and finally, when the above step 1-5 is repeated again, step 3 BPF
program won't be able to claim an empty slot and a warning will be issued.

To fix the issue, for unset() function, we should traverse from the last slot
to the first. This way, the above issue can be avoided.

The same reverse traversal should also be done in bpf_get_local_storage() helper
itself. Otherwise, incorrect local storage may be returned to BPF program.

  [0] https://github.com/osandov/drgn

Fixes: b910eaaaa4 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210810010413.1976277-1-yhs@fb.com
2021-08-10 10:27:16 +02:00
Jussi Maki
aeea1b86f9 bpf, devmap: Exclude XDP broadcast to master device
If the ingress device is bond slave, do not broadcast back through it or
the bond master.

Signed-off-by: Jussi Maki <joamaki@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210731055738.16820-5-joamaki@gmail.com
2021-08-09 23:25:14 +02:00
Daniel Borkmann
71330842ff bpf: Add _kernel suffix to internal lockdown_bpf_read
Rename LOCKDOWN_BPF_READ into LOCKDOWN_BPF_READ_KERNEL so we have naming
more consistent with a LOCKDOWN_BPF_WRITE_USER option that we are adding.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
2021-08-09 21:50:41 +02:00
Tatsuhiko Yasumatsu
c4eb1f4032 bpf: Fix integer overflow involving bucket_size
In __htab_map_lookup_and_delete_batch(), hash buckets are iterated
over to count the number of elements in each bucket (bucket_size).
If bucket_size is large enough, the multiplication to calculate
kvmalloc() size could overflow, resulting in out-of-bounds write
as reported by KASAN:

  [...]
  [  104.986052] BUG: KASAN: vmalloc-out-of-bounds in __htab_map_lookup_and_delete_batch+0x5ce/0xb60
  [  104.986489] Write of size 4194224 at addr ffffc9010503be70 by task crash/112
  [  104.986889]
  [  104.987193] CPU: 0 PID: 112 Comm: crash Not tainted 5.14.0-rc4 #13
  [  104.987552] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
  [  104.988104] Call Trace:
  [  104.988410]  dump_stack_lvl+0x34/0x44
  [  104.988706]  print_address_description.constprop.0+0x21/0x140
  [  104.988991]  ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60
  [  104.989327]  ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60
  [  104.989622]  kasan_report.cold+0x7f/0x11b
  [  104.989881]  ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60
  [  104.990239]  kasan_check_range+0x17c/0x1e0
  [  104.990467]  memcpy+0x39/0x60
  [  104.990670]  __htab_map_lookup_and_delete_batch+0x5ce/0xb60
  [  104.990982]  ? __wake_up_common+0x4d/0x230
  [  104.991256]  ? htab_of_map_free+0x130/0x130
  [  104.991541]  bpf_map_do_batch+0x1fb/0x220
  [...]

In hashtable, if the elements' keys have the same jhash() value, the
elements will be put into the same bucket. By putting a lot of elements
into a single bucket, the value of bucket_size can be increased to
trigger the integer overflow.

Triggering the overflow is possible for both callers with CAP_SYS_ADMIN
and callers without CAP_SYS_ADMIN.

It will be trivial for a caller with CAP_SYS_ADMIN to intentionally
reach this overflow by enabling BPF_F_ZERO_SEED. As this flag will set
the random seed passed to jhash() to 0, it will be easy for the caller
to prepare keys which will be hashed into the same value, and thus put
all the elements into the same bucket.

If the caller does not have CAP_SYS_ADMIN, BPF_F_ZERO_SEED cannot be
used. However, it will be still technically possible to trigger the
overflow, by guessing the random seed value passed to jhash() (32bit)
and repeating the attempt to trigger the overflow. In this case,
the probability to trigger the overflow will be low and will take
a very long time.

Fix the integer overflow by calling kvmalloc_array() instead of
kvmalloc() to allocate memory.

Fixes: 057996380a ("bpf: Add batch ops to all htab bpf map")
Signed-off-by: Tatsuhiko Yasumatsu <th.yasumatsu@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210806150419.109658-1-th.yasumatsu@gmail.com
2021-08-07 01:39:22 +02:00
Johan Almbladh
b61a28cf11 bpf: Fix off-by-one in tail call count limiting
Before, the interpreter allowed up to MAX_TAIL_CALL_CNT + 1 tail calls.
Now precisely MAX_TAIL_CALL_CNT is allowed, which is in line with the
behavior of the x86 JITs.

Signed-off-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210728164741.350370-1-johan.almbladh@anyfinetworks.com
2021-08-02 15:05:43 -07:00
Jakub Kicinski
d39e8b92c3 Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Andrii Nakryiko says:

====================
bpf-next 2021-07-30

We've added 64 non-merge commits during the last 15 day(s) which contain
a total of 83 files changed, 5027 insertions(+), 1808 deletions(-).

The main changes are:

1) BTF-guided binary data dumping libbpf API, from Alan.

2) Internal factoring out of libbpf CO-RE relocation logic, from Alexei.

3) Ambient BPF run context and cgroup storage cleanup, from Andrii.

4) Few small API additions for libbpf 1.0 effort, from Evgeniy and Hengqi.

5) bpf_program__attach_kprobe_opts() fixes in libbpf, from Jiri.

6) bpf_{get,set}sockopt() support in BPF iterators, from Martin.

7) BPF map pinning improvements in libbpf, from Martynas.

8) Improved module BTF support in libbpf and bpftool, from Quentin.

9) Bpftool cleanups and documentation improvements, from Quentin.

10) Libbpf improvements for supporting CO-RE on old kernels, from Shuyi.

11) Increased maximum cgroup storage size, from Stanislav.

12) Small fixes and improvements to BPF tests and samples, from various folks.

* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (64 commits)
  tools: bpftool: Complete metrics list in "bpftool prog profile" doc
  tools: bpftool: Document and add bash completion for -L, -B options
  selftests/bpf: Update bpftool's consistency script for checking options
  tools: bpftool: Update and synchronise option list in doc and help msg
  tools: bpftool: Complete and synchronise attach or map types
  selftests/bpf: Check consistency between bpftool source, doc, completion
  tools: bpftool: Slightly ease bash completion updates
  unix_bpf: Fix a potential deadlock in unix_dgram_bpf_recvmsg()
  libbpf: Add btf__load_vmlinux_btf/btf__load_module_btf
  tools: bpftool: Support dumping split BTF by id
  libbpf: Add split BTF support for btf__load_from_kernel_by_id()
  tools: Replace btf__get_from_id() with btf__load_from_kernel_by_id()
  tools: Free BTF objects at various locations
  libbpf: Rename btf__get_from_id() as btf__load_from_kernel_by_id()
  libbpf: Rename btf__load() as btf__load_into_kernel()
  libbpf: Return non-null error on failures in libbpf_find_prog_btf_id()
  bpf: Emit better log message if bpf_iter ctx arg btf_id == 0
  tools/resolve_btfids: Emit warnings and patch zero id for missing symbols
  bpf: Increase supported cgroup storage value size
  libbpf: Fix race when pinning maps in parallel
  ...
====================

Link: https://lore.kernel.org/r/20210730225606.1897330-1-andrii@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-07-31 11:23:26 -07:00
Jakub Kicinski
d2e11fd2b7 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Conflicting commits, all resolutions pretty trivial:

drivers/bus/mhi/pci_generic.c
  5c2c853159 ("bus: mhi: pci-generic: configurable network interface MRU")
  56f6f4c4eb ("bus: mhi: pci_generic: Apply no-op for wake using sideband wake boolean")

drivers/nfc/s3fwrn5/firmware.c
  a0302ff590 ("nfc: s3fwrn5: remove unnecessary label")
  46573e3ab0 ("nfc: s3fwrn5: fix undefined parameter values in dev_err()")
  801e541c79 ("nfc: s3fwrn5: fix undefined parameter values in dev_err()")

MAINTAINERS
  7d901a1e87 ("net: phy: add Maxlinear GPY115/21x/24x driver")
  8a7b46fa79 ("MAINTAINERS: add Yasushi SHOJI as reviewer for the Microchip CAN BUS Analyzer Tool driver")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-07-31 09:14:46 -07:00
Yonghong Song
d36216429f bpf: Emit better log message if bpf_iter ctx arg btf_id == 0
To avoid kernel build failure due to some missing .BTF-ids referenced
functions/types, the patch ([1]) tries to fill btf_id 0 for
these types.

In bpf verifier, for percpu variable and helper returning btf_id cases,
verifier already emitted proper warning with something like
  verbose(env, "Helper has invalid btf_id in R%d\n", regno);
  verbose(env, "invalid return type %d of func %s#%d\n",
          fn->ret_type, func_id_name(func_id), func_id);

But this is not the case for bpf_iter context arguments.
I hacked resolve_btfids to encode btf_id 0 for struct task_struct.
With `./test_progs -n 7/5`, I got,
  0: (79) r2 = *(u64 *)(r1 +0)
  func 'bpf_iter_task' arg0 has btf_id 29739 type STRUCT 'bpf_iter_meta'
  ; struct seq_file *seq = ctx->meta->seq;
  1: (79) r6 = *(u64 *)(r2 +0)
  ; struct task_struct *task = ctx->task;
  2: (79) r7 = *(u64 *)(r1 +8)
  ; if (task == (void *)0) {
  3: (55) if r7 != 0x0 goto pc+11
  ...
  ; BPF_SEQ_PRINTF(seq, "%8d %8d\n", task->tgid, task->pid);
  26: (61) r1 = *(u32 *)(r7 +1372)
  Type '(anon)' is not a struct

Basically, verifier will return btf_id 0 for task_struct.
Later on, when the code tries to access task->tgid, the
verifier correctly complains the type is '(anon)' and it is
not a struct. Users still need to backtrace to find out
what is going on.

Let us catch the invalid btf_id 0 earlier
and provide better message indicating btf_id is wrong.
The new error message looks like below:
  R1 type=ctx expected=fp
  ; struct seq_file *seq = ctx->meta->seq;
  0: (79) r2 = *(u64 *)(r1 +0)
  func 'bpf_iter_task' arg0 has btf_id 29739 type STRUCT 'bpf_iter_meta'
  ; struct seq_file *seq = ctx->meta->seq;
  1: (79) r6 = *(u64 *)(r2 +0)
  ; struct task_struct *task = ctx->task;
  2: (79) r7 = *(u64 *)(r1 +8)
  invalid btf_id for context argument offset 8
  invalid bpf_context access off=8 size=8

[1] https://lore.kernel.org/bpf/20210727132532.2473636-1-hengqi.chen@gmail.com/

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210728183025.1461750-1-yhs@fb.com
2021-07-29 15:10:11 -07:00
Daniel Borkmann
2039f26f3a bpf: Fix leakage due to insufficient speculative store bypass mitigation
Spectre v4 gadgets make use of memory disambiguation, which is a set of
techniques that execute memory access instructions, that is, loads and
stores, out of program order; Intel's optimization manual, section 2.4.4.5:

  A load instruction micro-op may depend on a preceding store. Many
  microarchitectures block loads until all preceding store addresses are
  known. The memory disambiguator predicts which loads will not depend on
  any previous stores. When the disambiguator predicts that a load does
  not have such a dependency, the load takes its data from the L1 data
  cache. Eventually, the prediction is verified. If an actual conflict is
  detected, the load and all succeeding instructions are re-executed.

af86ca4e30 ("bpf: Prevent memory disambiguation attack") tried to mitigate
this attack by sanitizing the memory locations through preemptive "fast"
(low latency) stores of zero prior to the actual "slow" (high latency) store
of a pointer value such that upon dependency misprediction the CPU then
speculatively executes the load of the pointer value and retrieves the zero
value instead of the attacker controlled scalar value previously stored at
that location, meaning, subsequent access in the speculative domain is then
redirected to the "zero page".

The sanitized preemptive store of zero prior to the actual "slow" store is
done through a simple ST instruction based on r10 (frame pointer) with
relative offset to the stack location that the verifier has been tracking
on the original used register for STX, which does not have to be r10. Thus,
there are no memory dependencies for this store, since it's only using r10
and immediate constant of zero; hence af86ca4e30 /assumed/ a low latency
operation.

However, a recent attack demonstrated that this mitigation is not sufficient
since the preemptive store of zero could also be turned into a "slow" store
and is thus bypassed as well:

  [...]
  // r2 = oob address (e.g. scalar)
  // r7 = pointer to map value
  31: (7b) *(u64 *)(r10 -16) = r2
  // r9 will remain "fast" register, r10 will become "slow" register below
  32: (bf) r9 = r10
  // JIT maps BPF reg to x86 reg:
  //  r9  -> r15 (callee saved)
  //  r10 -> rbp
  // train store forward prediction to break dependency link between both r9
  // and r10 by evicting them from the predictor's LRU table.
  33: (61) r0 = *(u32 *)(r7 +24576)
  34: (63) *(u32 *)(r7 +29696) = r0
  35: (61) r0 = *(u32 *)(r7 +24580)
  36: (63) *(u32 *)(r7 +29700) = r0
  37: (61) r0 = *(u32 *)(r7 +24584)
  38: (63) *(u32 *)(r7 +29704) = r0
  39: (61) r0 = *(u32 *)(r7 +24588)
  40: (63) *(u32 *)(r7 +29708) = r0
  [...]
  543: (61) r0 = *(u32 *)(r7 +25596)
  544: (63) *(u32 *)(r7 +30716) = r0
  // prepare call to bpf_ringbuf_output() helper. the latter will cause rbp
  // to spill to stack memory while r13/r14/r15 (all callee saved regs) remain
  // in hardware registers. rbp becomes slow due to push/pop latency. below is
  // disasm of bpf_ringbuf_output() helper for better visual context:
  //
  // ffffffff8117ee20: 41 54                 push   r12
  // ffffffff8117ee22: 55                    push   rbp
  // ffffffff8117ee23: 53                    push   rbx
  // ffffffff8117ee24: 48 f7 c1 fc ff ff ff  test   rcx,0xfffffffffffffffc
  // ffffffff8117ee2b: 0f 85 af 00 00 00     jne    ffffffff8117eee0 <-- jump taken
  // [...]
  // ffffffff8117eee0: 49 c7 c4 ea ff ff ff  mov    r12,0xffffffffffffffea
  // ffffffff8117eee7: 5b                    pop    rbx
  // ffffffff8117eee8: 5d                    pop    rbp
  // ffffffff8117eee9: 4c 89 e0              mov    rax,r12
  // ffffffff8117eeec: 41 5c                 pop    r12
  // ffffffff8117eeee: c3                    ret
  545: (18) r1 = map[id:4]
  547: (bf) r2 = r7
  548: (b7) r3 = 0
  549: (b7) r4 = 4
  550: (85) call bpf_ringbuf_output#194288
  // instruction 551 inserted by verifier    \
  551: (7a) *(u64 *)(r10 -16) = 0            | /both/ are now slow stores here
  // storing map value pointer r7 at fp-16   | since value of r10 is "slow".
  552: (7b) *(u64 *)(r10 -16) = r7           /
  // following "fast" read to the same memory location, but due to dependency
  // misprediction it will speculatively execute before insn 551/552 completes.
  553: (79) r2 = *(u64 *)(r9 -16)
  // in speculative domain contains attacker controlled r2. in non-speculative
  // domain this contains r7, and thus accesses r7 +0 below.
  554: (71) r3 = *(u8 *)(r2 +0)
  // leak r3

As can be seen, the current speculative store bypass mitigation which the
verifier inserts at line 551 is insufficient since /both/, the write of
the zero sanitation as well as the map value pointer are a high latency
instruction due to prior memory access via push/pop of r10 (rbp) in contrast
to the low latency read in line 553 as r9 (r15) which stays in hardware
registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally,
fp-16 can still be r2.

Initial thoughts to address this issue was to track spilled pointer loads
from stack and enforce their load via LDX through r10 as well so that /both/
the preemptive store of zero /as well as/ the load use the /same/ register
such that a dependency is created between the store and load. However, this
option is not sufficient either since it can be bypassed as well under
speculation. An updated attack with pointer spill/fills now _all_ based on
r10 would look as follows:

  [...]
  // r2 = oob address (e.g. scalar)
  // r7 = pointer to map value
  [...]
  // longer store forward prediction training sequence than before.
  2062: (61) r0 = *(u32 *)(r7 +25588)
  2063: (63) *(u32 *)(r7 +30708) = r0
  2064: (61) r0 = *(u32 *)(r7 +25592)
  2065: (63) *(u32 *)(r7 +30712) = r0
  2066: (61) r0 = *(u32 *)(r7 +25596)
  2067: (63) *(u32 *)(r7 +30716) = r0
  // store the speculative load address (scalar) this time after the store
  // forward prediction training.
  2068: (7b) *(u64 *)(r10 -16) = r2
  // preoccupy the CPU store port by running sequence of dummy stores.
  2069: (63) *(u32 *)(r7 +29696) = r0
  2070: (63) *(u32 *)(r7 +29700) = r0
  2071: (63) *(u32 *)(r7 +29704) = r0
  2072: (63) *(u32 *)(r7 +29708) = r0
  2073: (63) *(u32 *)(r7 +29712) = r0
  2074: (63) *(u32 *)(r7 +29716) = r0
  2075: (63) *(u32 *)(r7 +29720) = r0
  2076: (63) *(u32 *)(r7 +29724) = r0
  2077: (63) *(u32 *)(r7 +29728) = r0
  2078: (63) *(u32 *)(r7 +29732) = r0
  2079: (63) *(u32 *)(r7 +29736) = r0
  2080: (63) *(u32 *)(r7 +29740) = r0
  2081: (63) *(u32 *)(r7 +29744) = r0
  2082: (63) *(u32 *)(r7 +29748) = r0
  2083: (63) *(u32 *)(r7 +29752) = r0
  2084: (63) *(u32 *)(r7 +29756) = r0
  2085: (63) *(u32 *)(r7 +29760) = r0
  2086: (63) *(u32 *)(r7 +29764) = r0
  2087: (63) *(u32 *)(r7 +29768) = r0
  2088: (63) *(u32 *)(r7 +29772) = r0
  2089: (63) *(u32 *)(r7 +29776) = r0
  2090: (63) *(u32 *)(r7 +29780) = r0
  2091: (63) *(u32 *)(r7 +29784) = r0
  2092: (63) *(u32 *)(r7 +29788) = r0
  2093: (63) *(u32 *)(r7 +29792) = r0
  2094: (63) *(u32 *)(r7 +29796) = r0
  2095: (63) *(u32 *)(r7 +29800) = r0
  2096: (63) *(u32 *)(r7 +29804) = r0
  2097: (63) *(u32 *)(r7 +29808) = r0
  2098: (63) *(u32 *)(r7 +29812) = r0
  // overwrite scalar with dummy pointer; same as before, also including the
  // sanitation store with 0 from the current mitigation by the verifier.
  2099: (7a) *(u64 *)(r10 -16) = 0         | /both/ are now slow stores here
  2100: (7b) *(u64 *)(r10 -16) = r7        | since store unit is still busy.
  // load from stack intended to bypass stores.
  2101: (79) r2 = *(u64 *)(r10 -16)
  2102: (71) r3 = *(u8 *)(r2 +0)
  // leak r3
  [...]

Looking at the CPU microarchitecture, the scheduler might issue loads (such
as seen in line 2101) before stores (line 2099,2100) because the load execution
units become available while the store execution unit is still busy with the
sequence of dummy stores (line 2069-2098). And so the load may use the prior
stored scalar from r2 at address r10 -16 for speculation. The updated attack
may work less reliable on CPU microarchitectures where loads and stores share
execution resources.

This concludes that the sanitizing with zero stores from af86ca4e30 ("bpf:
Prevent memory disambiguation attack") is insufficient. Moreover, the detection
of stack reuse from af86ca4e30 where previously data (STACK_MISC) has been
written to a given stack slot where a pointer value is now to be stored does
not have sufficient coverage as precondition for the mitigation either; for
several reasons outlined as follows:

 1) Stack content from prior program runs could still be preserved and is
    therefore not "random", best example is to split a speculative store
    bypass attack between tail calls, program A would prepare and store the
    oob address at a given stack slot and then tail call into program B which
    does the "slow" store of a pointer to the stack with subsequent "fast"
    read. From program B PoV such stack slot type is STACK_INVALID, and
    therefore also must be subject to mitigation.

 2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr)
    condition, for example, the previous content of that memory location could
    also be a pointer to map or map value. Without the fix, a speculative
    store bypass is not mitigated in such precondition and can then lead to
    a type confusion in the speculative domain leaking kernel memory near
    these pointer types.

While brainstorming on various alternative mitigation possibilities, we also
stumbled upon a retrospective from Chrome developers [0]:

  [...] For variant 4, we implemented a mitigation to zero the unused memory
  of the heap prior to allocation, which cost about 1% when done concurrently
  and 4% for scavenging. Variant 4 defeats everything we could think of. We
  explored more mitigations for variant 4 but the threat proved to be more
  pervasive and dangerous than we anticipated. For example, stack slots used
  by the register allocator in the optimizing compiler could be subject to
  type confusion, leading to pointer crafting. Mitigating type confusion for
  stack slots alone would have required a complete redesign of the backend of
  the optimizing compiler, perhaps man years of work, without a guarantee of
  completeness. [...]

From BPF side, the problem space is reduced, however, options are rather
limited. One idea that has been explored was to xor-obfuscate pointer spills
to the BPF stack:

  [...]
  // preoccupy the CPU store port by running sequence of dummy stores.
  [...]
  2106: (63) *(u32 *)(r7 +29796) = r0
  2107: (63) *(u32 *)(r7 +29800) = r0
  2108: (63) *(u32 *)(r7 +29804) = r0
  2109: (63) *(u32 *)(r7 +29808) = r0
  2110: (63) *(u32 *)(r7 +29812) = r0
  // overwrite scalar with dummy pointer; xored with random 'secret' value
  // of 943576462 before store ...
  2111: (b4) w11 = 943576462
  2112: (af) r11 ^= r7
  2113: (7b) *(u64 *)(r10 -16) = r11
  2114: (79) r11 = *(u64 *)(r10 -16)
  2115: (b4) w2 = 943576462
  2116: (af) r2 ^= r11
  // ... and restored with the same 'secret' value with the help of AX reg.
  2117: (71) r3 = *(u8 *)(r2 +0)
  [...]

While the above would not prevent speculation, it would make data leakage
infeasible by directing it to random locations. In order to be effective
and prevent type confusion under speculation, such random secret would have
to be regenerated for each store. The additional complexity involved for a
tracking mechanism that prevents jumps such that restoring spilled pointers
would not get corrupted is not worth the gain for unprivileged. Hence, the
fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC
instruction which the x86 JIT translates into a lfence opcode. Inserting the
latter in between the store and load instruction is one of the mitigations
options [1]. The x86 instruction manual notes:

  [...] An LFENCE that follows an instruction that stores to memory might
  complete before the data being stored have become globally visible. [...]

The latter meaning that the preceding store instruction finished execution
and the store is at minimum guaranteed to be in the CPU's store queue, but
it's not guaranteed to be in that CPU's L1 cache at that point (globally
visible). The latter would only be guaranteed via sfence. So the load which
is guaranteed to execute after the lfence for that local CPU would have to
rely on store-to-load forwarding. [2], in section 2.3 on store buffers says:

  [...] For every store operation that is added to the ROB, an entry is
  allocated in the store buffer. This entry requires both the virtual and
  physical address of the target. Only if there is no free entry in the store
  buffer, the frontend stalls until there is an empty slot available in the
  store buffer again. Otherwise, the CPU can immediately continue adding
  subsequent instructions to the ROB and execute them out of order. On Intel
  CPUs, the store buffer has up to 56 entries. [...]

One small upside on the fix is that it lifts constraints from af86ca4e30
where the sanitize_stack_off relative to r10 must be the same when coming
from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX
or BPF_ST instruction. This happens either when we store a pointer or data
value to the BPF stack for the first time, or upon later pointer spills.
The former needs to be enforced since otherwise stale stack data could be
leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST |
BPF_NOSPEC mapping is currently optimized away, but others could emit a
speculation barrier as well if necessary. For real-world unprivileged
programs e.g. generated by LLVM, pointer spill/fill is only generated upon
register pressure and LLVM only tries to do that for pointers which are not
used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC
sanitation for the STACK_INVALID case when the first write to a stack slot
occurs e.g. upon map lookup. In future we might refine ways to mitigate
the latter cost.

  [0] https://arxiv.org/pdf/1902.05178.pdf
  [1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
  [2] https://arxiv.org/pdf/1905.05725.pdf

Fixes: af86ca4e30 ("bpf: Prevent memory disambiguation attack")
Fixes: f7cf25b202 ("bpf: track spill/fill of constants")
Co-developed-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-29 00:27:52 +02:00
Daniel Borkmann
f5e81d1117 bpf: Introduce BPF nospec instruction for mitigating Spectre v4
In case of JITs, each of the JIT backends compiles the BPF nospec instruction
/either/ to a machine instruction which emits a speculation barrier /or/ to
/no/ machine instruction in case the underlying architecture is not affected
by Speculative Store Bypass or has different mitigations in place already.

This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence'
instruction for mitigation. In case of arm64, we rely on the firmware mitigation
as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled,
it works for all of the kernel code with no need to provide any additional
instructions here (hence only comment in arm64 JIT). Other archs can follow
as needed. The BPF nospec instruction is specifically targeting Spectre v4
since i) we don't use a serialization barrier for the Spectre v1 case, and
ii) mitigation instructions for v1 and v4 might be different on some archs.

The BPF nospec is required for a future commit, where the BPF verifier does
annotate intermediate BPF programs with speculation barriers.

Co-developed-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-29 00:20:56 +02:00
Stanislav Fomichev
33b57e0cc7 bpf: Increase supported cgroup storage value size
Current max cgroup storage value size is 4k (PAGE_SIZE). The other local
storages accept up to 64k (BPF_LOCAL_STORAGE_MAX_VALUE_SIZE). Let's align
max cgroup value size with the other storages.

For percpu, the max is 32k (PCPU_MIN_UNIT_SIZE) because percpu
allocator is not happy about larger values.

netcnt test is extended to exercise those maximum values
(non-percpu max size is close to, but not real max).

v4:
* remove inner union (Andrii Nakryiko)
* keep net_cnt on the stack (Andrii Nakryiko)

v3:
* refine SIZEOF_BPF_LOCAL_STORAGE_ELEM comment (Yonghong Song)
* anonymous struct in percpu_net_cnt & net_cnt (Yonghong Song)
* reorder free (Yonghong Song)

v2:
* cap max_value_size instead of BUILD_BUG_ON (Martin KaFai Lau)

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210727222335.4029096-1-sdf@google.com
2021-07-27 15:59:29 -07:00
Martin KaFai Lau
3cee6fb8e6 bpf: tcp: Support bpf_(get|set)sockopt in bpf tcp iter
This patch allows bpf tcp iter to call bpf_(get|set)sockopt.
To allow a specific bpf iter (tcp here) to call a set of helpers,
get_func_proto function pointer is added to bpf_iter_reg.
The bpf iter is a tracing prog which currently requires
CAP_PERFMON or CAP_SYS_ADMIN, so this patch does not
impose other capability checks for bpf_(get|set)sockopt.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210701200619.1036715-1-kafai@fb.com
2021-07-23 16:45:07 -07:00
David S. Miller
5af84df962 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Conflicts are simple overlapping changes.

Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-23 16:13:06 +01:00
Colin Ian King
724f17b7d4 bpf: Remove redundant intiialization of variable stype
The variable stype is being initialized with a value that is never
read, it is being updated later on. The assignment is redundant and
can be removed.

Addresses-Coverity: ("Unused value")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210721115630.109279-1-colin.king@canonical.com
2021-07-22 16:34:35 -07:00
Andrii Nakryiko
c7603cfa04 bpf: Add ambient BPF runtime context stored in current
b910eaaaa4 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage()
helper") fixed the problem with cgroup-local storage use in BPF by
pre-allocating per-CPU array of 8 cgroup storage pointers to accommodate
possible BPF program preemptions and nested executions.

While this seems to work good in practice, it introduces new and unnecessary
failure mode in which not all BPF programs might be executed if we fail to
find an unused slot for cgroup storage, however unlikely it is. It might also
not be so unlikely when/if we allow sleepable cgroup BPF programs in the
future.

Further, the way that cgroup storage is implemented as ambiently-available
property during entire BPF program execution is a convenient way to pass extra
information to BPF program and helpers without requiring user code to pass
around extra arguments explicitly. So it would be good to have a generic
solution that can allow implementing this without arbitrary restrictions.
Ideally, such solution would work for both preemptable and sleepable BPF
programs in exactly the same way.

This patch introduces such solution, bpf_run_ctx. It adds one pointer field
(bpf_ctx) to task_struct. This field is maintained by BPF_PROG_RUN family of
macros in such a way that it always stays valid throughout BPF program
execution. BPF program preemption is handled by remembering previous
current->bpf_ctx value locally while executing nested BPF program and
restoring old value after nested BPF program finishes. This is handled by two
helper functions, bpf_set_run_ctx() and bpf_reset_run_ctx(), which are
supposed to be used before and after BPF program runs, respectively.

Restoring old value of the pointer handles preemption, while bpf_run_ctx
pointer being a property of current task_struct naturally solves this problem
for sleepable BPF programs by "following" BPF program execution as it is
scheduled in and out of CPU. It would even allow CPU migration of BPF
programs, even though it's not currently allowed by BPF infra.

This patch cleans up cgroup local storage handling as a first application. The
design itself is generic, though, with bpf_run_ctx being an empty struct that
is supposed to be embedded into a specific struct for a given BPF program type
(bpf_cg_run_ctx in this case). Follow up patches are planned that will expand
this mechanism for other uses within tracing BPF programs.

To verify that this change doesn't revert the fix to the original cgroup
storage issue, I ran the same repro as in the original report ([0]) and didn't
get any problems. Replacing bpf_reset_run_ctx(old_run_ctx) with
bpf_reset_run_ctx(NULL) triggers the issue pretty quickly (so repro does work).

  [0] https://lore.kernel.org/bpf/YEEvBUiJl2pJkxTd@krava/

Fixes: b910eaaaa4 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210712230615.3525979-1-andrii@kernel.org
2021-07-16 21:15:28 +02:00
Daniel Borkmann
e042aa532c bpf: Fix pointer arithmetic mask tightening under state pruning
In 7fedb63a83 ("bpf: Tighten speculative pointer arithmetic mask") we
narrowed the offset mask for unprivileged pointer arithmetic in order to
mitigate a corner case where in the speculative domain it is possible to
advance, for example, the map value pointer by up to value_size-1 out-of-
bounds in order to leak kernel memory via side-channel to user space.

The verifier's state pruning for scalars leaves one corner case open
where in the first verification path R_x holds an unknown scalar with an
aux->alu_limit of e.g. 7, and in a second verification path that same
register R_x, here denoted as R_x', holds an unknown scalar which has
tighter bounds and would thus satisfy range_within(R_x, R_x') as well as
tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3:
Given the second path fits the register constraints for pruning, the final
generated mask from aux->alu_limit will remain at 7. While technically
not wrong for the non-speculative domain, it would however be possible
to craft similar cases where the mask would be too wide as in 7fedb63a83.

One way to fix it is to detect the presence of unknown scalar map pointer
arithmetic and force a deeper search on unknown scalars to ensure that
we do not run into a masking mismatch.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-16 16:57:07 +02:00
Daniel Borkmann
59089a189e bpf: Remove superfluous aux sanitation on subprog rejection
Follow-up to fe9a5ca7e3 ("bpf: Do not mark insn as seen under speculative
path verification"). The sanitize_insn_aux_data() helper does not serve a
particular purpose in today's code. The original intention for the helper
was that if function-by-function verification fails, a given program would
be cleared from temporary insn_aux_data[], and then its verification would
be re-attempted in the context of the main program a second time.

However, a failure in do_check_subprogs() will skip do_check_main() and
propagate the error to the user instead, thus such situation can never occur.
Given its interaction is not compatible to the Spectre v1 mitigation (due to
comparing aux->seen with env->pass_cnt), just remove sanitize_insn_aux_data()
to avoid future bugs in this area.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-16 16:57:07 +02:00
David S. Miller
82a1ffe57e Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:

====================
pull-request: bpf-next 2021-07-15

The following pull-request contains BPF updates for your *net-next* tree.

We've added 45 non-merge commits during the last 15 day(s) which contain
a total of 52 files changed, 3122 insertions(+), 384 deletions(-).

The main changes are:

1) Introduce bpf timers, from Alexei.

2) Add sockmap support for unix datagram socket, from Cong.

3) Fix potential memleak and UAF in the verifier, from He.

4) Add bpf_get_func_ip helper, from Jiri.

5) Improvements to generic XDP mode, from Kumar.

6) Support for passing xdp_md to XDP programs in bpf_prog_run, from Zvi.
===================

Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-15 22:40:10 -07:00
Cong Wang
17edea21b3 sock_map: Relax config dependency to CONFIG_NET
Currently sock_map still has Kconfig dependency on CONFIG_INET,
but there is no actual functional dependency on it after we
introduce ->psock_update_sk_prot().

We have to extend it to CONFIG_NET now as we are going to
support AF_UNIX.

Signed-off-by: Cong Wang <cong.wang@bytedance.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210704190252.11866-2-xiyou.wangcong@gmail.com
2021-07-15 18:17:49 -07:00
Jiri Olsa
9ffd9f3ff7 bpf: Add bpf_get_func_ip helper for kprobe programs
Adding bpf_get_func_ip helper for BPF_PROG_TYPE_KPROBE programs,
so it's now possible to call bpf_get_func_ip from both kprobe and
kretprobe programs.

Taking the caller's address from 'struct kprobe::addr', which is
defined for both kprobe and kretprobe.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/bpf/20210714094400.396467-5-jolsa@kernel.org
2021-07-15 17:59:09 -07:00
Jiri Olsa
9b99edcae5 bpf: Add bpf_get_func_ip helper for tracing programs
Adding bpf_get_func_ip helper for BPF_PROG_TYPE_TRACING programs,
specifically for all trampoline attach types.

The trampoline's caller IP address is stored in (ctx - 8) address.
so there's no reason to actually call the helper, but rather fixup
the call instruction and return [ctx - 8] value directly.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210714094400.396467-4-jolsa@kernel.org
2021-07-15 17:58:41 -07:00
Jiri Olsa
1e37392ccc bpf: Enable BPF_TRAMP_F_IP_ARG for trampolines with call_get_func_ip
Enabling BPF_TRAMP_F_IP_ARG for trampolines that actually need it.

The BPF_TRAMP_F_IP_ARG adds extra 3 instructions to trampoline code
and is used only by programs with bpf_get_func_ip helper, which is
added in following patch and sets call_get_func_ip bit.

This patch ensures that BPF_TRAMP_F_IP_ARG flag is used only for
trampolines that have programs with call_get_func_ip set.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210714094400.396467-3-jolsa@kernel.org
2021-07-15 17:16:06 -07:00
Alexei Starovoitov
7ddc80a476 bpf: Teach stack depth check about async callbacks.
Teach max stack depth checking algorithm about async callbacks
that don't increase bpf program stack size.
Also add sanity check that bpf_tail_call didn't sneak into async cb.
It's impossible, since PTR_TO_CTX is not available in async cb,
hence the program cannot contain bpf_tail_call(ctx,...);

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-10-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Alexei Starovoitov
bfc6bb74e4 bpf: Implement verifier support for validation of async callbacks.
bpf_for_each_map_elem() and bpf_timer_set_callback() helpers are relying on
PTR_TO_FUNC infra in the verifier to validate addresses to subprograms
and pass them into the helpers as function callbacks.
In case of bpf_for_each_map_elem() the callback is invoked synchronously
and the verifier treats it as a normal subprogram call by adding another
bpf_func_state and new frame in __check_func_call().
bpf_timer_set_callback() doesn't invoke the callback directly.
The subprogram will be called asynchronously from bpf_timer_cb().
Teach the verifier to validate such async callbacks as special kind
of jump by pushing verifier state into stack and let pop_stack() process it.

Special care needs to be taken during state pruning.
The call insn doing bpf_timer_set_callback has to be a prune_point.
Otherwise short timer callbacks might not have prune points in front of
bpf_timer_set_callback() which means is_state_visited() will be called
after this call insn is processed in __check_func_call(). Which means that
another async_cb state will be pushed to be walked later and the verifier
will eventually hit BPF_COMPLEXITY_LIMIT_JMP_SEQ limit.
Since push_async_cb() looks like another push_stack() branch the
infinite loop detection will trigger false positive. To recognize
this case mark such states as in_async_callback_fn.
To distinguish infinite loop in async callback vs the same callback called
with different arguments for different map and timer add async_entry_cnt
to bpf_func_state.

Enforce return zero from async callbacks.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-9-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Alexei Starovoitov
86fc6ee6e2 bpf: Relax verifier recursion check.
In the following bpf subprogram:
static int timer_cb(void *map, void *key, void *value)
{
    bpf_timer_set_callback(.., timer_cb);
}

the 'timer_cb' is a pointer to a function.
ld_imm64 insn is used to carry this pointer.
bpf_pseudo_func() returns true for such ld_imm64 insn.

Unlike bpf_for_each_map_elem() the bpf_timer_set_callback() is asynchronous.
Relax control flow check to allow such "recursion" that is seen as an infinite
loop by check_cfg(). The distinction between bpf_for_each_map_elem() the
bpf_timer_set_callback() is done in the follow up patch.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-8-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Alexei Starovoitov
40ec00abf1 bpf: Remember BTF of inner maps.
BTF is required for 'struct bpf_timer' to be recognized inside map value.
The bpf timers are supported inside inner maps.
Remember 'struct btf *' in inner_map_meta to make it available
to the verifier in the sequence:

struct bpf_map *inner_map = bpf_map_lookup_elem(&outer_map, ...);
if (inner_map)
    timer = bpf_map_lookup_elem(&inner_map, ...);

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-7-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Alexei Starovoitov
3e8ce29850 bpf: Prevent pointer mismatch in bpf_timer_init.
bpf_timer_init() arguments are:
1. pointer to a timer (which is embedded in map element).
2. pointer to a map.
Make sure that pointer to a timer actually belongs to that map.

Use map_uid (which is unique id of inner map) to reject:
inner_map1 = bpf_map_lookup_elem(outer_map, key1)
inner_map2 = bpf_map_lookup_elem(outer_map, key2)
if (inner_map1 && inner_map2) {
    timer = bpf_map_lookup_elem(inner_map1);
    if (timer)
        // mismatch would have been allowed
        bpf_timer_init(timer, inner_map2);
}

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-6-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Alexei Starovoitov
68134668c1 bpf: Add map side support for bpf timers.
Restrict bpf timers to array, hash (both preallocated and kmalloced), and
lru map types. The per-cpu maps with timers don't make sense, since 'struct
bpf_timer' is a part of map value. bpf timers in per-cpu maps would mean that
the number of timers depends on number of possible cpus and timers would not be
accessible from all cpus. lpm map support can be added in the future.
The timers in inner maps are supported.

The bpf_map_update/delete_elem() helpers and sys_bpf commands cancel and free
bpf_timer in a given map element.

Similar to 'struct bpf_spin_lock' BTF is required and it is used to validate
that map element indeed contains 'struct bpf_timer'.

Make check_and_init_map_value() init both bpf_spin_lock and bpf_timer when
map element data is reused in preallocated htab and lru maps.

Teach copy_map_value() to support both bpf_spin_lock and bpf_timer in a single
map element. There could be one of each, but not more than one. Due to 'one
bpf_timer in one element' restriction do not support timers in global data,
since global data is a map of single element, but from bpf program side it's
seen as many global variables and restriction of single global timer would be
odd. The sys_bpf map_freeze and sys_mmap syscalls are not allowed on maps with
timers, since user space could have corrupted mmap element and crashed the
kernel. The maps with timers cannot be readonly. Due to these restrictions
search for bpf_timer in datasec BTF in case it was placed in the global data to
report clear error.

The previous patch allowed 'struct bpf_timer' as a first field in a map
element only. Relax this restriction.

Refactor lru map to s/bpf_lru_push_free/htab_lru_push_free/ to cancel and free
the timer when lru map deletes an element as a part of it eviction algorithm.

Make sure that bpf program cannot access 'struct bpf_timer' via direct load/store.
The timer operation are done through helpers only.
This is similar to 'struct bpf_spin_lock'.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-5-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Alexei Starovoitov
b00628b1c7 bpf: Introduce bpf timers.
Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded
in hash/array/lru maps as a regular field and helpers to operate on it:

// Initialize the timer.
// First 4 bits of 'flags' specify clockid.
// Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags);

// Configure the timer to call 'callback_fn' static function.
long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);

// Arm the timer to expire 'nsec' nanoseconds from the current time.
long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags);

// Cancel the timer and wait for callback_fn to finish if it was running.
long bpf_timer_cancel(struct bpf_timer *timer);

Here is how BPF program might look like:
struct map_elem {
    int counter;
    struct bpf_timer timer;
};

struct {
    __uint(type, BPF_MAP_TYPE_HASH);
    __uint(max_entries, 1000);
    __type(key, int);
    __type(value, struct map_elem);
} hmap SEC(".maps");

static int timer_cb(void *map, int *key, struct map_elem *val);
/* val points to particular map element that contains bpf_timer. */

SEC("fentry/bpf_fentry_test1")
int BPF_PROG(test1, int a)
{
    struct map_elem *val;
    int key = 0;

    val = bpf_map_lookup_elem(&hmap, &key);
    if (val) {
        bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME);
        bpf_timer_set_callback(&val->timer, timer_cb);
        bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0);
    }
}

This patch adds helper implementations that rely on hrtimers
to call bpf functions as timers expire.
The following patches add necessary safety checks.

Only programs with CAP_BPF are allowed to use bpf_timer.

The amount of timers used by the program is constrained by
the memcg recorded at map creation time.

The bpf_timer_init() helper needs explicit 'map' argument because inner maps
are dynamic and not known at load time. While the bpf_timer_set_callback() is
receiving hidden 'aux->prog' argument supplied by the verifier.

The prog pointer is needed to do refcnting of bpf program to make sure that
program doesn't get freed while the timer is armed. This approach relies on
"user refcnt" scheme used in prog_array that stores bpf programs for
bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is
paired with bpf_timer_cancel() that will drop the prog refcnt. The
ops->map_release_uref is responsible for cancelling the timers and dropping
prog refcnt when user space reference to a map reaches zero.
This uref approach is done to make sure that Ctrl-C of user space process will
not leave timers running forever unless the user space explicitly pinned a map
that contained timers in bpffs.

bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't
have user references (is not held by open file descriptor from user space and
not pinned in bpffs).

The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel
and free the timer if given map element had it allocated.
"bpftool map update" command can be used to cancel timers.

The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because
'__u64 :64' has 1 byte alignment of 8 byte padding.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Alexei Starovoitov
c1b3fed319 bpf: Factor out bpf_spin_lock into helpers.
Move ____bpf_spin_lock/unlock into helpers to make it more clear
that quadruple underscore bpf_spin_lock/unlock are irqsave/restore variants.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-3-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
Alexei Starovoitov
d809e134be bpf: Prepare bpf_prog_put() to be called from irq context.
Currently bpf_prog_put() is called from the task context only.
With addition of bpf timers the timer related helpers will start calling
bpf_prog_put() from irq-saved region and in rare cases might drop
the refcnt to zero.
To address this case, first, convert bpf_prog_free_id() to be irq-save
(this is similar to bpf_map_free_id), and, second, defer non irq
appropriate calls into work queue.
For example:
bpf_audit_prog() is calling kmalloc and wake_up_interruptible,
bpf_prog_kallsyms_del_all()->bpf_ksym_del()->spin_unlock_bh().
They are not safe with irqs disabled.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-2-alexei.starovoitov@gmail.com
2021-07-15 22:31:10 +02:00
He Fengqing
75f0fc7b48 bpf: Fix potential memleak and UAF in the verifier.
In bpf_patch_insn_data(), we first use the bpf_patch_insn_single() to
insert new instructions, then use adjust_insn_aux_data() to adjust
insn_aux_data. If the old env->prog have no enough room for new inserted
instructions, we use bpf_prog_realloc to construct new_prog and free the
old env->prog.

There have two errors here. First, if adjust_insn_aux_data() return
ENOMEM, we should free the new_prog. Second, if adjust_insn_aux_data()
return ENOMEM, bpf_patch_insn_data() will return NULL, and env->prog has
been freed in bpf_prog_realloc, but we will use it in bpf_check().

So in this patch, we make the adjust_insn_aux_data() never fails. In
bpf_patch_insn_data(), we first pre-malloc memory for the new
insn_aux_data, then call bpf_patch_insn_single() to insert new
instructions, at last call adjust_insn_aux_data() to adjust
insn_aux_data.

Fixes: 8041902dae ("bpf: adjust insn_aux_data when patching insns")
Signed-off-by: He Fengqing <hefengqing@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210714101815.164322-1-hefengqing@huawei.com
2021-07-14 18:31:24 -07:00
Daniel Borkmann
5dd0a6b858 bpf: Fix tail_call_reachable rejection for interpreter when jit failed
During testing of f263a81451 ("bpf: Track subprog poke descriptors correctly
and fix use-after-free") under various failure conditions, for example, when
jit_subprogs() fails and tries to clean up the program to be run under the
interpreter, we ran into the following freeze:

  [...]
  #127/8 tailcall_bpf2bpf_3:FAIL
  [...]
  [   92.041251] BUG: KASAN: slab-out-of-bounds in ___bpf_prog_run+0x1b9d/0x2e20
  [   92.042408] Read of size 8 at addr ffff88800da67f68 by task test_progs/682
  [   92.043707]
  [   92.044030] CPU: 1 PID: 682 Comm: test_progs Tainted: G   O   5.13.0-53301-ge6c08cb33a30-dirty #87
  [   92.045542] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014
  [   92.046785] Call Trace:
  [   92.047171]  ? __bpf_prog_run_args64+0xc0/0xc0
  [   92.047773]  ? __bpf_prog_run_args32+0x8b/0xb0
  [   92.048389]  ? __bpf_prog_run_args64+0xc0/0xc0
  [   92.049019]  ? ktime_get+0x117/0x130
  [...] // few hundred [similar] lines more
  [   92.659025]  ? ktime_get+0x117/0x130
  [   92.659845]  ? __bpf_prog_run_args64+0xc0/0xc0
  [   92.660738]  ? __bpf_prog_run_args32+0x8b/0xb0
  [   92.661528]  ? __bpf_prog_run_args64+0xc0/0xc0
  [   92.662378]  ? print_usage_bug+0x50/0x50
  [   92.663221]  ? print_usage_bug+0x50/0x50
  [   92.664077]  ? bpf_ksym_find+0x9c/0xe0
  [   92.664887]  ? ktime_get+0x117/0x130
  [   92.665624]  ? kernel_text_address+0xf5/0x100
  [   92.666529]  ? __kernel_text_address+0xe/0x30
  [   92.667725]  ? unwind_get_return_address+0x2f/0x50
  [   92.668854]  ? ___bpf_prog_run+0x15d4/0x2e20
  [   92.670185]  ? ktime_get+0x117/0x130
  [   92.671130]  ? __bpf_prog_run_args64+0xc0/0xc0
  [   92.672020]  ? __bpf_prog_run_args32+0x8b/0xb0
  [   92.672860]  ? __bpf_prog_run_args64+0xc0/0xc0
  [   92.675159]  ? ktime_get+0x117/0x130
  [   92.677074]  ? lock_is_held_type+0xd5/0x130
  [   92.678662]  ? ___bpf_prog_run+0x15d4/0x2e20
  [   92.680046]  ? ktime_get+0x117/0x130
  [   92.681285]  ? __bpf_prog_run32+0x6b/0x90
  [   92.682601]  ? __bpf_prog_run64+0x90/0x90
  [   92.683636]  ? lock_downgrade+0x370/0x370
  [   92.684647]  ? mark_held_locks+0x44/0x90
  [   92.685652]  ? ktime_get+0x117/0x130
  [   92.686752]  ? lockdep_hardirqs_on+0x79/0x100
  [   92.688004]  ? ktime_get+0x117/0x130
  [   92.688573]  ? __cant_migrate+0x2b/0x80
  [   92.689192]  ? bpf_test_run+0x2f4/0x510
  [   92.689869]  ? bpf_test_timer_continue+0x1c0/0x1c0
  [   92.690856]  ? rcu_read_lock_bh_held+0x90/0x90
  [   92.691506]  ? __kasan_slab_alloc+0x61/0x80
  [   92.692128]  ? eth_type_trans+0x128/0x240
  [   92.692737]  ? __build_skb+0x46/0x50
  [   92.693252]  ? bpf_prog_test_run_skb+0x65e/0xc50
  [   92.693954]  ? bpf_prog_test_run_raw_tp+0x2d0/0x2d0
  [   92.694639]  ? __fget_light+0xa1/0x100
  [   92.695162]  ? bpf_prog_inc+0x23/0x30
  [   92.695685]  ? __sys_bpf+0xb40/0x2c80
  [   92.696324]  ? bpf_link_get_from_fd+0x90/0x90
  [   92.697150]  ? mark_held_locks+0x24/0x90
  [   92.698007]  ? lockdep_hardirqs_on_prepare+0x124/0x220
  [   92.699045]  ? finish_task_switch+0xe6/0x370
  [   92.700072]  ? lockdep_hardirqs_on+0x79/0x100
  [   92.701233]  ? finish_task_switch+0x11d/0x370
  [   92.702264]  ? __switch_to+0x2c0/0x740
  [   92.703148]  ? mark_held_locks+0x24/0x90
  [   92.704155]  ? __x64_sys_bpf+0x45/0x50
  [   92.705146]  ? do_syscall_64+0x35/0x80
  [   92.706953]  ? entry_SYSCALL_64_after_hwframe+0x44/0xae
  [...]

Turns out that the program rejection from e411901c0b ("bpf: allow for tailcalls
in BPF subprograms for x64 JIT") is buggy since env->prog->aux->tail_call_reachable
is never true. Commit ebf7d1f508 ("bpf, x64: rework pro/epilogue and tailcall
handling in JIT") added a tracker into check_max_stack_depth() which propagates
the tail_call_reachable condition throughout the subprograms. This info is then
assigned to the subprogram's func[i]->aux->tail_call_reachable. However, in the
case of the rejection check upon JIT failure, env->prog->aux->tail_call_reachable
is used. func[0]->aux->tail_call_reachable which represents the main program's
information did not propagate this to the outer env->prog->aux, though. Add this
propagation into check_max_stack_depth() where it needs to belong so that the
check can be done reliably.

Fixes: ebf7d1f508 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Fixes: e411901c0b ("bpf: allow for tailcalls in BPF subprograms for x64 JIT")
Co-developed-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Link: https://lore.kernel.org/bpf/618c34e3163ad1a36b1e82377576a6081e182f25.1626123173.git.daniel@iogearbox.net
2021-07-13 08:19:13 -07:00
John Fastabend
f263a81451 bpf: Track subprog poke descriptors correctly and fix use-after-free
Subprograms are calling map_poke_track(), but on program release there is no
hook to call map_poke_untrack(). However, on program release, the aux memory
(and poke descriptor table) is freed even though we still have a reference to
it in the element list of the map aux data. When we run map_poke_run(), we then
end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run():

  [...]
  [  402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e
  [  402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337
  [  402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G          I       5.12.0+ #399
  [  402.824715] Call Trace:
  [  402.824719]  dump_stack+0x93/0xc2
  [  402.824727]  print_address_description.constprop.0+0x1a/0x140
  [  402.824736]  ? prog_array_map_poke_run+0xc2/0x34e
  [  402.824740]  ? prog_array_map_poke_run+0xc2/0x34e
  [  402.824744]  kasan_report.cold+0x7c/0xd8
  [  402.824752]  ? prog_array_map_poke_run+0xc2/0x34e
  [  402.824757]  prog_array_map_poke_run+0xc2/0x34e
  [  402.824765]  bpf_fd_array_map_update_elem+0x124/0x1a0
  [...]

The elements concerned are walked as follows:

    for (i = 0; i < elem->aux->size_poke_tab; i++) {
           poke = &elem->aux->poke_tab[i];
    [...]

The access to size_poke_tab is a 4 byte read, verified by checking offsets
in the KASAN dump:

  [  402.825004] The buggy address belongs to the object at ffff8881905a7800
                 which belongs to the cache kmalloc-1k of size 1024
  [  402.825008] The buggy address is located 320 bytes inside of
                 1024-byte region [ffff8881905a7800, ffff8881905a7c00)

The pahole output of bpf_prog_aux:

  struct bpf_prog_aux {
    [...]
    /* --- cacheline 5 boundary (320 bytes) --- */
    u32                        size_poke_tab;        /*   320     4 */
    [...]

In general, subprograms do not necessarily manage their own data structures.
For example, BTF func_info and linfo are just pointers to the main program
structure. This allows reference counting and cleanup to be done on the latter
which simplifies their management a bit. The aux->poke_tab struct, however,
did not follow this logic. The initial proposed fix for this use-after-free
bug further embedded poke data tracking into the subprogram with proper
reference counting. However, Daniel and Alexei questioned why we were treating
these objects special; I agree, its unnecessary. The fix here removes the per
subprogram poke table allocation and map tracking and instead simply points
the aux->poke_tab pointer at the main programs poke table. This way, map
tracking is simplified to the main program and we do not need to manage them
per subprogram.

This also means, bpf_prog_free_deferred(), which unwinds the program reference
counting and kfrees objects, needs to ensure that we don't try to double free
the poke_tab when free'ing the subprog structures. This is easily solved by
NULL'ing the poke_tab pointer. The second detail is to ensure that per
subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do
this, we add a pointer in the poke structure to point at the subprogram value
so JITs can easily check while walking the poke_tab structure if the current
entry belongs to the current program. The aux pointer is stable and therefore
suitable for such comparison. On the jit_subprogs() error path, we omit
cleaning up the poke->aux field because these are only ever referenced from
the JIT side, but on error we will never make it to the JIT, so its fine to
leave them dangling. Removing these pointers would complicate the error path
for no reason. However, we do need to untrack all poke descriptors from the
main program as otherwise they could race with the freeing of JIT memory from
the subprograms. Lastly, a748c6975d ("bpf: propagate poke descriptors to
subprograms") had an off-by-one on the subprogram instruction index range
check as it was testing 'insn_idx >= subprog_start && insn_idx <= subprog_end'.
However, subprog_end is the next subprogram's start instruction.

Fixes: a748c6975d ("bpf: propagate poke descriptors to subprograms")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210707223848.14580-2-john.fastabend@gmail.com
2021-07-09 12:08:27 +02:00
Kumar Kartikeya Dwivedi
2ea5eabaf0 bpf: devmap: Implement devmap prog execution for generic XDP
This lifts the restriction on running devmap BPF progs in generic
redirect mode. To match native XDP behavior, it is invoked right before
generic_xdp_tx is called, and only supports XDP_PASS/XDP_ABORTED/
XDP_DROP actions.

We also return 0 even if devmap program drops the packet, as
semantically redirect has already succeeded and the devmap prog is the
last point before TX of the packet to device where it can deliver a
verdict on the packet.

This also means it must take care of freeing the skb, as
xdp_do_generic_redirect callers only do that in case an error is
returned.

Since devmap entry prog is supported, remove the check in
generic_xdp_install entirely.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210702111825.491065-5-memxor@gmail.com
2021-07-07 20:01:45 -07:00
Kumar Kartikeya Dwivedi
11941f8a85 bpf: cpumap: Implement generic cpumap
This change implements CPUMAP redirect support for generic XDP programs.
The idea is to reuse the cpu map entry's queue that is used to push
native xdp frames for redirecting skb to a different CPU. This will
match native XDP behavior (in that RPS is invoked again for packet
reinjected into networking stack).

To be able to determine whether the incoming skb is from the driver or
cpumap, we reuse skb->redirected bit that skips generic XDP processing
when it is set. To always make use of this, CONFIG_NET_REDIRECT guard on
it has been lifted and it is always available.

>From the redirect side, we add the skb to ptr_ring with its lowest bit
set to 1.  This should be safe as skb is not 1-byte aligned. This allows
kthread to discern between xdp_frames and sk_buff. On consumption of the
ptr_ring item, the lowest bit is unset.

In the end, the skb is simply added to the list that kthread is anyway
going to maintain for xdp_frames converted to skb, and then received
again by using netif_receive_skb_list.

Bulking optimization for generic cpumap is left as an exercise for a
future patch for now.

Since cpumap entry progs are now supported, also remove check in
generic_xdp_install for the cpumap.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/20210702111825.491065-4-memxor@gmail.com
2021-07-07 20:01:45 -07:00
Toke Høiland-Jørgensen
0fc4dcc13f bpf, devmap: Convert remaining READ_ONCE() to rcu_dereference_check()
There were a couple of READ_ONCE()-invocations left-over by the devmap
RCU conversion. Convert these to rcu_dereference_check() as well to avoid
complaints from sparse.

Fixes: 782347b6bc ("xdp: Add proper __rcu annotations to redirect map entries")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210629093907.573598-1-toke@redhat.com
2021-07-01 09:28:38 +02:00
Jakub Kicinski
b6df00789e Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Trivial conflict in net/netfilter/nf_tables_api.c.

Duplicate fix in tools/testing/selftests/net/devlink_port_split.py
- take the net-next version.

skmsg, and L4 bpf - keep the bpf code but remove the flags
and err params.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-06-29 15:45:27 -07:00
David S. Miller
e1289cfb63 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2021-06-28

The following pull-request contains BPF updates for your *net-next* tree.

We've added 37 non-merge commits during the last 12 day(s) which contain
a total of 56 files changed, 394 insertions(+), 380 deletions(-).

The main changes are:

1) XDP driver RCU cleanups, from Toke Høiland-Jørgensen and Paul E. McKenney.

2) Fix bpf_skb_change_proto() IPv4/v6 GSO handling, from Maciej Żenczykowski.

3) Fix false positive kmemleak report for BPF ringbuf alloc, from Rustam Kovhaev.

4) Fix x86 JIT's extable offset calculation for PROBE_LDX NULL, from Ravi Bangoria.

5) Enable libbpf fallback probing with tracing under RHEL7, from Jonathan Edwards.

6) Clean up x86 JIT to remove unused cnt tracking from EMIT macro, from Jiri Olsa.

7) Netlink cleanups for libbpf to please Coverity, from Kumar Kartikeya Dwivedi.

8) Allow to retrieve ancestor cgroup id in tracing programs, from Namhyung Kim.

9) Fix lirc BPF program query to use user-provided prog_cnt, from Sean Young.

10) Add initial libbpf doc including generated kdoc for its API, from Grant Seltzer.

11) Make xdp_rxq_info_unreg_mem_model() more robust, from Jakub Kicinski.

12) Fix up bpfilter startup log-level to info level, from Gary Lin.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-28 15:28:03 -07:00
Rustam Kovhaev
ccff81e1d0 bpf: Fix false positive kmemleak report in bpf_ringbuf_area_alloc()
kmemleak scans struct page, but it does not scan the page content. If we
allocate some memory with kmalloc(), then allocate page with alloc_page(),
and if we put kmalloc pointer somewhere inside that page, kmemleak will
report kmalloc pointer as a false positive.

We can instruct kmemleak to scan the memory area by calling kmemleak_alloc()
and kmemleak_free(), but part of struct bpf_ringbuf is mmaped to user space,
and if struct bpf_ringbuf changes we would have to revisit and review size
argument in kmemleak_alloc(), because we do not want kmemleak to scan the
user space memory. Let's simplify things and use kmemleak_not_leak() here.

For posterity, also adding additional prior analysis from Andrii:

  I think either kmemleak or syzbot are misreporting this. I've added a
  bunch of printks around all allocations performed by BPF ringbuf. [...]
  On repro side I get these two warnings:

  [vmuser@archvm bpf]$ sudo ./repro
  BUG: memory leak
  unreferenced object 0xffff88810d538c00 (size 64):
    comm "repro", pid 2140, jiffies 4294692933 (age 14.540s)
    hex dump (first 32 bytes):
      00 af 19 04 00 ea ff ff c0 ae 19 04 00 ea ff ff  ................
      80 ae 19 04 00 ea ff ff c0 29 2e 04 00 ea ff ff  .........)......
    backtrace:
      [<0000000077bfbfbd>] __bpf_map_area_alloc+0x31/0xc0
      [<00000000587fa522>] ringbuf_map_alloc.cold.4+0x48/0x218
      [<0000000044d49e96>] __do_sys_bpf+0x359/0x1d90
      [<00000000f601d565>] do_syscall_64+0x2d/0x40
      [<0000000043d3112a>] entry_SYSCALL_64_after_hwframe+0x44/0xae

  BUG: memory leak
  unreferenced object 0xffff88810d538c80 (size 64):
    comm "repro", pid 2143, jiffies 4294699025 (age 8.448s)
    hex dump (first 32 bytes):
      80 aa 19 04 00 ea ff ff 00 ab 19 04 00 ea ff ff  ................
      c0 ab 19 04 00 ea ff ff 80 44 28 04 00 ea ff ff  .........D(.....
    backtrace:
      [<0000000077bfbfbd>] __bpf_map_area_alloc+0x31/0xc0
      [<00000000587fa522>] ringbuf_map_alloc.cold.4+0x48/0x218
      [<0000000044d49e96>] __do_sys_bpf+0x359/0x1d90
      [<00000000f601d565>] do_syscall_64+0x2d/0x40
      [<0000000043d3112a>] entry_SYSCALL_64_after_hwframe+0x44/0xae

  Note that both reported leaks (ffff88810d538c80 and ffff88810d538c00)
  correspond to pages array bpf_ringbuf is allocating and tracking properly
  internally. Note also that syzbot repro doesn't close FD of created BPF
  ringbufs, and even when ./repro itself exits with error, there are still
  two forked processes hanging around in my system. So clearly ringbuf maps
  are alive at that point. So reporting any memory leak looks weird at that
  point, because that memory is being used by active referenced BPF ringbuf.

  It's also a question why repro doesn't clean up its forks. But if I do a
  `pkill repro`, I do see that all the allocated memory is /properly/ cleaned
  up [and the] "leaks" are deallocated properly.

  BTW, if I add close() right after bpf() syscall in syzbot repro, I see that
  everything is immediately deallocated, like designed. And no memory leak
  is reported. So I don't think the problem is anywhere in bpf_ringbuf code,
  rather in the leak detection and/or repro itself.

Reported-by: syzbot+5d895828587f49e7fe9b@syzkaller.appspotmail.com
Signed-off-by: Rustam Kovhaev <rkovhaev@gmail.com>
[ Daniel: also included analysis from Andrii to the commit log ]
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: syzbot+5d895828587f49e7fe9b@syzkaller.appspotmail.com
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/CAEf4BzYk+dqs+jwu6VKXP-RttcTEGFe+ySTGWT9CRNkagDiJVA@mail.gmail.com
Link: https://lore.kernel.org/lkml/YNTAqiE7CWJhOK2M@nuc10
Link: https://lore.kernel.org/lkml/20210615101515.GC26027@arm.com
Link: https://syzkaller.appspot.com/bug?extid=5d895828587f49e7fe9b
Link: https://lore.kernel.org/bpf/20210626181156.1873604-1-rkovhaev@gmail.com
2021-06-28 15:57:46 +02:00
Toke Høiland-Jørgensen
782347b6bc xdp: Add proper __rcu annotations to redirect map entries
XDP_REDIRECT works by a three-step process: the bpf_redirect() and
bpf_redirect_map() helpers will lookup the target of the redirect and store
it (along with some other metadata) in a per-CPU struct bpf_redirect_info.
Next, when the program returns the XDP_REDIRECT return code, the driver
will call xdp_do_redirect() which will use the information thus stored to
actually enqueue the frame into a bulk queue structure (that differs
slightly by map type, but shares the same principle). Finally, before
exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will
flush all the different bulk queues, thus completing the redirect.

Pointers to the map entries will be kept around for this whole sequence of
steps, protected by RCU. However, there is no top-level rcu_read_lock() in
the core code; instead drivers add their own rcu_read_lock() around the XDP
portions of the code, but somewhat inconsistently as Martin discovered[0].
However, things still work because everything happens inside a single NAPI
poll sequence, which means it's between a pair of calls to
local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could
document this intention by using rcu_dereference_check() with
rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and
lockdep to verify that everything is done correctly.

This patch does just that: we add an __rcu annotation to the map entry
pointers and remove the various comments explaining the NAPI poll assurance
strewn through devmap.c in favour of a longer explanation in filter.c. The
goal is to have one coherent documentation of the entire flow, and rely on
the RCU annotations as a "standard" way of communicating the flow in the
map code (which can additionally be understood by sparse and lockdep).

The RCU annotation replacements result in a fairly straight-forward
replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE()
becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the
proper constructs to cast the pointer back and forth between __rcu and
__kernel address space (for the benefit of sparse). The one complication is
that xskmap has a few constructions where double-pointers are passed back
and forth; these simply all gain __rcu annotations, and only the final
reference/dereference to the inner-most pointer gets changed.

With this, everything can be run through sparse without eliciting
complaints, and lockdep can verify correctness even without the use of
rcu_read_lock() in the drivers. Subsequent patches will clean these up from
the drivers.

[0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/
[1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 19:41:15 +02:00
Toke Høiland-Jørgensen
694cea395f bpf: Allow RCU-protected lookups to happen from bh context
XDP programs are called from a NAPI poll context, which means the RCU
reference liveness is ensured by local_bh_disable(). Add
rcu_read_lock_bh_held() as a condition to the RCU checks for map lookups so
lockdep understands that the dereferences are safe from inside *either* an
rcu_read_lock() section *or* a local_bh_disable() section. While both
bh_disabled and rcu_read_lock() provide RCU protection, they are
semantically distinct, so we need both conditions to prevent lockdep
complaints.

This change is done in preparation for removing the redundant
rcu_read_lock()s from drivers.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210624160609.292325-5-toke@redhat.com
2021-06-24 19:41:15 +02:00
John Fastabend
7506d211b9 bpf: Fix null ptr deref with mixed tail calls and subprogs
The sub-programs prog->aux->poke_tab[] is populated in jit_subprogs() and
then used when emitting 'BPF_JMP|BPF_TAIL_CALL' insn->code from the
individual JITs. The poke_tab[] to use is stored in the insn->imm by
the code adding it to that array slot. The JIT then uses imm to find the
right entry for an individual instruction. In the x86 bpf_jit_comp.c
this is done by calling emit_bpf_tail_call_direct with the poke_tab[]
of the imm value.

However, we observed the below null-ptr-deref when mixing tail call
programs with subprog programs. For this to happen we just need to
mix bpf-2-bpf calls and tailcalls with some extra calls or instructions
that would be patched later by one of the fixup routines. So whats
happening?

Before the fixup_call_args() -- where the jit op is done -- various
code patching is done by do_misc_fixups(). This may increase the
insn count, for example when we patch map_lookup_up using map_gen_lookup
hook. This does two things. First, it means the instruction index,
insn_idx field, of a tail call instruction will move by a 'delta'.

In verifier code,

 struct bpf_jit_poke_descriptor desc = {
  .reason = BPF_POKE_REASON_TAIL_CALL,
  .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
  .tail_call.key = bpf_map_key_immediate(aux),
  .insn_idx = i + delta,
 };

Then subprog start values subprog_info[i].start will be updated
with the delta and any poke descriptor index will also be updated
with the delta in adjust_poke_desc(). If we look at the adjust
subprog starts though we see its only adjusted when the delta
occurs before the new instructions,

        /* NOTE: fake 'exit' subprog should be updated as well. */
        for (i = 0; i <= env->subprog_cnt; i++) {
                if (env->subprog_info[i].start <= off)
                        continue;

Earlier subprograms are not changed because their start values
are not moved. But, adjust_poke_desc() does the offset + delta
indiscriminately. The result is poke descriptors are potentially
corrupted.

Then in jit_subprogs() we only populate the poke_tab[]
when the above insn_idx is less than the next subprogram start. From
above we corrupted our insn_idx so we might incorrectly assume a
poke descriptor is not used in a subprogram omitting it from the
subprogram. And finally when the jit runs it does the deref of poke_tab
when emitting the instruction and crashes with below. Because earlier
step omitted the poke descriptor.

The fix is straight forward with above context. Simply move same logic
from adjust_subprog_starts() into adjust_poke_descs() and only adjust
insn_idx when needed.

[   82.396354] bpf_testmod: version magic '5.12.0-rc2alu+ SMP preempt mod_unload ' should be '5.12.0+ SMP preempt mod_unload '
[   82.623001] loop10: detected capacity change from 0 to 8
[   88.487424] ==================================================================
[   88.487438] BUG: KASAN: null-ptr-deref in do_jit+0x184a/0x3290
[   88.487455] Write of size 8 at addr 0000000000000008 by task test_progs/5295
[   88.487471] CPU: 7 PID: 5295 Comm: test_progs Tainted: G          I       5.12.0+ #386
[   88.487483] Hardware name: Dell Inc. Precision 5820 Tower/002KVM, BIOS 1.9.2 01/24/2019
[   88.487490] Call Trace:
[   88.487498]  dump_stack+0x93/0xc2
[   88.487515]  kasan_report.cold+0x5f/0xd8
[   88.487530]  ? do_jit+0x184a/0x3290
[   88.487542]  do_jit+0x184a/0x3290
 ...
[   88.487709]  bpf_int_jit_compile+0x248/0x810
 ...
[   88.487765]  bpf_check+0x3718/0x5140
 ...
[   88.487920]  bpf_prog_load+0xa22/0xf10

Fixes: a748c6975d ("bpf: propagate poke descriptors to subprograms")
Reported-by: Jussi Maki <joamaki@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Daniel Borkmann <daniel@iogearbox.net>
2021-06-22 14:46:39 -07:00
Bui Quang Minh
7dd5d437c2 bpf: Fix integer overflow in argument calculation for bpf_map_area_alloc
In 32-bit architecture, the result of sizeof() is a 32-bit integer so
the expression becomes the multiplication between 2 32-bit integer which
can potentially leads to integer overflow. As a result,
bpf_map_area_alloc() allocates less memory than needed.

Fix this by casting 1 operand to u64.

Fixes: 0d2c4f9640 ("bpf: Eliminate rlimit-based memory accounting for sockmap and sockhash maps")
Fixes: 99c51064fb ("devmap: Use bpf_map_area_alloc() for allocating hash buckets")
Fixes: 546ac1ffb7 ("bpf: add devmap, a map for storing net device references")
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210613143440.71975-1-minhquangbui99@gmail.com
2021-06-22 10:14:29 -07:00
Maciej Żenczykowski
5dec6d96d1 bpf: Fix regression on BPF_OBJ_GET with non-O_RDWR flags
This reverts commit d37300ed18 ("bpf: program: Refuse non-O_RDWR flags
in BPF_OBJ_GET"). It breaks Android userspace which expects to be able to
fetch programs with just read permissions.

See: https://cs.android.com/android/platform/superproject/+/master:frameworks/libs/net/common/native/bpf_syscall_wrappers/include/BpfSyscallWrappers.h;drc=7005c764be23d31fa1d69e826b4a2f6689a8c81e;l=124

Side-note: another option to fix it would be to extend bpf_prog_new_fd()
and to pass in used file mode flags in the same way as we do for maps via
bpf_map_new_fd(). Meaning, they'd end up in anon_inode_getfd() and thus
would be retained for prog fd operations with bpf() syscall. Right now
these flags are not checked with progs since they are immutable for their
lifetime (as opposed to maps which can be updated from user space). In
future this could potentially change with new features, but at that point
it's still fine to do the bpf_prog_new_fd() extension when needed. For a
simple stable fix, a revert is less churn.

Fixes: d37300ed18 ("bpf: program: Refuse non-O_RDWR flags in BPF_OBJ_GET")
Signed-off-by: Maciej Żenczykowski <maze@google.com>
[ Daniel: added side-note to commit message ]
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@cloudflare.com>
Acked-by: Greg Kroah-Hartman <gregkh@google.com>
Link: https://lore.kernel.org/bpf/20210618105526.265003-1-zenczykowski@gmail.com
2021-06-22 14:57:43 +02:00
Jakub Kicinski
adc2e56ebe Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Trivial conflicts in net/can/isotp.c and
tools/testing/selftests/net/mptcp/mptcp_connect.sh

scaled_ppm_to_ppb() was moved from drivers/ptp/ptp_clock.c
to include/linux/ptp_clock_kernel.h in -next so re-apply
the fix there.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-06-18 19:47:02 -07:00
David S. Miller
a52171ae7b Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2021-06-17

The following pull-request contains BPF updates for your *net-next* tree.

We've added 50 non-merge commits during the last 25 day(s) which contain
a total of 148 files changed, 4779 insertions(+), 1248 deletions(-).

The main changes are:

1) BPF infrastructure to migrate TCP child sockets from a listener to another
   in the same reuseport group/map, from Kuniyuki Iwashima.

2) Add a provably sound, faster and more precise algorithm for tnum_mul() as
   noted in https://arxiv.org/abs/2105.05398, from Harishankar Vishwanathan.

3) Streamline error reporting changes in libbpf as planned out in the
   'libbpf: the road to v1.0' effort, from Andrii Nakryiko.

4) Add broadcast support to xdp_redirect_map(), from Hangbin Liu.

5) Extends bpf_map_lookup_and_delete_elem() functionality to 4 more map
   types, that is, {LRU_,PERCPU_,LRU_PERCPU_,}HASH, from Denis Salopek.

6) Support new LLVM relocations in libbpf to make them more linker friendly,
   also add a doc to describe the BPF backend relocations, from Yonghong Song.

7) Silence long standing KUBSAN complaints on register-based shifts in
   interpreter, from Daniel Borkmann and Eric Biggers.

8) Add dummy PT_REGS macros in libbpf to fail BPF program compilation when
   target arch cannot be determined, from Lorenz Bauer.

9) Extend AF_XDP to support large umems with 1M+ pages, from Magnus Karlsson.

10) Fix two minor libbpf tc BPF API issues, from Kumar Kartikeya Dwivedi.

11) Move libbpf BPF_SEQ_PRINTF/BPF_SNPRINTF macros that can be used by BPF
    programs to bpf_helpers.h header, from Florent Revest.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-17 11:54:56 -07:00
Daniel Borkmann
28131e9d93 bpf: Fix up register-based shifts in interpreter to silence KUBSAN
syzbot reported a shift-out-of-bounds that KUBSAN observed in the
interpreter:

  [...]
  UBSAN: shift-out-of-bounds in kernel/bpf/core.c:1420:2
  shift exponent 255 is too large for 64-bit type 'long long unsigned int'
  CPU: 1 PID: 11097 Comm: syz-executor.4 Not tainted 5.12.0-rc2-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Call Trace:
   __dump_stack lib/dump_stack.c:79 [inline]
   dump_stack+0x141/0x1d7 lib/dump_stack.c:120
   ubsan_epilogue+0xb/0x5a lib/ubsan.c:148
   __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327
   ___bpf_prog_run.cold+0x19/0x56c kernel/bpf/core.c:1420
   __bpf_prog_run32+0x8f/0xd0 kernel/bpf/core.c:1735
   bpf_dispatcher_nop_func include/linux/bpf.h:644 [inline]
   bpf_prog_run_pin_on_cpu include/linux/filter.h:624 [inline]
   bpf_prog_run_clear_cb include/linux/filter.h:755 [inline]
   run_filter+0x1a1/0x470 net/packet/af_packet.c:2031
   packet_rcv+0x313/0x13e0 net/packet/af_packet.c:2104
   dev_queue_xmit_nit+0x7c2/0xa90 net/core/dev.c:2387
   xmit_one net/core/dev.c:3588 [inline]
   dev_hard_start_xmit+0xad/0x920 net/core/dev.c:3609
   __dev_queue_xmit+0x2121/0x2e00 net/core/dev.c:4182
   __bpf_tx_skb net/core/filter.c:2116 [inline]
   __bpf_redirect_no_mac net/core/filter.c:2141 [inline]
   __bpf_redirect+0x548/0xc80 net/core/filter.c:2164
   ____bpf_clone_redirect net/core/filter.c:2448 [inline]
   bpf_clone_redirect+0x2ae/0x420 net/core/filter.c:2420
   ___bpf_prog_run+0x34e1/0x77d0 kernel/bpf/core.c:1523
   __bpf_prog_run512+0x99/0xe0 kernel/bpf/core.c:1737
   bpf_dispatcher_nop_func include/linux/bpf.h:644 [inline]
   bpf_test_run+0x3ed/0xc50 net/bpf/test_run.c:50
   bpf_prog_test_run_skb+0xabc/0x1c50 net/bpf/test_run.c:582
   bpf_prog_test_run kernel/bpf/syscall.c:3127 [inline]
   __do_sys_bpf+0x1ea9/0x4f00 kernel/bpf/syscall.c:4406
   do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
   entry_SYSCALL_64_after_hwframe+0x44/0xae
  [...]

Generally speaking, KUBSAN reports from the kernel should be fixed.
However, in case of BPF, this particular report caused concerns since
the large shift is not wrong from BPF point of view, just undefined.
In the verifier, K-based shifts that are >= {64,32} (depending on the
bitwidth of the instruction) are already rejected. The register-based
cases were not given their content might not be known at verification
time. Ideas such as verifier instruction rewrite with an additional
AND instruction for the source register were brought up, but regularly
rejected due to the additional runtime overhead they incur.

As Edward Cree rightly put it:

  Shifts by more than insn bitness are legal in the BPF ISA; they are
  implementation-defined behaviour [of the underlying architecture],
  rather than UB, and have been made legal for performance reasons.
  Each of the JIT backends compiles the BPF shift operations to machine
  instructions which produce implementation-defined results in such a
  case; the resulting contents of the register may be arbitrary but
  program behaviour as a whole remains defined.

  Guard checks in the fast path (i.e. affecting JITted code) will thus
  not be accepted.

  The case of division by zero is not truly analogous here, as division
  instructions on many of the JIT-targeted architectures will raise a
  machine exception / fault on division by zero, whereas (to the best
  of my knowledge) none will do so on an out-of-bounds shift.

Given the KUBSAN report only affects the BPF interpreter, but not JITs,
one solution is to add the ANDs with 63 or 31 into ___bpf_prog_run().
That would make the shifts defined, and thus shuts up KUBSAN, and the
compiler would optimize out the AND on any CPU that interprets the shift
amounts modulo the width anyway (e.g., confirmed from disassembly that
on x86-64 and arm64 the generated interpreter code is the same before
and after this fix).

The BPF interpreter is slow path, and most likely compiled out anyway
as distros select BPF_JIT_ALWAYS_ON to avoid speculative execution of
BPF instructions by the interpreter. Given the main argument was to
avoid sacrificing performance, the fact that the AND is optimized away
from compiler for mainstream archs helps as well as a solution moving
forward. Also add a comment on LSH/RSH/ARSH translation for JIT authors
to provide guidance when they see the ___bpf_prog_run() interpreter
code and use it as a model for a new JIT backend.

Reported-by: syzbot+bed360704c521841c85d@syzkaller.appspotmail.com
Reported-by: Kurt Manucredo <fuzzybritches0@gmail.com>
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Co-developed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Tested-by: syzbot+bed360704c521841c85d@syzkaller.appspotmail.com
Cc: Edward Cree <ecree.xilinx@gmail.com>
Link: https://lore.kernel.org/bpf/0000000000008f912605bd30d5d7@google.com
Link: https://lore.kernel.org/bpf/bac16d8d-c174-bdc4-91bd-bfa62b410190@gmail.com
2021-06-17 12:04:37 +02:00
Shuyi Cheng
712b78c697 bpf: Fix typo in kernel/bpf/bpf_lsm.c
Fix s/sleeable/sleepable/ typo in a comment.

Signed-off-by: Shuyi Cheng <chengshuyi@linux.alibaba.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/1623809076-97907-1-git-send-email-chengshuyi@linux.alibaba.com
2021-06-16 19:56:54 -07:00
Kuniyuki Iwashima
d5e4ddaeb6 bpf: Support socket migration by eBPF.
This patch introduces a new bpf_attach_type for BPF_PROG_TYPE_SK_REUSEPORT
to check if the attached eBPF program is capable of migrating sockets. When
the eBPF program is attached, we run it for socket migration if the
expected_attach_type is BPF_SK_REUSEPORT_SELECT_OR_MIGRATE or
net.ipv4.tcp_migrate_req is enabled.

Currently, the expected_attach_type is not enforced for the
BPF_PROG_TYPE_SK_REUSEPORT type of program. Thus, this commit follows the
earlier idea in the commit aac3fc320d ("bpf: Post-hooks for sys_bind") to
fix up the zero expected_attach_type in bpf_prog_load_fixup_attach_type().

Moreover, this patch adds a new field (migrating_sk) to sk_reuseport_md to
select a new listener based on the child socket. migrating_sk varies
depending on if it is migrating a request in the accept queue or during
3WHS.

  - accept_queue : sock (ESTABLISHED/SYN_RECV)
  - 3WHS         : request_sock (NEW_SYN_RECV)

In the eBPF program, we can select a new listener by
BPF_FUNC_sk_select_reuseport(). Also, we can cancel migration by returning
SK_DROP. This feature is useful when listeners have different settings at
the socket API level or when we want to free resources as soon as possible.

  - SK_PASS with selected_sk, select it as a new listener
  - SK_PASS with selected_sk NULL, fallbacks to the random selection
  - SK_DROP, cancel the migration.

There is a noteworthy point. We select a listening socket in three places,
but we do not have struct skb at closing a listener or retransmitting a
SYN+ACK. On the other hand, some helper functions do not expect skb is NULL
(e.g. skb_header_pointer() in BPF_FUNC_skb_load_bytes(), skb_tail_pointer()
in BPF_FUNC_skb_load_bytes_relative()). So we allocate an empty skb
temporarily before running the eBPF program.

Suggested-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/netdev/20201123003828.xjpjdtk4ygl6tg6h@kafai-mbp.dhcp.thefacebook.com/
Link: https://lore.kernel.org/netdev/20201203042402.6cskdlit5f3mw4ru@kafai-mbp.dhcp.thefacebook.com/
Link: https://lore.kernel.org/netdev/20201209030903.hhow5r53l6fmozjn@kafai-mbp.dhcp.thefacebook.com/
Link: https://lore.kernel.org/bpf/20210612123224.12525-10-kuniyu@amazon.co.jp
2021-06-15 18:01:06 +02:00
Daniel Borkmann
9183671af6 bpf: Fix leakage under speculation on mispredicted branches
The verifier only enumerates valid control-flow paths and skips paths that
are unreachable in the non-speculative domain. And so it can miss issues
under speculative execution on mispredicted branches.

For example, a type confusion has been demonstrated with the following
crafted program:

  // r0 = pointer to a map array entry
  // r6 = pointer to readable stack slot
  // r9 = scalar controlled by attacker
  1: r0 = *(u64 *)(r0) // cache miss
  2: if r0 != 0x0 goto line 4
  3: r6 = r9
  4: if r0 != 0x1 goto line 6
  5: r9 = *(u8 *)(r6)
  6: // leak r9

Since line 3 runs iff r0 == 0 and line 5 runs iff r0 == 1, the verifier
concludes that the pointer dereference on line 5 is safe. But: if the
attacker trains both the branches to fall-through, such that the following
is speculatively executed ...

  r6 = r9
  r9 = *(u8 *)(r6)
  // leak r9

... then the program will dereference an attacker-controlled value and could
leak its content under speculative execution via side-channel. This requires
to mistrain the branch predictor, which can be rather tricky, because the
branches are mutually exclusive. However such training can be done at
congruent addresses in user space using different branches that are not
mutually exclusive. That is, by training branches in user space ...

  A:  if r0 != 0x0 goto line C
  B:  ...
  C:  if r0 != 0x0 goto line D
  D:  ...

... such that addresses A and C collide to the same CPU branch prediction
entries in the PHT (pattern history table) as those of the BPF program's
lines 2 and 4, respectively. A non-privileged attacker could simply brute
force such collisions in the PHT until observing the attack succeeding.

Alternative methods to mistrain the branch predictor are also possible that
avoid brute forcing the collisions in the PHT. A reliable attack has been
demonstrated, for example, using the following crafted program:

  // r0 = pointer to a [control] map array entry
  // r7 = *(u64 *)(r0 + 0), training/attack phase
  // r8 = *(u64 *)(r0 + 8), oob address
  // [...]
  // r0 = pointer to a [data] map array entry
  1: if r7 == 0x3 goto line 3
  2: r8 = r0
  // crafted sequence of conditional jumps to separate the conditional
  // branch in line 193 from the current execution flow
  3: if r0 != 0x0 goto line 5
  4: if r0 == 0x0 goto exit
  5: if r0 != 0x0 goto line 7
  6: if r0 == 0x0 goto exit
  [...]
  187: if r0 != 0x0 goto line 189
  188: if r0 == 0x0 goto exit
  // load any slowly-loaded value (due to cache miss in phase 3) ...
  189: r3 = *(u64 *)(r0 + 0x1200)
  // ... and turn it into known zero for verifier, while preserving slowly-
  // loaded dependency when executing:
  190: r3 &= 1
  191: r3 &= 2
  // speculatively bypassed phase dependency
  192: r7 += r3
  193: if r7 == 0x3 goto exit
  194: r4 = *(u8 *)(r8 + 0)
  // leak r4

As can be seen, in training phase (phase != 0x3), the condition in line 1
turns into false and therefore r8 with the oob address is overridden with
the valid map value address, which in line 194 we can read out without
issues. However, in attack phase, line 2 is skipped, and due to the cache
miss in line 189 where the map value is (zeroed and later) added to the
phase register, the condition in line 193 takes the fall-through path due
to prior branch predictor training, where under speculation, it'll load the
byte at oob address r8 (unknown scalar type at that point) which could then
be leaked via side-channel.

One way to mitigate these is to 'branch off' an unreachable path, meaning,
the current verification path keeps following the is_branch_taken() path
and we push the other branch to the verification stack. Given this is
unreachable from the non-speculative domain, this branch's vstate is
explicitly marked as speculative. This is needed for two reasons: i) if
this path is solely seen from speculative execution, then we later on still
want the dead code elimination to kick in in order to sanitize these
instructions with jmp-1s, and ii) to ensure that paths walked in the
non-speculative domain are not pruned from earlier walks of paths walked in
the speculative domain. Additionally, for robustness, we mark the registers
which have been part of the conditional as unknown in the speculative path
given there should be no assumptions made on their content.

The fix in here mitigates type confusion attacks described earlier due to
i) all code paths in the BPF program being explored and ii) existing
verifier logic already ensuring that given memory access instruction
references one specific data structure.

An alternative to this fix that has also been looked at in this scope was to
mark aux->alu_state at the jump instruction with a BPF_JMP_TAKEN state as
well as direction encoding (always-goto, always-fallthrough, unknown), such
that mixing of different always-* directions themselves as well as mixing of
always-* with unknown directions would cause a program rejection by the
verifier, e.g. programs with constructs like 'if ([...]) { x = 0; } else
{ x = 1; }' with subsequent 'if (x == 1) { [...] }'. For unprivileged, this
would result in only single direction always-* taken paths, and unknown taken
paths being allowed, such that the former could be patched from a conditional
jump to an unconditional jump (ja). Compared to this approach here, it would
have two downsides: i) valid programs that otherwise are not performing any
pointer arithmetic, etc, would potentially be rejected/broken, and ii) we are
required to turn off path pruning for unprivileged, where both can be avoided
in this work through pushing the invalid branch to the verification stack.

The issue was originally discovered by Adam and Ofek, and later independently
discovered and reported as a result of Benedict and Piotr's research work.

Fixes: b2157399cc ("bpf: prevent out-of-bounds speculation")
Reported-by: Adam Morrison <mad@cs.tau.ac.il>
Reported-by: Ofek Kirzner <ofekkir@gmail.com>
Reported-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-06-14 23:06:10 +02:00
Daniel Borkmann
fe9a5ca7e3 bpf: Do not mark insn as seen under speculative path verification
... in such circumstances, we do not want to mark the instruction as seen given
the goal is still to jmp-1 rewrite/sanitize dead code, if it is not reachable
from the non-speculative path verification. We do however want to verify it for
safety regardless.

With the patch as-is all the insns that have been marked as seen before the
patch will also be marked as seen after the patch (just with a potentially
different non-zero count). An upcoming patch will also verify paths that are
unreachable in the non-speculative domain, hence this extension is needed.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-06-14 23:06:06 +02:00
Daniel Borkmann
d203b0fd86 bpf: Inherit expanded/patched seen count from old aux data
Instead of relying on current env->pass_cnt, use the seen count from the
old aux data in adjust_insn_aux_data(), and expand it to the new range of
patched instructions. This change is valid given we always expand 1:n
with n>=1, so what applies to the old/original instruction needs to apply
for the replacement as well.

Not relying on env->pass_cnt is a prerequisite for a later change where we
want to avoid marking an instruction seen when verified under speculative
execution path.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-06-14 23:06:00 +02:00
David S. Miller
126285651b Merge ra.kernel.org:/pub/scm/linux/kernel/git/netdev/net
Bug fixes overlapping feature additions and refactoring, mostly.

Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-07 13:01:52 -07:00
Daniel Borkmann
ff40e51043 bpf, lockdown, audit: Fix buggy SELinux lockdown permission checks
Commit 59438b4647 ("security,lockdown,selinux: implement SELinux lockdown")
added an implementation of the locked_down LSM hook to SELinux, with the aim
to restrict which domains are allowed to perform operations that would breach
lockdown. This is indirectly also getting audit subsystem involved to report
events. The latter is problematic, as reported by Ondrej and Serhei, since it
can bring down the whole system via audit:

  1) The audit events that are triggered due to calls to security_locked_down()
     can OOM kill a machine, see below details [0].

  2) It also seems to be causing a deadlock via avc_has_perm()/slow_avc_audit()
     when trying to wake up kauditd, for example, when using trace_sched_switch()
     tracepoint, see details in [1]. Triggering this was not via some hypothetical
     corner case, but with existing tools like runqlat & runqslower from bcc, for
     example, which make use of this tracepoint. Rough call sequence goes like:

     rq_lock(rq) -> -------------------------+
       trace_sched_switch() ->               |
         bpf_prog_xyz() ->                   +-> deadlock
           selinux_lockdown() ->             |
             audit_log_end() ->              |
               wake_up_interruptible() ->    |
                 try_to_wake_up() ->         |
                   rq_lock(rq) --------------+

What's worse is that the intention of 59438b4647 to further restrict lockdown
settings for specific applications in respect to the global lockdown policy is
completely broken for BPF. The SELinux policy rule for the current lockdown check
looks something like this:

  allow <who> <who> : lockdown { <reason> };

However, this doesn't match with the 'current' task where the security_locked_down()
is executed, example: httpd does a syscall. There is a tracing program attached
to the syscall which triggers a BPF program to run, which ends up doing a
bpf_probe_read_kernel{,_str}() helper call. The selinux_lockdown() hook does
the permission check against 'current', that is, httpd in this example. httpd
has literally zero relation to this tracing program, and it would be nonsensical
having to write an SELinux policy rule against httpd to let the tracing helper
pass. The policy in this case needs to be against the entity that is installing
the BPF program. For example, if bpftrace would generate a histogram of syscall
counts by user space application:

  bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'

bpftrace would then go and generate a BPF program from this internally. One way
of doing it [for the sake of the example] could be to call bpf_get_current_task()
helper and then access current->comm via one of bpf_probe_read_kernel{,_str}()
helpers. So the program itself has nothing to do with httpd or any other random
app doing a syscall here. The BPF program _explicitly initiated_ the lockdown
check. The allow/deny policy belongs in the context of bpftrace: meaning, you
want to grant bpftrace access to use these helpers, but other tracers on the
system like my_random_tracer _not_.

Therefore fix all three issues at the same time by taking a completely different
approach for the security_locked_down() hook, that is, move the check into the
program verification phase where we actually retrieve the BPF func proto. This
also reliably gets the task (current) that is trying to install the BPF tracing
program, e.g. bpftrace/bcc/perf/systemtap/etc, and it also fixes the OOM since
we're moving this out of the BPF helper's fast-path which can be called several
millions of times per second.

The check is then also in line with other security_locked_down() hooks in the
system where the enforcement is performed at open/load time, for example,
open_kcore() for /proc/kcore access or module_sig_check() for module signatures
just to pick few random ones. What's out of scope in the fix as well as in
other security_locked_down() hook locations /outside/ of BPF subsystem is that
if the lockdown policy changes on the fly there is no retrospective action.
This requires a different discussion, potentially complex infrastructure, and
it's also not clear whether this can be solved generically. Either way, it is
out of scope for a suitable stable fix which this one is targeting. Note that
the breakage is specifically on 59438b4647 where it started to rely on 'current'
as UAPI behavior, and _not_ earlier infrastructure such as 9d1f8be5cf ("bpf:
Restrict bpf when kernel lockdown is in confidentiality mode").

[0] https://bugzilla.redhat.com/show_bug.cgi?id=1955585, Jakub Hrozek says:

  I starting seeing this with F-34. When I run a container that is traced with
  BPF to record the syscalls it is doing, auditd is flooded with messages like:

  type=AVC msg=audit(1619784520.593:282387): avc:  denied  { confidentiality }
    for pid=476 comm="auditd" lockdown_reason="use of bpf to read kernel RAM"
      scontext=system_u:system_r:auditd_t:s0 tcontext=system_u:system_r:auditd_t:s0
        tclass=lockdown permissive=0

  This seems to be leading to auditd running out of space in the backlog buffer
  and eventually OOMs the machine.

  [...]
  auditd running at 99% CPU presumably processing all the messages, eventually I get:
  Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
  Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
  Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152579 > audit_backlog_limit=64
  Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152626 > audit_backlog_limit=64
  Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152694 > audit_backlog_limit=64
  Apr 30 12:20:42 fedora kernel: audit: audit_lost=6878426 audit_rate_limit=0 audit_backlog_limit=64
  Apr 30 12:20:45 fedora kernel: oci-seccomp-bpf invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=-1000
  Apr 30 12:20:45 fedora kernel: CPU: 0 PID: 13284 Comm: oci-seccomp-bpf Not tainted 5.11.12-300.fc34.x86_64 #1
  Apr 30 12:20:45 fedora kernel: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014
  [...]

[1] https://lore.kernel.org/linux-audit/CANYvDQN7H5tVp47fbYcRasv4XF07eUbsDwT_eDCHXJUj43J7jQ@mail.gmail.com/,
    Serhei Makarov says:

  Upstream kernel 5.11.0-rc7 and later was found to deadlock during a
  bpf_probe_read_compat() call within a sched_switch tracepoint. The problem
  is reproducible with the reg_alloc3 testcase from SystemTap's BPF backend
  testsuite on x86_64 as well as the runqlat, runqslower tools from bcc on
  ppc64le. Example stack trace:

  [...]
  [  730.868702] stack backtrace:
  [  730.869590] CPU: 1 PID: 701 Comm: in:imjournal Not tainted, 5.12.0-0.rc2.20210309git144c79ef3353.166.fc35.x86_64 #1
  [  730.871605] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
  [  730.873278] Call Trace:
  [  730.873770]  dump_stack+0x7f/0xa1
  [  730.874433]  check_noncircular+0xdf/0x100
  [  730.875232]  __lock_acquire+0x1202/0x1e10
  [  730.876031]  ? __lock_acquire+0xfc0/0x1e10
  [  730.876844]  lock_acquire+0xc2/0x3a0
  [  730.877551]  ? __wake_up_common_lock+0x52/0x90
  [  730.878434]  ? lock_acquire+0xc2/0x3a0
  [  730.879186]  ? lock_is_held_type+0xa7/0x120
  [  730.880044]  ? skb_queue_tail+0x1b/0x50
  [  730.880800]  _raw_spin_lock_irqsave+0x4d/0x90
  [  730.881656]  ? __wake_up_common_lock+0x52/0x90
  [  730.882532]  __wake_up_common_lock+0x52/0x90
  [  730.883375]  audit_log_end+0x5b/0x100
  [  730.884104]  slow_avc_audit+0x69/0x90
  [  730.884836]  avc_has_perm+0x8b/0xb0
  [  730.885532]  selinux_lockdown+0xa5/0xd0
  [  730.886297]  security_locked_down+0x20/0x40
  [  730.887133]  bpf_probe_read_compat+0x66/0xd0
  [  730.887983]  bpf_prog_250599c5469ac7b5+0x10f/0x820
  [  730.888917]  trace_call_bpf+0xe9/0x240
  [  730.889672]  perf_trace_run_bpf_submit+0x4d/0xc0
  [  730.890579]  perf_trace_sched_switch+0x142/0x180
  [  730.891485]  ? __schedule+0x6d8/0xb20
  [  730.892209]  __schedule+0x6d8/0xb20
  [  730.892899]  schedule+0x5b/0xc0
  [  730.893522]  exit_to_user_mode_prepare+0x11d/0x240
  [  730.894457]  syscall_exit_to_user_mode+0x27/0x70
  [  730.895361]  entry_SYSCALL_64_after_hwframe+0x44/0xae
  [...]

Fixes: 59438b4647 ("security,lockdown,selinux: implement SELinux lockdown")
Reported-by: Ondrej Mosnacek <omosnace@redhat.com>
Reported-by: Jakub Hrozek <jhrozek@redhat.com>
Reported-by: Serhei Makarov <smakarov@redhat.com>
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: James Morris <jamorris@linux.microsoft.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Frank Eigler <fche@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/bpf/01135120-8bf7-df2e-cff0-1d73f1f841c3@iogearbox.net
2021-06-02 21:59:22 +02:00
Harishankar Vishwanathan
05924717ac bpf, tnums: Provably sound, faster, and more precise algorithm for tnum_mul
This patch introduces a new algorithm for multiplication of tristate
numbers (tnums) that is provably sound. It is faster and more precise when
compared to the existing method.

Like the existing method, this new algorithm follows the long
multiplication algorithm. The idea is to generate partial products by
multiplying each bit in the multiplier (tnum a) with the multiplicand
(tnum b), and adding the partial products after appropriately bit-shifting
them. The new algorithm, however, uses just a single loop over the bits of
the multiplier (tnum a) and accumulates only the uncertain components of
the multiplicand (tnum b) into a mask-only tnum. The following paper
explains the algorithm in more detail: https://arxiv.org/abs/2105.05398.

A natural way to construct the tnum product is by performing a tnum
addition on all the partial products. This algorithm presents another
method of doing this: decompose each partial product into two tnums,
consisting of the values and the masks separately. The mask-sum is
accumulated within the loop in acc_m. The value-sum tnum is generated
using a.value * b.value. The tnum constructed by tnum addition of the
value-sum and the mask-sum contains all possible summations of concrete
values drawn from the partial product tnums pairwise. We prove this result
in the paper.

Our evaluations show that the new algorithm is overall more precise
(producing tnums with less uncertain components) than the existing method.
As an illustrative example, consider the input tnums A and B. The numbers
in the parenthesis correspond to (value;mask).

  A                = 000000x1 (1;2)
  B                = 0010011x (38;1)
  A * B (existing) = xxxxxxxx (0;255)
  A * B (new)      = 0x1xxxxx (32;95)

Importantly, we present a proof of soundness of the new algorithm in the
aforementioned paper. Additionally, we show that this new algorithm is
empirically faster than the existing method.

Co-developed-by: Matan Shachnai <m.shachnai@rutgers.edu>
Co-developed-by: Srinivas Narayana <srinivas.narayana@rutgers.edu>
Co-developed-by: Santosh Nagarakatte <santosh.nagarakatte@rutgers.edu>
Signed-off-by: Matan Shachnai <m.shachnai@rutgers.edu>
Signed-off-by: Srinivas Narayana <srinivas.narayana@rutgers.edu>
Signed-off-by: Santosh Nagarakatte <santosh.nagarakatte@rutgers.edu>
Signed-off-by: Harishankar Vishwanathan <harishankar.vishwanathan@rutgers.edu>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Edward Cree <ecree.xilinx@gmail.com>
Link: https://arxiv.org/abs/2105.05398
Link: https://lore.kernel.org/bpf/20210531020157.7386-1-harishankar.vishwanathan@rutgers.edu
2021-06-01 13:34:15 +02:00
Hangbin Liu
e8e0f0f484 bpf, devmap: Remove drops variable from bq_xmit_all()
As Colin pointed out, the first drops assignment after declaration will
be overwritten by the second drops assignment before using, which makes
it useless.

Since the drops variable will be used only once. Just remove it and
use "cnt - sent" in trace_xdp_devmap_xmit().

Fixes: cb261b594b ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reported-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20210528024356.24333-1-liuhangbin@gmail.com
2021-05-28 22:14:18 +02:00
Jakub Kicinski
5ada57a9a6 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
cdc-wdm: s/kill_urbs/poison_urbs/ to fix build

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-05-27 09:55:10 -07:00
Florent Revest
d6a6a55518 libbpf: Move BPF_SEQ_PRINTF and BPF_SNPRINTF to bpf_helpers.h
These macros are convenient wrappers around the bpf_seq_printf and
bpf_snprintf helpers. They are currently provided by bpf_tracing.h which
targets low level tracing primitives. bpf_helpers.h is a better fit.

The __bpf_narg and __bpf_apply are needed in both files and provided
twice. __bpf_empty isn't used anywhere and is removed from bpf_tracing.h

Reported-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210526164643.2881368-1-revest@chromium.org
2021-05-26 10:45:41 -07:00
Hangbin Liu
e624d4ed4a xdp: Extend xdp_redirect_map with broadcast support
This patch adds two flags BPF_F_BROADCAST and BPF_F_EXCLUDE_INGRESS to
extend xdp_redirect_map for broadcast support.

With BPF_F_BROADCAST the packet will be broadcasted to all the interfaces
in the map. with BPF_F_EXCLUDE_INGRESS the ingress interface will be
excluded when do broadcasting.

When getting the devices in dev hash map via dev_map_hash_get_next_key(),
there is a possibility that we fall back to the first key when a device
was removed. This will duplicate packets on some interfaces. So just walk
the whole buckets to avoid this issue. For dev array map, we also walk the
whole map to find valid interfaces.

Function bpf_clear_redirect_map() was removed in
commit ee75aef23a ("bpf, xdp: Restructure redirect actions").
Add it back as we need to use ri->map again.

With test topology:
  +-------------------+             +-------------------+
  | Host A (i40e 10G) |  ---------- | eno1(i40e 10G)    |
  +-------------------+             |                   |
                                    |   Host B          |
  +-------------------+             |                   |
  | Host C (i40e 10G) |  ---------- | eno2(i40e 10G)    |
  +-------------------+             |                   |
                                    |          +------+ |
                                    | veth0 -- | Peer | |
                                    | veth1 -- |      | |
                                    | veth2 -- |  NS  | |
                                    |          +------+ |
                                    +-------------------+

On Host A:
 # pktgen/pktgen_sample03_burst_single_flow.sh -i eno1 -d $dst_ip -m $dst_mac -s 64

On Host B(Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, 128G Memory):
Use xdp_redirect_map and xdp_redirect_map_multi in samples/bpf for testing.
All the veth peers in the NS have a XDP_DROP program loaded. The
forward_map max_entries in xdp_redirect_map_multi is modify to 4.

Testing the performance impact on the regular xdp_redirect path with and
without patch (to check impact of additional check for broadcast mode):

5.12 rc4         | redirect_map        i40e->i40e      |    2.0M |  9.7M
5.12 rc4         | redirect_map        i40e->veth      |    1.7M | 11.8M
5.12 rc4 + patch | redirect_map        i40e->i40e      |    2.0M |  9.6M
5.12 rc4 + patch | redirect_map        i40e->veth      |    1.7M | 11.7M

Testing the performance when cloning packets with the redirect_map_multi
test, using a redirect map size of 4, filled with 1-3 devices:

5.12 rc4 + patch | redirect_map multi  i40e->veth (x1) |    1.7M | 11.4M
5.12 rc4 + patch | redirect_map multi  i40e->veth (x2) |    1.1M |  4.3M
5.12 rc4 + patch | redirect_map multi  i40e->veth (x3) |    0.8M |  2.6M

Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/20210519090747.1655268-3-liuhangbin@gmail.com
2021-05-26 09:46:16 +02:00
Jesper Dangaard Brouer
cb261b594b bpf: Run devmap xdp_prog on flush instead of bulk enqueue
This changes the devmap XDP program support to run the program when the
bulk queue is flushed instead of before the frame is enqueued. This has
a couple of benefits:

- It "sorts" the packets by destination devmap entry, and then runs the
  same BPF program on all the packets in sequence. This ensures that we
  keep the XDP program and destination device properties hot in I-cache.

- It makes the multicast implementation simpler because it can just
  enqueue packets using bq_enqueue() without having to deal with the
  devmap program at all.

The drawback is that if the devmap program drops the packet, the enqueue
step is redundant. However, arguably this is mostly visible in a
micro-benchmark, and with more mixed traffic the I-cache benefit should
win out. The performance impact of just this patch is as follows:

Using 2 10Gb i40e NIC, redirecting one to another, or into a veth interface,
which do XDP_DROP on veth peer. With xdp_redirect_map in sample/bpf, send
pkts via pktgen cmd:
./pktgen_sample03_burst_single_flow.sh -i eno1 -d $dst_ip -m $dst_mac -t 10 -s 64

There are about +/- 0.1M deviation for native testing, the performance
improved for the base-case, but some drop back with xdp devmap prog attached.

Version          | Test                           | Generic | Native | Native + 2nd xdp_prog
5.12 rc4         | xdp_redirect_map   i40e->i40e  |    1.9M |   9.6M |  8.4M
5.12 rc4         | xdp_redirect_map   i40e->veth  |    1.7M |  11.7M |  9.8M
5.12 rc4 + patch | xdp_redirect_map   i40e->i40e  |    1.9M |   9.8M |  8.0M
5.12 rc4 + patch | xdp_redirect_map   i40e->veth  |    1.7M |  12.0M |  9.4M

When bq_xmit_all() is called from bq_enqueue(), another packet will
always be enqueued immediately after, so clearing dev_rx, xdp_prog and
flush_node in bq_xmit_all() is redundant. Move the clear to __dev_flush(),
and only check them once in bq_enqueue() since they are all modified
together.

This change also has the side effect of extending the lifetime of the
RCU-protected xdp_prog that lives inside the devmap entries: Instead of
just living for the duration of the XDP program invocation, the
reference now lives all the way until the bq is flushed. This is safe
because the bq flush happens at the end of the NAPI poll loop, so
everything happens between a local_bh_disable()/local_bh_enable() pair.
However, this is by no means obvious from looking at the call sites; in
particular, some drivers have an additional rcu_read_lock() around only
the XDP program invocation, which only confuses matters further.
Cleaning this up will be done in a separate patch series.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20210519090747.1655268-2-liuhangbin@gmail.com
2021-05-26 09:46:16 +02:00
Daniel Borkmann
a703619127 bpf: No need to simulate speculative domain for immediates
In 801c6058d1 ("bpf: Fix leakage of uninitialized bpf stack under
speculation") we replaced masking logic with direct loads of immediates
if the register is a known constant. Given in this case we do not apply
any masking, there is also no reason for the operation to be truncated
under the speculative domain.

Therefore, there is also zero reason for the verifier to branch-off and
simulate this case, it only needs to do it for unknown but bounded scalars.
As a side-effect, this also enables few test cases that were previously
rejected due to simulation under zero truncation.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-25 22:08:53 +02:00
Daniel Borkmann
bb01a1bba5 bpf: Fix mask direction swap upon off reg sign change
Masking direction as indicated via mask_to_left is considered to be
calculated once and then used to derive pointer limits. Thus, this
needs to be placed into bpf_sanitize_info instead so we can pass it
to sanitize_ptr_alu() call after the pointer move. Piotr noticed a
corner case where the off reg causes masking direction change which
then results in an incorrect final aux->alu_limit.

Fixes: 7fedb63a83 ("bpf: Tighten speculative pointer arithmetic mask")
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-25 22:08:53 +02:00
Daniel Borkmann
3d0220f686 bpf: Wrap aux data inside bpf_sanitize_info container
Add a container structure struct bpf_sanitize_info which holds
the current aux info, and update call-sites to sanitize_ptr_alu()
to pass it in. This is needed for passing in additional state
later on.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-25 22:08:53 +02:00
Daniel Borkmann
5c9d706f61 bpf: Fix BPF_LSM kconfig symbol dependency
Similarly as 6bdacdb48e ("bpf: Fix BPF_JIT kconfig symbol dependency") we
need to detangle the hard BPF_LSM dependency on NET. This was previously
implicit by its dependency on BPF_JIT which itself was dependent on NET (but
without any actual/real hard dependency code-wise). Given the latter was
lifted, so should be the former as BPF_LSMs could well exist on net-less
systems. This therefore also fixes a randconfig build error recently reported
by Randy:

  ld: kernel/bpf/bpf_lsm.o: in function `bpf_lsm_func_proto':
  bpf_lsm.c:(.text+0x1a0): undefined reference to `bpf_sk_storage_get_proto'
  ld: bpf_lsm.c:(.text+0x1b8): undefined reference to `bpf_sk_storage_delete_proto'
  [...]

Fixes: b24abcff91 ("bpf, kconfig: Add consolidated menu entry for bpf with core options")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
2021-05-25 21:16:23 +02:00
Zhen Lei
8fb33b6055 bpf: Fix spelling mistakes
Fix some spelling mistakes in comments:
aother ==> another
Netiher ==> Neither
desribe ==> describe
intializing ==> initializing
funciton ==> function
wont ==> won't and move the word 'the' at the end to the next line
accross ==> across
pathes ==> paths
triggerred ==> triggered
excute ==> execute
ether ==> either
conervative ==> conservative
convetion ==> convention
markes ==> marks
interpeter ==> interpreter

Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210525025659.8898-2-thunder.leizhen@huawei.com
2021-05-24 21:13:05 -07:00
Denis Salopek
3e87f192b4 bpf: Add lookup_and_delete_elem support to hashtab
Extend the existing bpf_map_lookup_and_delete_elem() functionality to
hashtab map types, in addition to stacks and queues.
Create a new hashtab bpf_map_ops function that does lookup and deletion
of the element under the same bucket lock and add the created map_ops to
bpf.h.

Signed-off-by: Denis Salopek <denis.salopek@sartura.hr>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/4d18480a3e990ffbf14751ddef0325eed3be2966.1620763117.git.denis.salopek@sartura.hr
2021-05-24 13:30:26 -07:00
Yinjun Zhang
ceb11679d9 bpf, offload: Reorder offload callback 'prepare' in verifier
Commit 4976b718c3 ("bpf: Introduce pseudo_btf_id") switched the
order of resolve_pseudo_ldimm(), in which some pseudo instructions
are rewritten. Thus those rewritten instructions cannot be passed
to driver via 'prepare' offload callback.

Reorder the 'prepare' offload callback to fix it.

Fixes: 4976b718c3 ("bpf: Introduce pseudo_btf_id")
Signed-off-by: Yinjun Zhang <yinjun.zhang@corigine.com>
Signed-off-by: Simon Horman <simon.horman@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210520085834.15023-1-simon.horman@netronome.com
2021-05-20 23:51:52 +02:00
Florent Revest
0af02eb2a7 bpf: Avoid using ARRAY_SIZE on an uninitialized pointer
The cppcheck static code analysis reported the following error:

    if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bufs->tmp_bufs))) {
                                             ^
ARRAY_SIZE is a macro that expands to sizeofs, so bufs is not actually
dereferenced at runtime, and the code is actually safe. But to keep
things tidy, this patch removes the need for a call to ARRAY_SIZE by
extracting the size of the array into a macro. Cppcheck should no longer
be confused and the code ends up being a bit cleaner.

Fixes: e2d5b2bb76 ("bpf: Fix nested bpf_bprintf_prepare with more per-cpu buffers")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/bpf/20210517092830.1026418-2-revest@chromium.org
2021-05-20 23:48:38 +02:00
Florent Revest
8afcc19fbf bpf: Clarify a bpf_bprintf_prepare macro
The per-cpu buffers contain bprintf data rather than printf arguments.
The macro name and comment were a bit confusing, this rewords them in a
clearer way.

Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/bpf/20210517092830.1026418-1-revest@chromium.org
2021-05-20 23:48:38 +02:00
Daniel Borkmann
6bdacdb48e bpf: Fix BPF_JIT kconfig symbol dependency
Randy reported a randconfig build error recently on i386:

  ld: arch/x86/net/bpf_jit_comp32.o: in function `do_jit':
  bpf_jit_comp32.c:(.text+0x28c9): undefined reference to `__bpf_call_base'
  ld: arch/x86/net/bpf_jit_comp32.o: in function `bpf_int_jit_compile':
  bpf_jit_comp32.c:(.text+0x3694): undefined reference to `bpf_jit_blind_constants'
  ld: bpf_jit_comp32.c:(.text+0x3719): undefined reference to `bpf_jit_binary_free'
  ld: bpf_jit_comp32.c:(.text+0x3745): undefined reference to `bpf_jit_binary_alloc'
  ld: bpf_jit_comp32.c:(.text+0x37d3): undefined reference to `bpf_jit_prog_release_other'
  [...]

The cause was that b24abcff91 ("bpf, kconfig: Add consolidated menu entry for
bpf with core options") moved BPF_JIT from net/Kconfig into kernel/bpf/Kconfig
and previously BPF_JIT was guarded by a 'if NET'. However, there is no actual
dependency on NET, it's just that menuconfig NET selects BPF. And the latter in
turn causes kernel/bpf/core.o to be built which contains above symbols. Randy's
randconfig didn't have NET set, and BPF wasn't either, but BPF_JIT otoh was.
Detangle this by making BPF_JIT depend on BPF instead. arm64 was the only arch
that pulled in its JIT in net/ via obj-$(CONFIG_NET), all others unconditionally
pull this dir in via obj-y. Do the same since CONFIG_NET guard there is really
useless as we compiled the JIT via obj-$(CONFIG_BPF_JIT) += bpf_jit_comp.o anyway.

Fixes: b24abcff91 ("bpf, kconfig: Add consolidated menu entry for bpf with core options")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
2021-05-20 23:48:37 +02:00
Pu Lehui
3a2daa7248 bpf: Make some symbols static
The sparse tool complains as follows:

kernel/bpf/syscall.c:4567:29: warning:
 symbol 'bpf_sys_bpf_proto' was not declared. Should it be static?
kernel/bpf/syscall.c:4592:29: warning:
 symbol 'bpf_sys_close_proto' was not declared. Should it be static?

This symbol is not used outside of syscall.c, so marks it static.

Signed-off-by: Pu Lehui <pulehui@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210519064116.240536-1-pulehui@huawei.com
2021-05-19 10:47:43 -07:00
Alexei Starovoitov
3abea08924 bpf: Add bpf_sys_close() helper.
Add bpf_sys_close() helper to be used by the syscall/loader program to close
intermediate FDs and other cleanup.
Note this helper must never be allowed inside fdget/fdput bracketing.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-11-alexei.starovoitov@gmail.com
2021-05-19 00:33:40 +02:00
Alexei Starovoitov
3d78417b60 bpf: Add bpf_btf_find_by_name_kind() helper.
Add new helper:
long bpf_btf_find_by_name_kind(char *name, int name_sz, u32 kind, int flags)
Description
	Find BTF type with given name and kind in vmlinux BTF or in module's BTFs.
Return
	Returns btf_id and btf_obj_fd in lower and upper 32 bits.

It will be used by loader program to find btf_id to attach the program to
and to find btf_ids of ksyms.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-10-alexei.starovoitov@gmail.com
2021-05-19 00:33:40 +02:00
Alexei Starovoitov
387544bfa2 bpf: Introduce fd_idx
Typical program loading sequence involves creating bpf maps and applying
map FDs into bpf instructions in various places in the bpf program.
This job is done by libbpf that is using compiler generated ELF relocations
to patch certain instruction after maps are created and BTFs are loaded.
The goal of fd_idx is to allow bpf instructions to stay immutable
after compilation. At load time the libbpf would still create maps as usual,
but it wouldn't need to patch instructions. It would store map_fds into
__u32 fd_array[] and would pass that pointer to sys_bpf(BPF_PROG_LOAD).

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-9-alexei.starovoitov@gmail.com
2021-05-19 00:33:40 +02:00
Alexei Starovoitov
c571bd752e bpf: Make btf_load command to be bpfptr_t compatible.
Similar to prog_load make btf_load command to be availble to
bpf_prog_type_syscall program.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-7-alexei.starovoitov@gmail.com
2021-05-19 00:33:40 +02:00
Alexei Starovoitov
af2ac3e13e bpf: Prepare bpf syscall to be used from kernel and user space.
With the help from bpfptr_t prepare relevant bpf syscall commands
to be used from kernel and user space.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-4-alexei.starovoitov@gmail.com
2021-05-19 00:33:40 +02:00
Alexei Starovoitov
79a7f8bdb1 bpf: Introduce bpf_sys_bpf() helper and program type.
Add placeholders for bpf_sys_bpf() helper and new program type.
Make sure to check that expected_attach_type is zero for future extensibility.
Allow tracing helper functions to be used in this program type, since they will
only execute from user context via bpf_prog_test_run.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-2-alexei.starovoitov@gmail.com
2021-05-19 00:33:39 +02:00